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We propose and implement a novel, robust, and nonparametric test of statistical isotropy of the
expansion of the Universe and apply it to around 1000 type Ia supernovae from the Pantheon sample. We
calculate the angular clustering of supernova magnitude residuals and compare it to the noise expected
under the isotropic assumption. We also test for systematic effects and demonstrate that their effects are
negligible or are already accounted for in our procedure. We express our constraints as an upper limit on the
rms spatial variation in the Hubble parameter at late times. For the sky smoothed with a Gaussian with
FWHM ¼ 60°, less than 1% rms spatial variation in the Hubble parameter is allowed at 99.7% confidence.

DOI: 10.1103/PhysRevLett.122.091301

Introduction.—The simplest inflationary-cosmology
scenarios [1–4] generically predict that the expansion of
the Universe is isotropic. However, violations of statistical
isotropy can certainly be accommodated in models with
additional complexity (e.g., [5–7]) and even perturbative
effects on the expansion rate in the standard cosmological
model (which are, however, expected to be small, e.g.,
[8,9]). While tests of statistical isotropy of the early
Universe have typically been carried out by analyzing
the cosmic microwave background anisotropy maps (e.g.,
[10–14]), it is well worthwhile to investigate the isotropy of
the late-time Universe. The latter is particularly interesting
given the lack of a fundamental understanding of the
physical nature of dark energy that powers the accelerated
expansion of the Universe.
In this Letter, we present a novel test of the isotropy of

cosmic expansion and apply it to current type Ia supernovae
(SNIa) data. While an investigation of the isotropy of the
Universe using SNIa data has been carried out by numerous
previous works [15–35], our methodology (described
below) extends these efforts. Our approach is parameter
free, robust, and explicitly independent of assumptions
about the distribution of the data. We now describe the data
we use and our methodology and present the results along
with estimates of the effects of systematic errors.
Data.—For our analysis, we use the “Pantheon” compi-

lation of SNIa [36]. The Pantheon sample combines 279
SNIa ð0.03 < z < 0.68Þ from the Pan-STARRS1 Medium
Deep Survey with SNIa from the Sloan Digital Sky Survey,
SuperNova Legacy Survey, and various low-z and Hubble
Space Telescope samples to produce a SNIa sample of
1048 objects in the redshift range 0.01 < z < 2.26. The
Pantheon sample was produced using the PS1 Supercal
process [37], which determined a global calibration sol-
ution to combine 13 different SNIa samples. The latter

analysis also corrects for expected biases in light-curve fit
parameters and their errors using the method outlined
in Ref. [38].
Methodology.—The SNIa data consist of individual mag-

nitude measurements mi ≡mðzi; n̂Þ, where zi is the redshift
of a supernova in theΛCDM frame and corrected for peculiar
velocities [36], and n̂ is its location on the sky. The individual
SNIa magnitude errors σi are generalized, in modern SNIa
analyses, to the full covariance matrix C ¼ SþN, where S
and N are the signal and noise matrices, respectively. The
noise matrix encodes statistical magnitude measurement
errors and covariances due to unknown fit parameters that
correlate themeasurements, such as the color and stretch. The
signal matrix is nonzero at low redshift because, roughly
speaking, nearby SNIa are pulled by the same structures,
resulting in correlated peculiar velocities. At high redshift the
signal matrix is nonzero mainly because of the effects of
lensing on SNIa magnitudes.
We work with SNIa magnitude residuals divided by

individual statistical errors

ri ≡mi −mth
i

σi
ð1Þ

where mth
i ¼ 5log10½H0dLðzi;ΩMÞ� þM is the theoreti-

cally expected magnitude for an object at redshift zi and a
given value of the matter density relative to critical ΩM,
in the flat Λ cold dark matter (CDM) Universe that we
assume. Here M is the nuisance parameter that combines
the absolute magnitude of SNIa with the Hubble constant
H0. The distribution of the residuals on the sky is shown in
Fig. 1; the inset in the figure shows that the residuals are
approximately Gaussian distributed.
The goal of this study is to put an upper limit on the value

of the “signal” in the distribution of the SNIa magnitude
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residuals caused by violations of statistical isotropy. Since
we are searching for the excess signal with respect to
statistical noise, we choose to normalize the magnitude
residuals in Eq. (1) by the diagonal statistical error σi and
not elements of the full (signal plus noise) covariance C.
Note that the statistical measurement error constitutes the
majority of the contribution to the diagonal of the noise
covariance, σ2i ≃ 0.99Nii; thus, we are effectively dividing
by the square roots of the latter. The total signal in the
clustering of residuals also has guaranteed contributions
from the peculiar velocities of the SNIa (which are
correlated because the velocity’s origin is the gravitational
pull of the nearby large-scale structures) and from the
systematic uncertainty in the precise values of the cosmo-
logical parameters ΩM and M, which are required to
calculate mthðzÞ. We demonstrate below that these addi-
tional contributions to the signal are very small compared to
the noise level in the SNIa data and can be ignored.
To estimate the signal power spectrum, we pixelate the

sky using the HEALPix [39] resolution parameter NSIDE.
Our fiducial analysis is done at NSIDE ¼ 16, though we
also compare with results at NSIDE ¼ 8, 32, and 64,
finding good agreement. Each pixel has a side of roughly
60°=NSIDE. Because more than one SNIa may lie in a
given pixel, we choose to take the average of the residuals
in the pixel. Thus, the value of the jth pixel is given by
pj ¼ ðPri∈pj

riÞ=nj, where nj is the number of SNIa in that
pixel and the sum goes over the residuals located in the
pixel. We now outline how the data power spectrum is
computed and then discuss our noise estimation approach.
To calculate the angular power spectrum of the map of

residuals Cl, we employ a pseudo-Cl estimator which,
given the small sky coverage of the SNIa (at NSIDE ¼ 16,
the fractional sky coverage is only fsky ≃ 0.07) is much
more practical than the maximum-likelihood estimators
that try to recover the full sky signal. To get the pseudo-Cl
we adopt the function anafast in HEALPix. Given the

significant variation of pixel occupancy by SNIa, it is
crucial to weight each pixel by the number of objects in it;
this guarantees that large-angle (low-l) Cl will not depend
on the pixelation as long as the latter is finer than the scales
we wish to probe. Our angular power spectrum is given by
the usual pseudo-Cl formula

Cl ¼ 1

2lþ 1

Xl
m¼−l

jalmj2; ð2Þ

with the harmonic expansion of the residuals that applies
weight to the pixels

alm ≡
R
rðn̂ÞWðn̂ÞY�

lmðn̂Þd2n̂R
Wðn̂Þd2n̂=ð4πÞ ; ð3Þ

where the integral is typically discretized as the sum over
the pixels whose centers are in directions n̂ and which have
areas d2n̂. Here rðn̂Þ is the mean residual in a pixel in the
direction n̂, while the weight Wðn̂Þ is given by the number
of objects in that pixel. The denominator in Eq. (3)
evaluates to fskyhWpixi, where hWpixi is the average number
of SNIa per pixel. Note that the overall normalization of the
Cl is not important for comparing the angular spectrum of
our sky to that of the bootstrapped sample since the two have
the same normalization, but it is important when we quote
limits on the statistical isotropy of the expansion rate.
Having obtained the angular power spectrum of the

SNIa, we then produce the distribution of angular power
spectra that would be expected in an isotropic universe,
which in turn is given by the clustering noise and no signal.
Because the number of SNIa varies significantly from pixel
to pixel, the computation of noise in the angular clustering
of the SNIa is analytically intractable and would be so even
under the simplified assumption of Gaussian noise. To get a
reliable upper bound on the background anisotropy, it is
crucial to estimate the clustering noise, as well as its
uncertainty, directly from the data. To address this, we
employ a simple, nonparametric bootstrap approach whose
principal advantage is that the noise level can be directly
estimated from data. Additionally, this approach does not
make assumptions about the statistical distribution of
residuals, e.g., whether it is Gaussian. At the location of
each SNIa we draw, with replacement, a residual from the
distribution of the residuals of all SNIa. Having done this
for all SNIa, we have a randomized realization of the
residuals—hence one isotropic-universe bootstrap—which
we refer to as riso. To estimate the statistical uncertainty due
to the finite number of SNIa, we repeat this procedure,
which is illustrated in Fig. 2, one million times. At every
1000th bootstrap, we also draw the cosmological param-
eters ΩM andM from their posterior distribution, obtained
using our cosmological analysis of the Pantheon SNIa,

FIG. 1. Mollweide-projection map of SNIa magnitude resid-
uals, defined in Eq. (1), in Galactic coordinates and at HEALPix
resolution NSIDE ¼ 16. Each pixel contains the average of the
residuals of SNIa that fall in it. (Inset) The histogram of the SNIa
residuals.
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and then reevaluate the residuals. We do this to account
for the imperfect knowledge of these parameters. Finally,
we calculate the angular power spectrum for each boot-
strapped realization. This procedure produces a range of
values of Cl expected in an isotropic universe for a discrete
realization of SNIa.
Results.—Figure 3 shows the angular power spectrum of

the pixelated SNIa average residuals; the black error bars

indicate the effect of the uncertain knowledge of cosmo-
logical parameters, corresponding to the uncertainty in
theoretical magnitudes mth

i . We also show the distribution
of Cl of bootstrap rearrangements of residuals on the sky:
the thin dark-red curve shows the mean value of the Cl due
to noise and calculated from our million bootstraps, while
the yellow region around it shows the 68% uncertainty in
this distribution. Here and in what follows we show results
for NSIDE ¼ 16. We have checked that our results are
basically unchanged for NSIDE ¼ 8, 32, and 64.
Figure 3 indicates that the angular power spectrum of

the Pantheon data appears consistent with the isotropic
assumption given by the bootstraps, which encode the
theoretical expectation of clustering noise and no signal.
A simple χ2 test confirms this; we calculate the quantity

χ2 ¼ ðCl − C̄boot
l ÞðM−1Þll0 ðCl0 − C̄boot

l0 Þ; ð4Þ

where the sum over the multipoles is implied, and where
Cl and C̄boot

l correspond to the data and the mean of the
bootstraps, respectively. The coupling matrix Mll0 ¼
hðCboot

l − C̄boot
l ÞðCboot

l0 − C̄boot
l0 Þi is calculated directly from

the bootstraps and is nondiagonal because the SNIa do not
cover the full sky. We find that χ2=d:o:f: ¼ 1.41 for a total
of 48 degrees of freedom, being a little under the 2-σ level
(the significance is even smaller for other pixelations we
looked at, NSIDE ¼ 8, 32, and 64). Therefore, the null
hypothesis of an isotropic expansion rate cannot be
rejected, and this preliminary test of the isotropy is passed.
We now turn to a more quantitative interpretation of our
results.
We would like to get additional insight on how well our

data constrain the isotropy in an as model-independent
way as possible. To that effect, we consider a (redshift-
independent) fractional variation in the expansion rate at
z≲ 1,

δHðn̂Þ≡ δH
H

ðn̂Þ ≪ 1: ð5Þ

Propagating it through to the magnitude and labeling the
perturbed magnitudes with a tilde, it follows that m̃iðn̂Þ ¼
miðn̂Þ þ ð5= ln 10Þ½1 − δHðn̂Þ�. The variance of the resid-
uals subject to such isotropy breaking, hðrdataÞ2i, is then

hðrdataÞ2i ¼
�

5

ln 10

�
2
��

δH
σ

�
2
�
þ NðrisoÞ; ð6Þ

where the noise term is given by the variance expected in an
isotropic universe due to chance statistical fluctuations (as
well as any systematic uncertainties), NðrisoÞ≡hðrisoÞ2i.
Here we have assumed no correlation between the random
fluctuations in the isotropic residuals risoðn̂Þ and the
isotropy breaking δðn̂Þ, which is justified given their
completely different origins.

FIG. 2. Illustration of the process to estimate the noise and its
uncertainty in our measurements. In each bootstrap, the magni-
tude residual of each SNIa is replaced with one drawn from the
full set of SNIa residuals in the Pantheon sample. We marginalize
over the cosmological parameters by performing this bootstrap
analysis for values of ΩM and M drawn from the joint posterior
distribution of the cosmological analysis of the Pantheon data.

FIG. 3. Angular power spectrum of SNIa magnitude residuals
in the Pantheon sample (black data points; errors show the effect
of uncertain cosmological parameters). The near-horizontal thin
red line shows the mean values of Cl expected due to statistical
fluctuations (noise) in an isotropic-universe, while the yellow
region shows the 68% confidence interval (CI) uncertainty in it.
See text for details.
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Conveniently, our angular power spectrum measurement
can be converted to the variance of the residuals on the
sky via

varðrdataÞ≡ hðrdataÞ2i ¼
Xlmax

l¼1

2lþ 1

4π
Cl; ð7Þ

where we define the sum in the range that we measured the
multipoles, l ∈ ½1;lmax�.
Because both the data and bootstrap variance increase

with maximum multipole, each going roughly as ðlmaxÞ2
for a flat power spectrum, the results depend on the
resolution of the map. Physically this makes sense, as a
finer-resolution map allows for additional smaller-scale
anisotropic spatial modes that can lurk just below the
detection level and hence leads to a weaker overall
constraint on the breaking of isotropy. To address this in
a way that is both quantitative and physically motivated, we
smooth the residual maps. It is sufficient to do this in
multipole space; we apply a Gaussian beam bl that depends
on the desired smoothing FWHM; the effect on the angular
power spectrum is then Csmoothed

l ¼ b2lCl.
We are finally ready to recast our results as limits on the

variation of the Hubble parameter at the present time. From
Eq. (6), we first cast the variance in the observed residuals
as the rms Hubble parameter variation. If the noise term
could be neglected, the rms Hubble parameter variation
would be, according to Eq. (6),

ðδHÞrms ≃
�
ln 10
5

�
hσ−2i−1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðrdataÞ

q
; ð8Þ

where hσ−2i−1=2 ≃ 0.13 is the inverse-square-weighted
intrinsic dispersion of Pantheon SNIa. Given (see below)
that we do not observe the evidence for a signal—a larger
variance of the residuals than that expected in the sta-
tistically isotropic universe—the variance evaluated on
isotropic bootstraps alone NðrisoÞ will serve to produce
an upper limit on ðδHÞrms as per Eq. (8).
The principal results are shown in Fig. 4. Here we show

the 68%, 95%, and 99.7% upper limits on the expansion
rate variance hδ2Hi from the bootstraps, along with the
variance computed from the Pantheon SNIa data, both as a
function of the smoothing scale. The gray band shows the
effect on the variance of the data due to the uncertainty in
the cosmological-parameter values. As mentioned above,
coarser smoothing implies more stringent constraints and
vice versa. The dotted line shows the guaranteed signal
given by the peculiar velocities of the SNIa in the Pantheon
sample, calculated using the formalism in [30]; the effect is
very small and can be neglected. Note also that our limits
include the marginalization over the uncertainty in the
cosmological parameters since, in generating the boot-
straps, we drawΩM andM (and hence values of theoretical
magnitudes mth

i and the corresponding residuals ri) from

the posterior distribution of these two parameters obtained
from the cosmological analysis of the Pantheon SNIa
dataset.
Figure 4 indicates no evidence for breaking of the

assumption of isotropy and leads to quantitative limits
on its breaking. For example, for the FWHM ¼ 60° smo-
othing, the 99.7 percentile upper limit calculated from the
bootstraps is varðrisoÞ ¼ 0.0215, and thus

½ðδHÞrms�FWHM¼60° < 0.009 ð99.7%C:L:Þ; ð9Þ
or a ≲1% constraint on isotropy of the expansion at large
angular scales. To stress test the dependence of our
constraints on data selection, we have repeated the analysis
with only SNIa out to maximum redshift zmax ∈ f0.1; 0.2;
0.5; 1.0g. While both the variance in the data and the noise
limits increase with decreasing zmax, reproduction of Fig. 4
in these cases reveals results qualitatively similar to our
fiducial analysis, with no evidence for breaking of the
assumption of statistical isotropy.
Conclusions.—We have proposed and carried out a

nonparametric test of the statistical isotropy of the late-
time Universe. Our test utilizes the Pantheon set of just over
a thousand type Ia supernovae, whose clustering we
measure by evaluating the angular power spectrum of
the SNIa residuals relative to the best-fit cosmological
model. We use a novel—to these tests of isotropy—and
simple method of estimating the noise that describes the
clustering expected in the isotropic case by bootstrapping
the spatial distribution of the SNIa residuals.

FIG. 4. Variance in the expansion rate derived from the
clustering of SNIa residuals on the sky. The thick solid curve
shows the signal in the data. The color-coded regions present the
68%, 95%, and 99.7% upper limits derived from the bootstraps,
which represent expectations for the isotropic distribution of
SNIa residuals. The thin gray band around the black curve shows
the effect on the variance of the data due to the uncertainty in the
cosmological-parameter values. Note that the curves flatten out
around 3 deg as expected, since this is the resolution limit
imposed by the pixelation with NSIDE ¼ 16. The dotted curve
shows the expected contribution to the signal of the SNIa’s
peculiar velocities.
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To further quantify and summarize our findings, we
evaluate the variance of the residuals, i.e., calculate their
zero-lag correlation function, and express the results in
terms of constraints on the rms spatial variation of the
expansion rate ðδHÞrms ≡ hðδHðn̂Þ=HÞ2i1=2, where the
latter is constrained at z ∼ 0.3 where SNIa have the most
constraining power. Because this quantity increases as
smaller spatial scales are probed, we explicitly smooth
the angular power spectrum, evaluating the rms variation as
a function of the smoothing scale.
Our results show no evidence for breaking of statistical

isotropy in the Pantheon sample and, for the first time to our
knowledge, constrain it at better than the 1% level at large
spatial scales (smoothing FWHM≳ 60°) (see Fig. 4).
We pay particular attention to the control and under-

standing of systematic errors. Our analysis choices ensure
that our results do not depend on the pixelation of the map
of SNIa residuals. We explicitly account for the uncertainty
in the values of the cosmological parameters used to
calculate the residuals and for the fact that there is a
guaranteed signal of anisotropy due to the peculiar veloc-
ities of nearby objects; both effects are small and we
explicitly marginalize over the former. We also find no
qualitative change in our results when we restrict the range
of redshifts of the SNIa in the Pantheon sample.
Our analysis does not assume the Gaussianity of the

SNIa residuals, although the latter does approximately
hold. We do assume the ΛCDM cosmological model; this
is justifiable given the lack of evidence for its extensions
(e.g., [40]).
Our test therefore constrains the isotropy of the expan-

sion rate at z≲ 1 at the ∼1% level at the largest angular
scales and complements the corresponding (though 2–3
orders-of-magnitude-stronger) tests in the early Universe.
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