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Given a class of dark energy models, constraints from one set of cosmic acceleration observables make

predictions for other observables. Here we present the allowed ranges for the expansion rate HðzÞ,
distancesDðzÞ, and the linear growth functionGðzÞ (as well as other, derived growth observables) from the

current combination of cosmological measurements of supernovae, the cosmic microwave background,

baryon acoustic oscillations, and the Hubble constant. With a cosmological constant as the dark energy

and assuming near-minimal neutrino masses, the growth function is already predicted to better than 2%

precision at any redshift, with or without spatial curvature. Direct measurements of growth that match this

precision offer the opportunity to stringently test and potentially rule out a cosmological constant. While

predictions in the broader class of quintessence models are weaker, it is remarkable that they are typically

only a factor of 2–3 less precise than forecasted predictions for future space-based supernovae and Planck

CMB measurements. In particular, measurements of growth at any redshift, or the Hubble constant H0,

that exceed !CDM predictions by substantially more than 2% would rule out not only a cosmological

constant but also the whole quintessence class, with or without curvature and early dark energy. Barring

additional systematic errors hiding in the data, such a discovery would require more exotic explanations of

cosmic acceleration such as phantom dark energy, dark energy clustering, or modifications of gravity.
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I. INTRODUCTION

Within a fixed class of dark energy models, such as the
cosmological constant or scalar field quintessence, various
cosmological observables are all interrelated by the prop-
erties of the class itself. The narrower the class, the higher
the expected correlation between measurements of differ-
ent observables. Therefore, given a class of dark energy
models, constraints from one set of cosmic acceleration
observables make predictions for other observables. For
example, it is well known that since the first release of
WMAP data [1], the Hubble constant in a spatially flat
universe with a cosmological constant and cold dark matter
(!CDM) has been predicted to a precision better than it
has yet been measured. Predictions like this one therefore
offer the opportunity for more precise measurements to
falsify the dark energy model (in this case, flat!CDM) [2].

In a previous paper (hereafter MHH) [3], we showed
how this idea can be generalized to additional acceleration
observables and wider classes of dark energy models.
Other observables include the expansion rate HðzÞ, the
comoving angular diameter distance DðzÞ, and the linear
growth function GðzÞ. The model classes we considered
include a cosmological constant, with and without spatial
curvature, and scalar field quintessence models, with and
without early dark energy and spatial curvature compo-
nents. Using forecasts for a Stage IV [4] supernovae (SN)
sample and Planck cosmic microwave background (CMB)
data, we found that future data sets will provide numerous

strong predictions that we may use to attempt to falsify
various acceleration paradigms.
In this paper, we evaluate the predictive power of current

measurements to constrain the expansion rate, distance,
and growth as a function of redshift. Specifically, we con-
sider current measurements of SN, the CMB, baryon
acoustic oscillations (BAO), and the Hubble constant
(H0). These predictions target the redshift ranges and
required precision for future measurements seeking to
rule out whole classes of models for cosmic acceleration.
Our approach complements studies that seek to con-

strain an ever expanding set of parameters of the dark
energy. The most ambitious analyses currently utilize #5
parameters to describe the dark energy equation of state
wðzÞ [5–12]. We take these studies in a new direction:
rather than constraining parameters associated with the
equation of state, we propagate constraints from the data
into allowed ranges for HðzÞ, DðzÞ, GðzÞ, and auxiliary
observables that can be constructed from them through a
principal component representation of wðzÞ that is com-
plete in these observables for z < 1:7. This work goes
beyond previous studies that are similar in spirit (e.g.
[13–17]) by directly applying constraints from current
data sets to complete representations of several dark energy
model classes and making concrete predictions for a num-
ber of observable quantities.
This paper is organized as follows. We begin in Sec. II

with a discussion of the methodology of predicting observ-
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ables within classes of dark energy models, including
descriptions of each of the acceleration observables, cos-
mological data sets, and model classes. We present our
predictions from current data in Sec. III and discuss the
results in Sec. IV.

II. METHODOLOGY

A. Acceleration observables

There are two general types of acceleration observables:
those related to the expansion history and geometry of the
Universe, and those related to the growth of structure. In
terms of a general evolution for the dark energy equation of
state wðzÞ, the expansion history observables are the
Hubble expansion rate

HðzÞ ¼ H0½"mð1þ zÞ3 þ "DEfðzÞ þ "Kð1þ zÞ2'1=2;

fðzÞ ¼ exp
!
3
Z z

0
dz0

1þ wðz0Þ
1þ z0

"
; (1)

where "m and "DE are the present matter and dark energy
densities, respectively, as fractions of the critical density
for flatness, spatial curvature is parametrized by"K ( 1)
"m ) "DE, and the contribution of radiation is neglected;
and the comoving angular diameter distance

DðzÞ ¼ 1

ðj"KjH2
0Þ1=2

SK

!
ðj"KjH2

0Þ1=2
Z z

0

dz0

Hðz0Þ

"
; (2)

where the function SKðxÞ is equal to x in a flat universe
("K ¼ 0), sinhx in an open universe ("K > 0), and sinx in
a closed universe ("K < 0). The growth of linear density
perturbations ! / Ga is given by

G00 þ
#
4þH0

H

$
G0 þ

!
3þH0

H
) 3

2
"mðzÞ

"
G ¼ 0; (3)

where primes denote derivatives with respect to lna and
"mðzÞ ¼ "mH

2
0ð1þ zÞ3=H2ðzÞ. We assume scales for

which the dark energy density is spatially smooth com-
pared with the matter and normalize GðzÞ ¼ 1 at z ¼ 103.

There are several auxiliary quantities related to the
growth function that are also interesting to examine.
Since growth measurements like the evolution of the clus-
ter abundance often compare the change in growth relative
to the present, we also consider a different normalization
for the growth function,

G0ðzÞ (
GðzÞ
Gð0Þ : (4)

Velocity field measurements, on the other hand, are sensi-
tive to the growth rate,

fðzÞ ( 1þG0

G
: (5)

Specifically, the amplitude of the velocity power spectrum
can be measured from redshift space distortions and con-
strains fðzÞGðzÞ independently of galaxy bias (e.g. see

[18]). Finally, given that the growth rate is approximately
related to expansion history observables by fðzÞ ¼
½"mðzÞ'" where the growth index is " * 0:55 for flat
!CDM [19,20] we also consider predictions for

"ðzÞ ( ln½fðzÞ'
ln½"mðzÞ'

: (6)

Note however that "ðzÞ is not a direct observable but rather
must be inferred from a combination of measurements in a
specific dark energy context.
We ignore the influence of massive neutrinos throughout

this study. The effect of massive neutrinos on the growth of
structure is significantly scale dependent, but on present
linear scales well below the horizon, k#
0:01–0:1h Mpc)1, the growth suppression from a normal
neutrino mass hierarchy with

P
m# # 0:05 eV [21] is &

1% inGðzÞ and fðzÞGðzÞ and smaller for other observables.
The maximum decrement in growth from nearly degener-
ate neutrinos with

P
m# # 0:5 eV (e.g. [22]) is #1–10%

on these scales. In the predictions we present here, these
effects would appear as an additional early dark energy
component with w * 0. Future precise measurements ofP

m# from independent data could be used to correct the
growth predictions here by scaling them by the appropriate
suppression factor.

B. Constraints from current data

The main observational constraints we consider when
making predictions for acceleration observables include
relative distances at z & 1:5 from Type Ia SNe and abso-
lute distances at z+ ¼ 1090 from the CMB, zBAO * 0:35
from BAO, and zh * 0:04 from low-redshift SNe cali-
brated with maser and Cepheid distances. Since low-z
distances mainly probe the Hubble constant for smoothly
varying wðzÞ, we refer to the low-z SN calibration as anH0

constraint. The CMB data additionally constrain parame-
ters that impact dark energy models such as the matter
density "mh

2 and the fraction of dark energy density at
recombination.
In the simplest classes of models, the SN and CMB data

suffice to make accurate predictions for expansion and
growth observables. In more complex classes, BAO and
H0 constraints on distances are necessary. Even in these
cases, predictive power is still retained in that measured
distances to a few specific redshifts constrain HðzÞ, DðzÞ,
and GðzÞ at all redshifts. We now describe each of these
data sets in more detail.
The Type Ia SN sample we use is the Union compilation

[23]. These SN observations measure relative distances,
Dðz1Þ=Dðz2Þ, over a range of redshifts spanning 0:015 ,
z , 1:551, with most SNe at z & 1. We add the SN con-
straints using the likelihood code for the Union data sets
[24], which includes estimated systematic errors for the SN
data [23].
For the CMB, we use the most recent, 5-year release of

data from the WMAP satellite [25–27] employing the
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likelihood code available at the LAMBDA web site [28].
Unlike the CMB distance priors on Dðz+Þ and "mh

2 used
for the forecasts in MHH, the likelihood used here contains
the full information from the CMB angular power spectra;
in particular, this provides sensitivity to large fractions of
early dark energy at recombination as well as information
about late-time dark energy and spatial curvature from the
integrated Sachs-Wolfe effect without necessitating addi-
tional priors. We compute the CMB angular power spectra
using the code CAMB [29,30] modified with the parame-
trized post-Friedmann (PPF) dark energy module [31,32]
to include models with general dark energy equation of
state evolution where wðzÞ may cross w ¼ )1. Note that
while our predictions for growth observables apply to
scales on which dark energy is smooth relative to matter,
the CAMBþ PPF code self-consistently accounts for the
effects of scale-dependent dark energy perturbations on the
CMB anisotropies.

The BAO constraint we use is based on the measurement
of the correlation function of Sloan Digital Sky Survey
luminous red galaxies [33], which determines the distance
and expansion rate at zBAO * 0:35 through the combina-
tion DVðzÞ ( ½zD2ðzÞ=HðzÞ'1=3. We implement this con-
straint by taking the volume average of this quantity, hDVi,
over the luminous red galaxy redshifts, 0:16< z < 0:47,

and comparing with the value of A ( hDVi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
"mh

2
p

=zBAO
given in Ref. [33], A ¼ 0:472- 0:017 (taking the scalar
spectral tilt to be ns ¼ 0:96). We discuss the expected
impact of more recent BAO measurements [34] on our
predictions in Sec. IV.

Finally, we include the recent Hubble constant con-
straint from the SHOES team [35], based on SN distances
at 0:023< z < 0:1 that are linked to a maser-determined
absolute distance using Cepheids observed in both the
maser galaxy and nearby galaxies hosting Type Ia SNe.
The SHOES measurement determines the absolute dis-
tance to a mean SN redshift of zh ¼ 0:04, which effectively
corresponds to a constraint on H0 for models with rela-
tively smooth dark energy evolution in the recent past such
that limz!0DðzÞ ¼ cz=H0. Sharp transitions in the dark
energy density at ultralow redshifts can break the relation-
ship between low-redshift distances andH0 as described in
Ref. [36], but the principal component parametrization we
use is constructed to largely eliminate such possibilities
(see MHH, Appendix B). Nonetheless, given that the ob-
servations relate distance and redshift, and distances are
more robust to variations in the equation of state at low-
redshift than is the instantaneous expansion rate, we imple-
ment the H0 constraint as a measurement of DðzhÞ ¼
czh=ð74:2- 3:6 km s)1 Mpc)1Þ.

C. Model classes

Our basic model classes are (1) !CDM, where dark
energy is a cosmological constant ! with equation of state
w ¼ )1, and (2) quintessence, the general class of scalar

field models with arbitrary but bounded equation of state
evolution )1 , wðzÞ , 1. For these two cases we main-
tain a complete description of the observable degrees of
freedom. Finally, there is (3) smooth dark energy which is
the generalization of quintessence to unbounded wðzÞ,
assuming that dark energy is unclustered relative to matter.
Unlike the forecasts in MHH, we do not maintain com-
pleteness for smooth dark energy but rather take a fixed
functional form wðzÞ ¼ w0 þ ð1) aÞwa. This choice al-
lows us to simply identify observables that could poten-
tially falsify quintessence in favor of smooth dark energy
but does not allow us to make predictions that could falsify
the broader class as a whole. It also allows us to identify
how predictions in the quintessence class change if we
require smooth, monotonic evolution in wðzÞ. In each
case, the model class can either be restricted to spatially
flat cosmologies or allow spatial curvature, parametrized
by "K.
For the quintessence class, we follow the procedure

described in MHH and parametrize wðzÞ at z < zmax ¼
1:7 with a basis of principal components (PCs) [37,38].
For our purposes, the PCs simply act as an intermediate
basis to represent observables required to be complete for
arbitrary variations in wðzÞ at z < zmax. We construct the
PCs using the specifications of a Stage IV SN experiment,
specifically the SuperNova/Acceleration Probe (SNAP)
[39], combined with CMB information from the recently
launched Planck satellite.
Specifically, the principal component functions eiðzjÞ

are eigenvectors of the SNAPþ Planck covariance matrix
for the equation of state in redshift bins zj, and they form a
basis in which an arbitrary function wðzjÞ may be ex-
pressed as

wðzjÞ ) wfidðzjÞ ¼
XNz;PC

i¼1

$ieiðzjÞ; (7)

where $i are the PC amplitudes, Nz;PC ¼ 1þ zmax=#z is
the number of redshift bins of width #z, and zj ¼ ðj)
1Þ#z. The maximum redshift for variations inwðzÞ (zmax ¼
1:7) matches the largest redshift for the SNAP supernova
data, and we use a fiducial model wfidðzÞ ¼ )1 since
!CDM is an excellent fit to current data.
Since the highest-variance PCs correspond to modes of

wðzÞ to which both data and predicted observables are
insensitive, we truncate the sum in Eq. (7) with Nmax <
Nz;PC PCs. As shown in MHH, for our choices of zmax and
wfidðzÞ, the 10 lowest-variance PCs (Nmax ¼ 10) form a
basis which, for the classes of models we consider here, is
sufficiently complete for future Stage IV measurements
and so more than suffice for the current data. We have
also explicitly checked that there is little difference in
predictions between Nmax ¼ 5 and Nmax ¼ 10 for one of
the model classes, flat quintessence without early dark
energy.
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Quintessence models describe dark energy as a scalar
field with kinetic and potential contributions to energy and
pressure. Barring models where large kinetic and (nega-
tive) potential contributions cancel, quintessence equations
of state are restricted to)1 , wðzÞ , 1. Following MHH,
this bound is conservatively implemented with uncorre-
lated top-hat priors on the PC amplitudes $i. Any combi-
nation of PC amplitudes that is rejected by these priors
must arise from an equation of state wðzÞ that violates the
bound on wðzÞ, but not all models that are allowed by the
priors strictly satisfy this bound; the set of models we
consider is therefore complete but not ‘‘pure.’’ This ambi-
guity arises since we truncate the principal components at
Nmax ¼ 10 and we wish to allow for the possibility that the
omitted components may conspire to satisfy the bound. For
the purposes of falsifying dark energy model classes a
complete but impure sampling of quintessence models is
sufficient, although more efficient rejection of models that
violate the )1 , wðzÞ , 1 bound could result in some-
what tighter observable predictions [40]. Further details on
the construction of the PCs and implementation of the
priors can be found in MHH.

The above prescription only includes dark energy varia-
tions at the relatively late times that are probed by SN data,
z < zmax. To describe early dark energy at z > zmax, we
adopt a simple parametrization by assuming a constant
equation of state, wðz > zmaxÞ ¼ w1, restricted to )1 ,
w1 , 1. The dark energy density at z > zmax can be ex-
trapolated from its value at zmax as

%DEðzÞ ¼ %DEðzmaxÞ
#

1þ z

1þ zmax

$
3ð1þw1Þ

: (8)

For more restricted model classes where we assume that
there is no significant early dark energy, we fix w1 ¼ )1
since a constant dark energy density rapidly becomes
negligible relative to the matter density at increasing red-
shift. Note that the possibility of early dark energy is
automatically included in the smooth w0 ) wa model class
where the equation of state at high redshift is w * w0 þ
wa.

In addition to the dark energy parameters described
above (!DE), we include cosmological parameters that
affect the CMB angular power spectra but not the accel-
eration observables (!nuis): the physical baryon density
"bh

2, the normalization and tilt of the primordial curva-
ture spectrum #2

R ¼ Asðk=k0Þns)1 with k0 ¼ 0:05 Mpc)1,
and the optical depth to reionization &. This brings our full
set of parameters for !CDM to !! ¼ !DE;! þ !nuis, and
for quintessence and smooth w0 ) wa dark energy we
define the analogous parameter sets with

!DE;! ¼ f"mh
2;"m;"Kg;

!DE;Q ¼ !DE;! þ f$1; . . . ; $Nmax
; w1g;

!DE;S ¼ !DE;! þ fw0; wag;
!nuis ¼ f"bh

2; ns; As; &g;

(9)

where we count "m and "K as dark energy parameters
since "DE ¼ 1) "m ) "K. Note that the Hubble con-
stant is a derived parameter, h ¼
H0=ð100 km s)1 Mpc)1Þ ¼ ð"mh

2="mÞ1=2. Although the
observable predictions mainly depend on constraints on the
dark energy parameters !DE, we include the additional
‘‘nuisance’’ parameters !nuis due to degeneracies between
!DE and !nuis parameters in current CMB data; these
nuisance parameters are marginalized over in our predic-
tions for acceleration observables. The parameter sets and
priors on the parameters for each model class are summa-
rized in Table I.

D. MCMC predictions

To make predictions for the acceleration observables
using constraints from current data, we use a Markov
Chain Monte Carlo (MCMC) likelihood analysis. Given
a dark energy model class parametrized by !!, !Q, or !S,
the MCMC algorithm estimates the joint posterior distri-
bution of cosmological parameters and predicted observ-
ables by sampling the parameter space and evaluating the
likelihood of each proposed model compared with the data

TABLE I. Dark energy model classes, their defining parameter sets and priors, and figures in which predictions appear.

Model Class Parameters Priors Figures

Flat !CDM !! "K ¼ 0 1–3 and 8
Nonflat !CDM !! none 2
Flat PC quintessence without early dark energy !Q f$ig priorsa, "K ¼ 0, w1 ¼ )1 3–6 and 8
Flat PC quintessence with early dark energy !Q f$ig priors, "K ¼ 0 5
Nonflat PC quintessence without early dark energy !Q f$ig priors, w1 ¼ )1 6 and 7
Nonflat PC quintessence with early dark energy !Q f$ig priors 7 and 8
Flat w0 ) wa with quintessence priors !S )1 , w0 , 1, )1 , w0 þ wa , 1, "K ¼ 0 9
Nonflat w0 ) wa with quintessence priors !S )1 , w0 , 1, )1 , w0 þ wa , 1 10
Flat w0 ) wa (no w prior; smooth dark energy) !S "K ¼ 0 9
Nonflat w0 ) wa (no w prior; smooth dark energy) !S none 10

aConservative quintessence priors on PC amplitudes; see Sec. II C.
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described in Sec. II B (e.g. see [41–43]). We use the code
COSMOMC [44,45] for the MCMC analysis.

The posterior distribution is obtained using Bayes’
Theorem,

P ð!jxÞ ¼ Lðxj!ÞP ð!ÞR
d!Lðxj!ÞP ð!Þ ; (10)

where Lðxj!Þ is the likelihood of the data x given the
model parameters ! and P ð!Þ is the prior probability
density. The MCMC algorithm generates random draws
from the posterior distribution that are fair samples of the
likelihood surface. We test convergence of the samples to a
stationary distribution that approximates the joint posterior
density P ð!jxÞ by applying a conservative Gelman-Rubin
criterion [46] of R) 1 & 0:01 across a minimum of four
chains for each model class.

As described in MHH, the MCMC approach allows us to
straightforwardly calculate confidence regions for the ac-
celeration observables by computingHðzÞ, DðzÞ, GðzÞ, and
the auxiliary observables G0ðzÞ, fðzÞGðzÞ, and "ðzÞ for
each MCMC sample using Eqs. (1)–(6). The posterior
distribution of the model parameters ! thus maps onto a
distribution of each acceleration observable at each red-
shift. These redshift-dependent distributions of the expan-
sion and growth observables form the predictions that we
describe in the next section.

III. DARK ENERGY MODEL PREDICTIONS

In this section, we show the predictions for growth and
expansion observables from the combined current CMB,
SN, BAO, and H0 constraints. Since plotting full distribu-
tions for the six observables defined in Sec. II A at several
different redshifts is impractical, we instead plot only the
regions enclosing 68% and 95% of the models at each
redshift, defined such that the number density of models
is equal at the upper and lower limit of each region. (When
describing the predictions, we will typically quote the 68%
C.L. limits.) To provide examples of features of individual
models that may not be apparent from the 68% and 95%
C.L. limits, we also plot the evolution of observables for
the maximum likelihood (ML) MCMC model within each
model class. We caution, however, that the MCMC algo-
rithm is designed to approximate the overall shape of the
likelihood and is not optimized for precisely computing the
ML parameters, so the ‘‘best fit’’ models shown here may
be slightly displaced from the true ML points.

In most figures in this section, we compare the predic-
tions for two model classes, one of which is a subclass of
the second, more general class (for example, !CDM and
quintessence). The potential to falsify the simpler class in
favor of the more complex one is greatest where the two
sets of predictions differ most, i.e. where one class gives
strong predictions and the other does not.

A. !CDM

We begin with the simplest and most predictive model
class: flat !CDM. Since "K ¼ 0, this model has only two
free dark energy parameters in Eq. (9), "m and "mh

2 (or
H0), providing very little freedom to alter the acceleration
observables at any redshift as shown in Fig. 1: HðzÞ, DðzÞ,
and GðzÞ are currently predicted with a precision of #2%
(68% C.L.) or better everywhere. The velocity observable
fðzÞGðzÞ is predicted to better than 5% and the growth
index to j#"j< 5. 10)4. These predictions are more

FIG. 1 (color online). Flat !CDM predictions for growth and
expansion observables, showing the 68% C.L. (shading) and
95% C.L. (curves) regions allowed by current CMB, SN,
BAO, and H0 data. Observables include the linear growth
function normalized in two different ways, GðzÞ equal to unity
at high redshift and G0ðzÞ ¼ GðzÞ=Gð0Þ; the product of the
differential growth rate and the growth function fðzÞGðzÞ; the
growth index "ðzÞ which relates fðzÞ and "mðzÞ; the expansion
rate HðzÞ; and the comoving distance DðzÞ (scaled by a factor of
1=10 in the lower panel). Note that the separation between the
68% and 95% C.L. regions is not visible where the observables
are extremely well predicted, e.g. in the "ðzÞ predictions in the
middle panel.
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precise than current measurements of the acceleration ob-
servables at any redshift.

The strong predictions for flat !CDM arise largely due
to CMB constraints: the two parameters "m and H0 are
tied together by the measurement of "mh

2, and the re-
maining freedom in H0 or the extragalactic distance scale
is fixed by the measurement of the distance to z+. However,
given the present uncertainties in "mh

2 and Dðz+Þ, the
addition of the other data (SN, BAO, and H0) increases
the precision of the predictions by almost a factor of 2
relative to WMAP constraints alone.

The flat !CDM model is therefore highly falsifiable in
that future measurements may find that these quantities
deviate substantially from the predictions. For example, an
H0 measurement with & 2% accuracy would match the
precision of the predictions and hence provide a sharp test
of flat !CDM. These predictions are only a factor of 2–3
weaker than the forecasted Stage IV predictions from
MHH. Since flat !CDM is the current standard model of
the cosmic expansion history and structure formation,
falsifying it would represent the most important observa-
tional breakthrough since the discovery of cosmic accel-
eration and would require revision of basic assumptions
about the nature of dark energy, spatial curvature, or the
theory of gravity.

Generalizing the model to !CDM with curvature in-
creases the range of predictions by less than a factor of 2. In

Fig. 2, we plot the predictions for flat and nonflat !CDM
relative to the ML flat !CDM model with "m ¼ 0:268,
h ¼ 0:711. Curvature opens up the ability to free the
extragalactic distance scale from the constraints imposed
by the CMB acoustic peak measurements. The tight con-
straints on SN, H0, and BAO distances limit this freedom.
Since the forecasted predictions from MHH used only the
current BAO measurement and a weaker H0 constraint as
priors, the relative impact of curvature here is substantially
smaller. In particular, predictions of the growth function
are nearly unchanged by curvature and still vary by less
than 2%. Likewise, fG is nearly unaffected by curvature.
Although the growth index, "ðzÞ, is not as perfectly deter-
mined for nonflat !CDM, especially at high redshift, it is
still predicted with a precision of j#"j< 0:005 at z & 3,
and both DðzÞ and HðzÞ are predicted to better than 3%.
Any measurement that deviates by significantly more than
these amounts would prove that the dark energy is not a
cosmological constant.1

B. Quintessence

If !CDM is falsified, then in the context of dark energy
we must consider models with wðzÞ ! )1. Our next class
of models is therefore flat quintessence models with wðzÞ
parametrized by 10 principal components at z < 1:7, as-
suming no early dark energy (‘‘w1 ¼ )1’’). The predic-
tions for acceleration observables within this model class
are compared with the flat !CDM predictions in Fig. 3.
Interestingly, the quintessence predictions are no longer

centered on the flat !CDM ML model. From the HðzÞ
predictions which mainly reflect variation in evolution of
the dark energy density, we see that on average the data
favor a smaller low-redshift (z & 0:5) and larger
intermediate-redshift (0:5 & z & 2) dark energy density.
Correspondingly, the best fit growth function GðzÞ of
!CDM is higher than that of #85% of the quintessence
models in the chain. Therefore a measurement of the
growth relative to high-redshift that is smaller than the
!CDM prediction by more than a few percent not only
rules out a cosmological constant but actually favors these
quintessence models. The additional freedom in growth
opens up predictions for " to include deviations of j#"j #
0:02 at z & 1.
Many of the shifts in the predictions relative to flat

!CDM are reflected in the evolution of wðzÞ in the maxi-
mum likelihood model for flat quintessence without early
dark energy. The ML model in this class marginally im-
proves the fit to the current data sets relative to the !CDM
ML model, largely due to variations in the SN data with
redshift that are fit marginally better by dynamical dark

FIG. 2 (color online). Predicted growth and expansion observ-
ables for nonflat (dark blue) and flat (light gray) !CDM, plotted
relative to the reference cosmology (the best fit model for flat
!CDM). Here and in subsequent figures, 68% C.L. regions are
marked by shading, 95% C.L. regions are bounded by solid
curves, and red curves outlined in white show the best fit model
of the more general (dark blue) model class (in this case, nonflat
!CDM).

1A substantial decrement in growth from high redshifts, which
in the context of our treatment would be interpreted as evidence
for early dark energy thus falsifying !CDM, could alternately
indicate neutrinos with more than the minimal allowed masses.

MICHAEL J. MORTONSON, WAYNE HU, AND DRAGAN HUTERER PHYSICAL REVIEW D 81, 063007 (2010)

063007-6



energy than by a cosmological constant. Figure 4 compares
MLmodels, quintessence predictions, and relative distance
constraints from the Union SN data sets at z & 1. Freedom
in wðzÞ at these redshifts allows changes in the dark energy
density to improve the fit to SN distances by )2# lnL#
4:5. However, some of this improvement is due to the large
oscillations in the equation of state at z# 0:1, which are
allowed to violate the )1 , w , 1 bound due to the
conservative implementation of the quintessence prior on
PC amplitudes described in Sec. II C. Smoothing the ML
wðzÞ by a Gaussian with width 'z # 0:1 or requiring wðzÞ
to satisfy stricter quintessence bounds reduces the im-
provement relative to !CDM to )2# lnL# 2, but has
little effect on the overall distributions of the predicted
observables.

Although differences in the ML models cause quintes-
sence to not be centered around !CDM, the allowed width
of quintessence predictions around the maximum likeli-
hood relative to !CDM follows the expectations of the
Stage IV predictions from MHH except for being weaker
by a factor of 2–3. The PCs allow for oscillatory variations
in HðzÞ, fðzÞGðzÞ, and "ðzÞ at z < 1 that would not be
readily observable with expansion history or growth mea-
sures due to limited resolution in redshift. Since these
low-z oscillations are poorly constrained by current SN
and CMB data, individual models such as the best fit model
plotted in Fig. 3 can extend slightly beyond the typical
range of the model class at the extrema of the oscillations
in observables such as HðzÞ, fðzÞGðzÞ, and "ðzÞ which are
more sensitive to rapid variations in wðzÞ. On the other
hand,GðzÞ,G0ðzÞ, andDðzÞ are still predicted with#2–3%

precision, so the class of flat quintessence models without
early dark energy remains highly falsifiable.
Adding early dark energy to flat quintessence (Fig. 5)

has very little impact on the 68% C.L. predictions of most
observables due to the restriction that w / )1 for a ca-
nonical scalar field. To satisfy CMB distance constraints,
any increase in the expansion rate due to early dark energy
must be compensated by a lower expansion rate at inter-
mediate redshift relative to z ¼ 0, i.e. a dark energy density
that decreases with increasing redshift requiring w<)1.
While adding early dark energy does allow a larger sup-
pression of growth at high-redshift (which is also a possible
sign of massive neutrinos given current upper limits), a
measurement of a * 10–15% decrement or * 2% incre-
ment in the growth relative to high-redshift would still
suggest that a broader class of models is necessary. This
freedom in growth leaves the amplitude relative to z ¼ 0
practically unchanged as the G0ðzÞ predictions show. The
only qualitative change with early dark energy is to open
up the allowed range in "ðzÞ so that the high-redshift end
has as much freedom as the low-redshift end. All of these
trends for early dark energy without curvature reflect those
of the forecasted predictions in MHH.

FIG. 4 (color online). Upper panel: Comparison of distance
constraints from SN data and best fit models, plotted relative to
the best fit H0DðzÞ for flat !CDM (dotted line). Blue points with
error bars show the Union SN data in redshift bins of width
# logz ¼ 0:05. The best fit model for flat quintessence without
early dark energy is plotted as a dashed curve, and the solid
curve shows how the relative distances are affected by smoothing
wðzÞ for this model by a Gaussian of width 'z ¼ 0:1. The full
distribution of relative distance predictions for this quintessence
model class is also shown with light gray shading (68% C.L.)
and curves (95% C.L.). Lower panel: wðzÞ for each of the models
from the upper panel.

FIG. 3 (color online). Flat quintessence models without early
dark energy (dark blue; red curve: best fit model) vs flat !CDM
(light gray). Other aspects here and in later figures follow Fig. 2.
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Including curvature in the quintessence class, but not
early dark energy, opens up more freedom as shown in
Fig. 6. Now z > 2 deviations in DðzÞ are allowed at the
#5% level relative to !CDM. Thus a BAO distance mea-
surement at z > 2 could falsify flat quintessence in favor of
quintessence with curvature. As discussed in MHH, be-
cause of the w / )1 quintessence bound, this additional

freedom skews to smaller distances and lower growth
relative to high redshift.
Predictions from the most general quintessence class

which includes both curvature and early dark energy,
shown in Fig. 7, combine features of the previous quintes-
sence classes in ways that are similar to the Stage IV
predictions in MHH. The ML model in this class improves
the fit to the combined data by )2# lnL# 4, mostly due
to changing the SN likelihood by )2# lnL# 5; however,
removing the large low-z oscillations by smoothing wðzÞ
reduces the improvement in the SN fit to )2# lnL# 2–3.
The predictions for G0ðzÞ, DðzÞ, and HðzÞ, which were

affected little by early dark energy alone, are nearly the
same as those for nonflat quintessence without early dark
energy. The other observables show a mixture of the effects
of curvature at low z and early dark energy at high z. Large
suppression ( * 20%) of GðzÞ (and similarly fG) relative
to !CDM is allowed, but enhancement of the growth
function over the !CDM best fit is still limited at the
#2% level. Note that this upper limit on GðzÞ is robust to
neutrino mass uncertainties. Likewise, low-redshift dis-
tances (including zhH

)1
0 ) cannot be smaller than in

!CDM by substantially more than #2%. As in Fig. 5,
the high-redshift predictions for "ðzÞ in Fig. 7 weaken
substantially but only in the positive direction. Indeed, all
of the observables display similar asymmetric weakening
of the predictions with the addition of curvature and early
dark energy, which can be understood in terms of the w /
)1 quintessence bound.
The existence of an upper or lower bound on each

observable that is robust to freedom in curvature and early
dark energy provides the possibility of falsifying the entire

FIG. 6 (color online). Nonflat (dark blue; red curve: best fit
model) and flat (light gray) quintessence models without early
dark energy.

FIG. 7 (color online). Nonflat quintessence models with (dark
blue; red curve: best fit model) and without (light gray) early
dark energy.

FIG. 5 (color online). Flat quintessence models with (dark
blue; red curve: best fit model) and without (light gray) early
dark energy.
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quintessence model class. In fact, in this most general
class, the statistical predictions from current SN and
CMB bounds are already comparable to those that can be
achieved by a Stage IV version of these probes, which can
be understood from the fact that the forecasted predictions
from MHH used current BAO and H0 measurements.

The comparable predictions in large part reflect the fact
that curvature is already well constrained through the BAO
and H0 measurements. The constraint in this most general
class of quintessence models is )0:006< "K < 0:033
(95% C.L.), a factor of #2 weaker than for nonflat
!CDM and skewed toward open models due to the quin-
tessence prior on wðzÞ.

Finally, as an example of the use of the asymmetric
quintessence predictions, we consider the application of
these results to observables which measure some combi-
nation of '8 and "m. To compute predictions for '8 given
our predictions for the raw acceleration observables, we
use the fitting formula [47]

'8 ¼
Gðz ¼ 0Þ
0:76

!
Asðk ¼ 0:05 Mpc)1Þ

3:12. 10)9

"
1=2

#
"bh

2

0:024

$)1=3

.
#
"mh

2

0:14

$
0:563

#
h

0:72

$
0:693

ð3:123hÞðns)1Þ=2; (11)

for each model sampled in the MCMC likelihood analysis.
Note that on top of allowed variations in Gðz ¼ 0Þ, '8

predictions include uncertainties in the reionization optical
depth & through its covariance with As. While this analysis
assumes instantaneous reionization, the uncertainty intro-
duced by more general ionization histories is small [48].
We have checked that the '8 distributions obtained using
Eq. (11) closely match those from the more accurate
computation of '8 using CAMB. The joint predictions for
'8 and "m from the current SN, CMB, BAO, and H0

constraints are shown in Fig. 8 for flat !CDM and two
quintessence model classes.

In particular, in the context of flat !CDM the current
SN, CMB, BAO, and H0 data predict the combination best
measured by the local abundance of massive galaxy clus-
ters to be 0:394<'8"

0:5
m < 0:441 (68% C.L.). Flat quin-

tessence without early dark energy weakens the lower end
somewhat but leaves the upper limit nearly unchanged:
0:358<'8"

0:5
m < 0:419. Quintessence with both early

dark energy and curvature yields 0:306<'8"
0:5
m <

0:396. Therefore a measurement of a local cluster abun-
dance in significant excess of the flat !CDM predictions
rules out the whole quintessence class, whereas a measure-
ment that is substantially lower would remain consistent
with quintessence but would rule out a cosmological con-
stant (see also [49]). A measurement below the flat !CDM
prediction by & 10% could also indicate large neutrino
masses, but an excess cluster abundance could not be
alternately explained by massive neutrinos. Current cluster
surveys, with#5% measurements of similar combinations

of'8 and"m [50–52], are beginning to reach the precision
necessary to test these predictions. In fact, the lack of an
observed excess already places strong constraints on modi-
fied gravity explanations of cosmic acceleration [53].

C. Smooth w0 ) wa dark energy

As a final case we consider the class of models defined
by an equation of state wðzÞ ¼ w0 þ ð1) aÞwa [54,55]
under the assumption that dark energy is smooth relative
to matter. Unlike our previous cases, this class does not
define a physical candidate for dark energy such as the
cosmological constant or a scalar field but rather represents
a simple but illustrative phenomenological parametriza-
tion. Note that early dark energy is included in this pa-
rametrization since limz!1wðzÞ ¼ w0 þ wa.
The predictions for the w0 ) wa model class serve two

purposes. First, the comparison of predictions for smooth,
monotonic w0 ) wa models with those for PC quintes-
sence models test the dependence of the predictions on
rapid transitions and nonmonotonic evolution of the equa-
tion of state. The second use of the w0 ) wa predictions is
to illustrate how predictions are affected by the )1 ,
wðzÞ , 1 quintessence bound. Unlike the model classes
where wðzÞ is parametrized by principal components, it is
simple to impose a strict quintessence prior on w0 ) wa

models by requiring )1 , w0 , 1 and )1 , w0 þ wa ,
1. We compare predictions using this prior with the more
general case, where the priors are weak enough that con-

FIG. 8 (color online). Predictions for '8 and "m for flat
!CDM (gray contours, top), flat quintessence without early
dark energy (red contours, middle), and nonflat quintessence
with early dark energy (blue contours, bottom), showing 68%
C.L. (light) and 95% C.L. (dark) regions.
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straints on w0 and wa are determined solely by the data
(‘‘no w prior’’).

A fair comparison can be made between the predictions
for flat and nonflat w0 ) wa models with the )1 , w , 1
prior (light gray contours in Figs. 9 and 10) and PC
quintessence models with early dark energy (dark blue
contours in Figs. 5 and 7). In particular, observables rela-
tively insensitive to both the amount of early dark energy
and large changes in the PC equation of state at low-
redshift, such as G0ðzÞ and DðzÞ, are generally in good
agreement. The expansion rate and growth rate are more
sensitive to sudden changes in wðzÞ than the distances and
the integrated growth function. Therefore, the impact of
large, low-z oscillations in the PCs is greatest for HðzÞ,
fðzÞGðzÞ, and "ðzÞ at z & 1, increasing the width of those
predictions relative to the corresponding predictions for the
smoothw0 ) wa models. The PC quintessence models also
have more freedom in early dark energy than w0 ) wa

models since w1, unlike w0 þ wa, is completely free
from the low-redshift SN, BAO, and H0 constraints. As a
result, w0 ) wa predictions for GðzÞ and the high-redshift
values of "ðzÞ and fðzÞGðzÞ are stronger than, but still
qualitatively similar to, those for PC quintessence with
early dark energy.

Like the PC quintessence predictions, the predictions for
w0 ) wa models bounded by )1 , w , 1 are shifted
relative to flat !CDM due to marginal improvements in
the fit to SN data () 2# lnL# 0:5 for the ML model)
enabled by an evolving equation of state. This is a some-
what smaller change in the likelihood than for PC quintes-
sence models, but the magnitude of the ML model shift in
the observables is similar for w0 ) wa and PC quintes-

sence, at least for those observables that depend little on
early dark energy.
Comparing the two sets of predictions in Figs. 9 and 10

(no w prior vs the )1 , w , 1 prior) shows the effect on
the w0 ) wa predictions of allowing freedom in wðzÞ be-
yond that allowed by the quintessence bounds. As dis-
cussed in MHH, eliminating these bounds makes the
range in predictions for observables such as growth more
symmetric around the best fit for flat !CDM since wðzÞ is
allowed to cross below w ¼ )1. In particular, growth in
excess of flat!CDM is now allowed. Based on the analysis
of MHH, we expect the amount of the remaining skewness
in the predictions around flat !CDM to be affected by the
available volume of parameter space as determined by how
priors on dark energy parameters weight models with w<
)1 relative to those with w>)1.
Removing the quintessence bounds also allows models

with greater amounts of early dark energy, and (for nonflat
w0 ) wa) more closed models, to fit the data. A notable
consequence for models with nonzero curvature is that the
predictions for "ðzÞ at 95% C.L. diverge at z > 1. This is
the same effect noted in MHH for "ðzÞ predictions from
Stage IV SN and CMB probes in the nonflat smooth dark
energy model class. The divergence in the tails of the high-
redshift "ðzÞ distribution is caused by the appearance of a
singularity in "ðzÞ for closed models where "K is suffi-
ciently negative so that "mðzÞ crosses unity at some red-
shift; when "mðzÞ ¼ 1, "ðzÞ is no longer well defined by
Eq. (6). Such caveats must be kept in mind when using " as
a test of not only quintessence but of all smooth dark
energy models.

FIG. 10 (color online). Nonflat w0 ) wa without priors on
wðzÞ (dark blue; red curve: best fit model) and with quintessence
priors () 1 , w0 , 1, )1 , w0 þ wa , 1; light gray).

FIG. 9 (color online). Flat w0 ) wa without priors on wðzÞ
(dark blue; red curve: best fit model) and with quintessence
priors () 1 , w0 , 1, )1 , w0 þ wa , 1; light gray).
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IV. DISCUSSION

Any given class of dark energy models makes concrete
predictions for the relationship between the expansion
history, geometry, and growth of structure as a function
of redshift. Therefore, current distance-based measure-
ments, though limited in redshift, make predictions for
other dark energy observables that can be used to test
and potentially rule out whole classes of dark energy
models.

In this paper we present the allowed ranges for the
expansion rate HðzÞ, distances DðzÞ, the linear growth
rate GðzÞ, and several auxiliary growth observables from
the current combination of cosmological measurements of
supernovae, the cosmic microwave background, baryon
acoustic oscillations, and the Hubble constant. In particu-
lar, growth at any redshift or a Hubble constant in signifi-
cant excess of 2% (68% C.L. range) of the current best fit
!CDM model would falsify both a cosmological constant
and more general quintessence models with or without
curvature and early dark energy. On the other hand, com-
parable measurements of a decrement in these quantities
would rule out a cosmological constant but would be fully
consistent with quintessence. Alternately, a substantial
reduction in growth relative to the expectation for
!CDM could indicate neutrinos with large masses
(
P

m# > 0:05 eV).
Remarkably, predictions for the main acceleration ob-

servables, HðzÞ, DðzÞ, and GðzÞ, are only weaker than
predictions based on Stage IV SN and CMB forecasts
(MHH) by a factor of #2–3. However, this improvement
applies across a wide range of redshifts, indicating that
multiple phenomenological parameters may each be im-
proved by this factor. For example, parameter-based fig-
ures of merit effectively involve products of individual
parameters (e.g. area in the w0 ) wa plane [4,56] or vol-
ume of the principal component parameter error ellipsoid
[57,58]), and in such figures of merit the total improvement
with future data can be significant. If novel dark energy
physics affects small pockets of these high-dimensional
parameter spaces—that is, if only specific dark energy
parameter combinations are sensitive to new physics—
then these multiparameter figures of merit will justly in-
dicate a much more significant improvement with future
cosmological data.

In this work we have considered only known and quan-
tifiable sources of error in the current data. Recent analyses
of supernova data (e.g. [59–61]) indicate that unknown
systematic errors remain and can significantly affect cos-
mological constraints. Furthermore, the systematic error
estimates used here for the SN data were optimized for
models with a cosmological constant and therefore may be
underestimated for dynamical dark energy [23]. We intend
to explore the implications of SN systematics for dark
energy predictions in future work. Our predictive method-
ology can alternately be viewed as a means of ferreting out

unknown systematics by looking for inconsistencies be-
tween the predictions from one set of observations and data
from another.
Over the course of this study, new data have become

available that could improve the predictions for accelera-
tion observables or begin to test predictions within the
various classes. In particular, BAO measurements from
Sloan Digital Sky Survey DR7 and 2dFGRS provide a
2.7% constraint on DVðz ¼ 0:275Þ and a 3.7% constraint
on DVðz ¼ 0:35Þ=DVðz ¼ 0:2Þ [34]. We have estimated
the impact of these new measurements on our predictions
by using the updated BAO likelihood to modify the
weighting of MCMC samples for each model class. For
all quintessence model classes, the effect of updating
the BAO data is negligible for most observables ex-
cept for Dðz & 1Þ and (to a lesser extent) Hðz & 0:5Þ,
reflecting the improved BAO constraint on low-redshift
D and H.
The impact of the newer BAO measurements on !CDM

models is greater than for quintessence since the reduced
freedom in dark energy evolution ties low-redshift mea-
surements to high-redshift predictions. The updated BAO
constraints exclude models on one side of the predicted
observable distributions in Fig. 2, reducing their width by
10–30% and shifting the distributions by an equal amount.
However, these changes appear to be mainly due to a slight
tension between the new BAO constraints and the other
data sets used for !CDM predictions. Note that the BAO
constraints of Ref. [34] are still less precise than the flat
!CDM predictions in Fig. 2 and comparable to the nonflat
!CDM predictions, so they do not yet represent a signifi-
cant additional test of the cosmological constant.
Falsifiable predictions from current data reveal many

opportunities for sharp observational tests of paradigms
for cosmic acceleration by requiring consistency within a
given theoretical framework between observables that de-
pend on the expansion history, geometry, and growth of
structure in the universe. These predictions can be used to
inform future surveys as to the optimal choice of observ-
ables, redshifts, and required measurement accuracies for
testing whole classes of dark energy models. Falsification
of even the simplest model, flat !CDM, would have revo-
lutionary consequences for cosmology and fundamental
physics.
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