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Abstract. We perform a general test of the ΛCDM and wCDM cosmological models by
comparing constraints on the geometry of the expansion history to those on the growth of
structure. Specifically, we split the total matter energy density, ΩM , and (for wCDM) dark
energy equation of state, w, into two parameters each: one that captures the geometry, and
another that captures the growth. We constrain our split models using current cosmological
data, including type Ia supernovae, baryon acoustic oscillations, redshift space distortions,
gravitational lensing, and cosmic microwave background (CMB) anisotropies. We focus on
two tasks: (i) constraining deviations from the standard model, captured by the parameters
∆ΩM ≡ Ωgrow

M −Ωgeom
M and ∆w ≡ wgrow−wgeom, and (ii) investigating whether the S8 tension

between the CMB and weak lensing can be translated into a tension between geometry and
growth, i.e. ∆ΩM 6= 0, ∆w 6= 0. In both the split ΛCDM and wCDM cases, our results
from combining all data are consistent with ∆ΩM = 0 and ∆w = 0. If we omit BAO/RSD
data and constrain the split wCDM cosmology, we find the data prefers ∆w < 0 at 3.6σ
significance and ∆ΩM > 0 at 4.2σ evidence. We also find that for both CMB and weak
lensing, ∆ΩM and S8 are correlated, with CMB showing a slightly stronger correlation. The
general broadening of the contours in our extended model does alleviate the S8 tension, but
the allowed nonzero values of ∆ΩM do not encompass the S8 values that would point toward
a mismatch between geometry and growth as the origin of the tension.

Keywords: dark energy theory, cosmological parameters from CMBR, cosmological param-
eters from LSS, modified gravity
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1 Introduction

The standard Λ cold dark matter (ΛCDM) cosmological model has been spectacularly suc-
cessful in fitting modern observations [1–3]. Nevertheless, the search for departures from the
ΛCDM model is a frontier in cosmology, as such a finding would shed significant light on
the physics behind cosmic acceleration. Recent hints for such tensions, such as the ∼5-sigma
evidence for the difference in the Hubble constant H0 measured by the local distance ladder
and that measured by high-redshift probes [4, 5], as well as the weaker but still interesting
tension between the amplitude of mass fluctuations σ8 measured by weak gravitational lens-
ing [6, 7] and the cosmic microwave background [4, 8], have therefore elicited much interest
in the field [9].

Assuming General Relativity (GR) and a smooth dark energy without anisotropic
stresses (but with arbitrary and possibly time-dependent equation of state), the expansion
history fully determines the growth of cosmic structure. In particular, each Fourier mode k
of the growth of linear density fluctuations δ ≡ δρM/ρM on sub-horizon scales evolves via

δ̈ + 2Hδ̇ − 4πGρMδ = 0, (1.1)

where H is the Hubble parameter and dots are derivatives with respect to time. The expan-
sion history H(t), along with the matter density ρM (t), therefore completely determine the
evolution of the perturbations, δ(t). In modified gravity, however, eq. (1.1) may no longer
hold, and the growth of structure may be governed by a different equation that is model
dependent and that may, for example, couple different modes even on linear scales.
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Therefore, comparing measurements of geometric quantities with those describing the
growth of structure is a particularly insightful stress-test of the standard cosmology [10–
14]. For example, given constraints on the initial conditions (power spectrum shape and
amplitude), very precise distance measurements from e.g. type Ia supernovae (SN Ia) and
baryon acoustic oscillations (BAO) predict the convergence power spectrum measured by
weak lensing probes. In this scenario, the weak lensing signal depends on the late-time growth
of structure which in turn is precisely determined by distance measurements. An equivalent
statement is that the simple structure of smooth dark-energy models allows their falsifiability,
and allows for tight predictions about quantities that can be measured with current or future
surveys [15–19]. While there exist a number of ways to test for new physics, separately
constraining the geometry and growth aspects of the cosmological theory seems particularly
promising because a key signature of many modified gravity theories is a mismatch between
geometry and growth.

The goal of this work is to apply the geometry-growth split to the latest cosmological
data. We apply the split to flat cosmological models with either the cosmological constant
(ΛCDM) or dark energy of an arbitrary but constant equation of state (wCDM). At the
parameter level, we double the set of late-universe parameter(s) that describe dark energy
in order to have one set that determines geometry and another that determines growth of
structure. This method, proposed and applied to early data by [20], and then extended by [21,
22] and, most recently, [23] and [24], is particularly effective because of the aforementioned
expectation that beyond-wCDM and modified-gravity signatures would appear as a departure
from the expected agreement between geometry and growth observables. Moreover, the
parameter-split method makes no assumptions about the nature of beyond-ΛCDM physics
(beyond the way in which the geometry-growth mismatch is parameterized), and is therefore
fairly model-independent. Finally, a separate parameterization of the geometry and growth
theory components is particularly useful for probes, such as the cosmic microwave background
(CMB), that contain information on both geometry and growth and thus cannot be placed
into just one category. We also caution, however, that the detection of any discrepancies
between geometry and growth parameters would not automatically imply a departure from
GR, as the systematics of each individual probe could affect our results as well.

This paper is organized as follows. In section 2 we define our parameter split for each
probe considered in this work. In section 3, we describe our results for the marginalized
posteriors of all relevant parameters, in both the ΛCDM and wCDM cases, and detail whether
the geometry-growth split can resolve the S8 tension. We discuss our results in section 4,
and summarize our findings in section 5.

2 Geometry and growth split

Our goal is to constrain the late-universe cosmological parameter sector corresponding to
dark energy, while separately using information from either geometry or growth. To do
this, we “split” the dark-energy parameters by defining a separate one each of geometry and
growth. The geometry sector is probed by measurements of distances and volumes, while the
growth sector is probed by the evolution of perturbations.

To enable the geometry-growth split in the flat ΛCDM cosmological model, we take the
matter density relative to critical — which normally one parameter, ΩM — and duplicate it
into two parameters: Ωgeom

M and Ωgrow
M . In a flat model, the energy density of dark energy is

given by ΩΛ = 1−ΩM , so our split on ΩM is a split on ΩΛ. In the analogous scenario the flat
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wCDM model, the equation-of-state of dark energy, w, is also described by two parameters,
wgeom and wgrow. Therefore, our cosmological analysis is specified by

• split ΛCDM : {Ωgeom
M ,Ωgrow

M , {pi}} (2.1)
• split wCDM : {Ωgeom

M ,Ωgrow
M , wgeom, wgrow, {pi}} (2.2)

where {pi} are other, standard cosmological parameters described below in section 3.
The remaining task is the modelling of theoretical quantities with the split parameter-

ization in the ΛCDM and wCDM models. The choice of model is unambiguous for some
quantities, e.g. the SN Ia distances contain only information about geometry.1 However,
the geometry-growth split can be highly ambiguous for other quantities, such as the baryon
acoustic oscillations (BAO), or the various observational aspects of the cosmic microwave
background (CMB) anisotropies [20]. In the following subsections, we describe the cosmolog-
ical probes that we use, and how we split their theoretical description into geometrical and
growth pieces.

2.1 CMB split

The temperature anisotropy power spectrum is given by

CTT` = 1
2π2

∫
dk

k
Θ2(k, z = 0)PR(k). (2.3)

Here PR(k) = As(k/k0)(ns−1) is the primordial curvature power spectrum, with amplitude
AS and scalar spectral index ns. Moreover Θ2(k, z = 0) is the transfer function,

Θ(k, z = 0) =
∫
dz′ST (k, z′)j`[kχ(z′)], (2.4)

where j` is spherical Bessel function, ST is the source function obtained by solving the coupled
Einstein-Boltzmann equations, and χ is the radial distance.

We classify the source function ST as a growth quantity, and therefore use the parame-
ters Ωgrow

M and wgrow in its calculation. The Bessel function in eq. (2.4) describes the geomet-
rical projection, so we model the radial distance χ here with geometrical parameters, Ωgeom

M

and wgeom. An analogous choice for the split is also made for the EE, TE and lensing spectra.
Finally, we note that throughout this paper we assume that the baryon density, ΩB, is

the same for the geometry and growth sector, and therefore split only the cold-dark-matter
density relative to critical density, Ωc = ΩM − ΩB, into the geometry and growth sectors.2

While eq. (2.4) is written in terms of redshift, the publicly available Boltzmann codes
solve pertubative equations in terms of the conformal time η. Both the geometrical and
the growth quantities are calculated using the conformal time: geometry (e.g. distances)
depends on the scale factor which in terms depends on time, while the growth rate also
requires time; see eq. (1.1). Therefore, to enable a geometry-growth split, it is necessary to
split the conformal time into two separately evolving quantities, one controlling the geometry,
ηgeom, and the other, ηgrow, controlling the growth. In practice this means that, at a fixed
redshift, the two conformal times, ηgeom and ηgrow, will generally be different [20].

1Ignoring the very small effect of weak gravitational lensing on SN Ia.
2Whether a split in ΩM is implemented as a split in Ωc (as in this paper), or that in ΩB [25], or both,

represents a choice, one of many when implementing the geometry-growth test. However note that this
particular choice is not too important as we are mainly interested in the geometry-growth mismatch in the
late-universe physics, corresponding to the dark energy density 1 − ΩM = 1 − Ωc − ΩB .
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Figure 1. Variations in the CMB anisotropy power spectra (at z = 0) due to changes of Ωgeom
M and

Ωgrow
M . Going clockwise from the top left plot, the plots show the temperature auto-correlation (TT),

the temperature-polarization cross-correlation (TE), the polarization auto-correlation (EE), and the
Lensing auto-correlation power spectra (φφ). Three of the four panels feature the x-axis split in two
ranges, with the range left of the vertical line corresponding to the y-axis scale on the left, and one to
the right of the vertical line corresponding to the y-axis scale on the right. In all panels, the black solid
curve corresponds to our fiducial model with Ωgeom

M = Ωgrow
M = 0.31 while the red curve corresponds

to the deviations in the geometry component (Ωgeom
c = 0.33 and Ωgrow

M = 0.31), and the blue curve
corresponds to deviations in the growth components (Ωgeom

M = 0.31 and Ωgrow
M = 0.33). The black

dotted curve corresponds to increasing the parameters by the same amount: Ωgeom
M = Ωgrow

M = 0.33.
Note that the red and blue curve are largely out of phase, indicating the CMB’s strong sensitivity to
the difference between Ωgeom

M and Ωgrow
M .

Figure 1 illustrates how the CMB observables respond to the split parameterization. The
top left panel shows the CMB temperature angular power spectrum when we split ΩM into
{Ωgrow

M ,Ωgeom
M }. The black solid curve is our fiducial model with Ωgrow

M = Ωgeom
M = 0.31. The

red curve shows how the TT spectrum changes as we increase the geometric matter density
to Ωgeom

M = 0.33 (holding Ωgrow
M = 0.31 unchanged). We observe a horizontal displacement

because, with the higher matter density, the distance to the last scattering surface decreases,
shifting the angular power spectrum to larger angular scales (lower multipoles). The blue
curve shows the case when we change the growth matter parameter to Ωgrow

M = 0.33 (holding
Ωgeom
M = 0.31 unchanged). Now the angular power spectrum is shifted to smaller angular
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scales because the radiation-matter transition happens earlier, implying a smaller sound
horizon and thus a smaller subtended angle. Finally, when both Ωgrow

M and Ωgeom
M are increased

to 0.33, the two aforementioned effects partly cancel, as the black doted curve shows.
The top right and the bottom right panel of figure 1 show that the effects of the split

on the TE and EE polarization is similar to that of the TT result described above. Finally,
the bottom left panel shows the CMB lensing power spectrum. Lensing distinguishes itself
from the TT, TE, and EE spectra in that it is much more sensitive to the growth than the
geometry parameters, and this can be seen in how lensing amplitude increases with Ωgrow

M .
All panels in figure 1 indicate that relative changes in the various CMB power spectra

when Ωgeom
M is increased are mutually out of phase to those when Ωgrow

M is increased. There-
fore, we expect that the difference between the two parameters, ∆ΩM ≡ Ωgrow

M −Ωgeom
M , will

be tightly constrained. Our results below will confirm this.
For the CMB part of our analysis, we employ the most recent 2018 Planck data,3 which

rely on the temperature, polarization, and lensing maps. More precisely, we use the following
likelihood codes: Commander for TT spectrum with 2 ≤ ` < 30, SimAll for EE spectrum
with 2 ≤ ` < 30 and finally PlickTT,TE,EE for TT spectrum with 30 ≤ ` < 2500 as well as
TE and EE spectra with 30 ≤ ` . 2000. For lensing, we use the standard Planck likelihood
obtained from the power spectrum reconstruction with the conservative multipole4 range
8 ≤ L ≤ 400. Further details about the likelihoods for the Planck TTTEEE and lensing
power spectra can be found in ref. [26] and ref. [27] respectively.

2.2 Weak lensing split
Weak gravitational lensing is another powerful probe of both geometry and growth. Here
the information is usually compressed into the real-space two-point correlation function, ξij± ,
where i and j refer to tomographic redshift bins. The theoretical expectation for the weak
lensing power spectrum is

ξij± = 1
2π

∫
d``P ijk (`)J0,4(`θ) , (2.5)

where J0(J4) is the zeroth (fourth)-order Bessel function used in the expression for ξij+(ξij−),
and P ijκ (`) is the convergence power spectrum which is in turn related to the matter power
spectrum, Pδ. In the Limber approximation, the convergence power spectrum is given by,

P ijκ (`) =
∫ χH

0
dχ

qi(χ) qj(χ)
χ2 Pδ

(
`

χ(z) , z
)
, (2.6)

where qi(χ) is the lensing efficiency function,

qi(χ) = 3H2
0 Ωm

2c2
χ

a(χ)

∫ χH

χ
dχ′ni(χ′)

χ′ − χ
χ′

, (2.7)

and χH is the horizon distance. The parameter ni(χ) is the distribution of galaxies in each
redshift bin, normalized to

∫ χH
0 ni(χ)dχ = 1, while a(χ) is the scale factor.

Rewriting the convergence power spectrum in terms of redshift, we have

P ijκ (`) = 9
4Ω2

mH
4
0

∫ ∞
0

dz(1 + z)2
[
dχ(z)
dz

]
gi(z)gj(z)Pδ

(
`

χ(z) , z
)
, (2.8)

gi(z) ≡
∫ ∞
z

dz′ni(z′)
[
χ(z′)− χ(z)

χ(z′)

]
. (2.9)

3http://pla.esac.esa.int/pla/#cosmology.
4We follow the usual convention of using L for lensing multipoles instead of `.
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The quantity gi(z) determines the geometry for the bending of light, so we choose all
quantities in eq. (2.9) to be described by geometry parameters. Since the radial distance
χ is a geometrical quantity, so is the wavenumber that enters the matter power spectrum,
k = `/χ. This makes the k-dependent terms in the power spectrum — the power law, and
the redshift-zero transfer function — geometry as well. However the linear-growth term
that enters the matter power spectrum is classified as growth as it comes from the solving
the growth equation. Additionally, the prefactor Ω2

M outside of the integral in eq. (2.8) is
treated as growth [20, 28]. Finally, to obtain the non-linear matter power spectrum we use
the HMCode recipe, and consider its input to be entirely growth [23].

Figure 2 shows the change in the matter power spectrum at z = 0 due to varying
Ωgeom
M and Ωgrow

M . Note that only the growth parameter, Ωgrow
M , induces a change. This is

because the geometry parameters affect only the transformation from distance χ to the scale
k. Thus, at a series of fixed k values — that is, in a P (k) plot — the coordinate is determined
uniquely by the growth parameters. The geometry enters in the conversion from distance χ
to wavenumber k = `/χ.

Here we utilize the KiDS-1000 public data,5 which is described in detail in refs. [29, 30].
This includes the ξ+(θ) and ξ−(θ) data vectors for both the auto- and cross-correlations
across four tomographic redshift bins. We employ the likelihood from ref. [7], but modify
it to ensure the input χ(z) is the distance computed using geometry parameters. We also
adopt the same scale cuts in θ as KiDS [7].

We also follow the KiDS analysis in adopting COSEBIs (Complete Orthogonal Sets
of E/B-Integrals [31]) as our summary statistic. COSEBIs are defined from the two-point
correlation function via [7]

En = 1
2

∫ θmax

θmin
dθ θ [T+n(θ) ξ+(θ) + T−n(θ) ξ−(θ)] ,

Bn = 1
2

∫ θmax

θmin
dθ θ [T+n(θ) ξ+(θ)− T−n(θ) ξ−(θ)] ,

(2.10)

where T±n(θ) are filter functions defined for a given angular range, i.e. between θmin and
θmax. The logarithm of COSEBIs defined in eq. (2.10) provides efficient data compression,
with just a few COSEBI modes encoding most of the information in the measurements;
here the index, n, varies over a small range of integers. We utilize the first five modes (so
1 ≤ n ≤ 5), following ref. [7]. In general, COSEBIs provide the following benefits over the
conventional two-point shear correlation functions: (i) they are less sensitive to baryonic
feedback, and so, can capture information on smaller scales, and; (ii) since the weak lensing
effect is sourced by a gradient of a gravitational potential, it cannot produce B modes, or
curl modes. Hence, any detected B-modes in the COSEBI decomposition will arise from
systematics and allow for a more accurate calibration of said systematics.

2.3 BAO/RSD split

Baryon acoustic oscillations (BAO) refer to the coherent oscillations that took place in the
baryon-photon fluid in the epoch prior to recombination. The BAO imprint a characteristic
scale in the distribution of matter in the universe, and this scale is given by the sound-horizon

5http://kids.strw.leidenuniv.nl/DR4/.
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distance evaluated out to the baryon drag epoch

rd = c√
3

∫ adrag

0

da

a2H(a)
√

1 + 3ΩB

4Ωγ
a

, (2.11)

where Ωγ and ΩB are the photon and baryon densities relative to the critical, respectively.
The BAO feature can be observed with galaxy distributions as an excess probability for the
clustering of galaxies separated by this characteristic scale. Redshift space distortions (RSD),
on the other hand, refer to specific anisotropic features in the clustering of galaxies on small
scales due to the impact of large-scale structures on the galaxies’ velocities.

BAO/RSD surveys measure galaxy and quasar clustering, and are thus nominally rep-
resented by the anisotropic power-spectrum measurements P (k, z, µ), where µ is the cosine of
the wavenumber direction to the line-of-sight. Most often, however, those measurements are
compressed into a few, simpler meta-quantities. These compressed quantities are motivated
by what the BAO effectively measure, which is the angular feature on the sky given by either
DA = rd/θ for angular clustering or H(z) = c∆z/rd for radial clustering; here θ and ∆z are,
respectively the angle and redshift at which the excess of galaxy clustering due to the BAO
is observed. If a survey can successfully separate information from transverse (angular) and
radial modes, then it typically reports the two corresponding distance measures

DM (z) ≡ c

H0

∫ z

0
dz′

H0
H (z′) , (2.12)

DH (z) ≡ c

H (z) , (2.13)

while surveys that do not attempt to separate the different modes just report a single, volume-
averaged distance

DV (z) ≡
[
zD2

M (z)DH (z)
]1/3

. (2.14)

Since the basic quantity that the BAO measures is an angle (subtended by the sound-horizon
standard ruler), all of these distance measurements are typically reported in units of rd. The
latter quantity is evaluated in the standard ΛCDM model and held constant in the analysis.

In addition, spectroscopic surveys also measure redshift-space distortions (RSD):
anisotropic features in galaxy clustering which are sensitive to the quantity fσ8, where
f(a) ≡ d lnD/d ln a is the linear growth rate with D(a) being the linear growth, and σ8
is the amplitude of mass fluctuations on scales 8h−1Mpc. The dimensionless quantity fσ8 is
an excellent probe of dark-energy models, and is determined purely by the growth of cosmic
structure.

In this work, we use BAO/RSD data6 from the following datasets: SDSS-DR7 Main
Galaxy Sample [32], BOSS-DR12 LRG [33], eBOSS-DR16 LRG, eBOSS-DR16 QSO, and
eBOSS-DR16 Lyα auto- and cross-correlation with QSO [34]. These can be treated as mu-
tually independent datasets, but we make sure to take into account the provided covariance
matrices between the different measurements inside the same catalog. The measurements
that we adopt are presented in table 1. Note that the Lyα likelihoods are not well approx-
imated by gaussians, so, in these cases we have made use of a grid of the probabilities as
function of DM/rd, and DH/rd.

6https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_0/likelihoods/BAO-plus/.
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Figure 2. Same as figure 1, but for the matter power spectrum (once again at z = 0). Note that the
power spectrum is sensitive only to the growth sector; see text for details.

Catalog quantity z measurement σ Ref.

BOSS-DR7 MGS DV /rd 0.15 4.51 0.16 [32]
fσ8 0.53 0.14

BOSS-DR12 LRG

DM/rd

0.38
10.27 0.15

[33]

DH/rd 24.89 0.58
fσ8 0.497 0.045

DM/rd

0.51
13.38 0.18

DH/rd 22.43 0.48
fσ8 0.459 0.038

eBOSS-DR16 LRG
DM/rd

0.698
17.65 0.30

[34]

DH/rd 19.77 0.47
fσ8 0.473 0.044

eBOSS-DR16 QSO
DM/rd

1.48
30.21 0.79

DH/rd 13.23 0.47
fσ8 0.462 0.045

eBOSS-DR16 Lyα (auto) DM/rd

2.334 grid likelihoodDH/rd

eBOSS-DR16 Lyα (cross) DM/rd

DH/rd

Table 1. Summary of the BAO and RSD data used in this analysis. The columns show, from left
to right, the name of the dataset, the quantity in question, mean redshift at which the quantity
is measured, the measurement, its error, and reference from which the measurement was adopted.
The “grid likelihood” denotes quantities for which a grid likelihood (as opposed to a single Gaussian
measurement with an error) was provided. Note that we used the full covariance matrix to combine
all measurements.
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Our choices for the geometry-growth split in BAO/RSD measurements are as follows:

• The drag horizon rd is calculated using the growth parameters. This is consistent with
our classification of all pre-recombination physics as being sensitive to only growth (e.g.
the source function ST in the CMB anisotropy; see section 2.1)

• The distance DA and the Hubble parameter H are defined as geometry in our split as
they fundamentally come from the measurements of the angular and radial separations.

• Finally, both quantities in the product fσ8 are treated as growth as the amplitude
and growth of structure is what causes the redshift-space distortions in the first place;
see [21].

Therefore, the combination of BAO and RSD measurements constitute a hybrid probe,
containing information on both geometry (through DA and DH) and growth (through rd and
fσ8).

2.4 SN Ia split

We adopt the Pantheon set of 1048 type Ia supernovae covering the redshift range 0.01 <
z < 2.26 [35]. The apparent magnitude can be related to luminosity distance via

m (z) = 5 log10 [H0DL(z)] +M , (2.15)

whereM is the nuisance parameter that combines the absolute distance of supernovae and
the Hubble constant, and one that needs to be marginalized over. We use the full covariance
matrix of the supernova magnitude measurements,7 which consists of both signal and noise.

Type Ia supernovae are used as a cosmological distance indicator, so it is natural to
classify them as pure geometry. Therefore, we feed only the geometry parameters when com-
puting the luminosity distance from theory. This choice agrees with all previous geometry-
growth split work.

2.5 Summary of the split choices and comparison to other works

Table 2 summarizes our choices for which components of the cosmological probes are sensitive
to geometry vs. growth. We again emphasize that while some classifications of the probes
are obvious, others are more subjective [20]. To illustrate how our choices compare to those
made in the geometry-growth literature, we now compare our approach with those of previous
works [20–23].

For the CMB information, ref. [20] classifies the primordial CMB fluctuations as growth,
while the projection onto the 2D observed sky is determined by geometry. The result is that
the angular power spectrum is sensitive to both geometry and growth parameters. Ref. [21],
on the other hand, only uses the compressed CMB information present in the CMB acous-
tic peaks’ locations, and therefore considered CMB as a geometry-only probe. Recently, the
Dark Energy Survey (DES) collaboration [23] followed the same approach, arguing that using
the compressed CMB information — which provides only geometric information — reflects
the fact that the CMB is mostly sensitive to mapping out the angular scale of the sound hori-
zon. Finally, ref. [22] chose the high multipoles in the angular power spectrum to constrain
geometry while the low multipoles constrained growth. Additionally, they chose the lensing

7https://github.com/dscolnic/Pantheon.
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Cosmological Probe Geometry Growth
SN Ia H0DL(z) —
BAO {DM (z);DH(z)} rd(zd)

CMB j`[kχ(z)] ST (k, z)
Weak lensing dχ(z)

d(z) gi(z)gj(z) Ω2
mPδ

(
`
χ , z

)
RSD — f(z)σ8(z)

Table 2. Summary of the cosmological probes used in this work and the related theoretical quantities
for each that constrains either the geometry or the growth parameters. Here rd(zd) refers to the sound
horizon evaluated at the baryon drag epoch zd. See text for more details.

power spectrum in the multipole range 40 ≤ L ≤ 400 to be growth (see their table 1 for
details). Our choice, on the other hand, is motivated by the desire to extract the full infor-
mation from the “building blocks” of the CMB observations: the primordial fluctuations and
their projection. In doing so, our geometry-growth split most closely follows that of ref. [20],
with the corresponding behavior from the split parameterization illustrated in figure 1.

For weak lensing, refs. [20] and [21] have similar strategies. They, however, differ in
how they treat the Ω2

M prefactor (see eq. (2.8)); the former paper includes this as a growth
quantity, while the latter paper considers it a part of the lensing window function, and
hence a geometric quantity. In the present work, we opt to treat the Ω2

M factor as a growth
parameter, as shown in table 2. Ref. [22] has not used weak leasing at all, citing difficulty
in disentangling growth and geometry contributions for this probe. The DES [23] roughly
follows the implementation from [21], with an additional modification in modelling the matter
power spectrum. The DES implement a redshift-dependent split in the linear matter power
spectrum; at z > 3.5, their Plin(k, z) is given by just geometry parameters (in concert with
treatment of the CMB as geometry only), while at z < 3.5 it is given by taking the matter
power spectrum at z = 3.5 and scaling it by the squared ratio of the growth functions since
that redshift, where the latter quantity is computed with growth parameters alone.

The DES compute the non-linear matter power spectrum using halofit on the modi-
fied linear power spectrum function, Plin(z, k), but pass in only growth parameters to the
halofit method. They also utilize growth parameters in the intrinsic alignment model for the
lensing predictions. Our choice, in contrast, is to model the matter power spectrum as pure
growth (see figure 2). We emphasize that approaches in all of the aforementioned papers are
completely self-consistent.

For BAO, the usual classification found in the literature is to consider it as a purely
geometrical probe [21–23]. We, however, implement a different strategy, and argue that
while the distance and the Hubble parameter in BAO are still geometric quantities, the sound
horizon that enters the compressed “observable” quantities (see table 1 and eq. (2.14)) should
be computed using growth parameters. The latter choice, while perhaps also subjective, is
fully consistent with our treatment of the sound horizon for the CMB, and also makes the
BAO in our analysis sensitive to both geometry and growth.

The RSD information is usually compressed into measurements of f(z)σ8(z) at several
redshifts. Here, we follow the same procedure as in refs. [20–22], where fσ8 depends only on
the growth parameters. The only work that differs from this thus far is ref. [23] who allowed
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Figure 3. Marginalized 2D posteriors, of individual probes as well as the joint analysis, for the
fiducial models where no geometry-growth split has been implemented. Left panel: ΩM -S8 plane in
the ΛCDM model. Middle panel: ΩM -S8 plane in the wCDM model. Right panel: ΩM − w plane in
the wCDM model.

σ8(z = 0) to also include geometric parameters via their split parameterization of the matter
power spectrum, P splitlin (k, z) (see their section II D for details).

Finally, type Ia supernovae measure relative values of the luminosity distance, and so all
works — including this one — assume that SN Ia constrain only the geometry parameters.

3 Results

We now present our main results — constraints on the geometry and growth parameters
(Ωgeom

M ,Ωgrow
M ) in the extended ΛCDM model, and on (Ωgeom

M ,Ωgrow
M , wgeom, wgrow) in the

extended wCDM model. For all marginalized 2D posteriors we show the 68% and 95%
contours.

3.1 Analysis setup

Our base set of cosmological parameters is given by eq. (2.1) when we do the ΛCDM split,
and by eq. (2.2) when we consider the wCDM split. In both cases the set of parameters that
are not being split, {pi}, is

{pi} =
{
ωb, H0, ln(1010As), ns, τreio

}
, (3.1)

where ωb ≡ Ωbh
2 is the physical baryon density, H0 is the Hubble constant, As is the

amplitude of the primordial power spectrum at kpiv = 0.05 Mpc−1, ns is the scalar spectral
index, and τreio is the optical depth to reionization. As mentioned briefly in section 2.1, in
practice we vary the CDM density parameter Ωc (rather than ΩM ), so that Ωgeom

M ≡ Ωgeom
c +Ωb

for geometry, and similarly for growth.
We adopt flat priors in all base parameters, as shown in table 3. Note that the amplitude

of mass fluctuations σ8 is a derived parameter, as is the parameter

S8 ≡ σ8

(ΩM

0.3

)0.5
. (3.2)

In the split models, S8 is defined using only Ωgrow
M . The cosmological probes we employ in

our analysis are presented in table 2 and discussed in section 2.
To obtain the constraints, we use a suitably modified version of the Boltzmann code

CLASS [36] alongside the MCMC code MontePython [37, 38]. In practice, the imple-
mentation of the split approach in the CLASS code does not induce any appreciable loss in

– 11 –
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Parameter Flat Prior
100 ωb [1.875, 2.625]
H0 [60, 80]
ln(1010As) [1.7, 5]
ns [0.7, 1.3]
τreio [0.004, 0.1]
Ωgeom
M ,Ωgrow

M [0.01, 0.99]
wgeom, wgrow [−3, 1]

Table 3. Cosmological parameters and their respective flat priors used in the parameter selection
analysis.

0.2 0.3 0.4
Ωgeom
M

0.2

0.3

0.4

Ω
g
ro

w
M

BAO/RSD
SN Ia
Weak Lensing
CMB
Joint analysis

0.05 0.00 0.05
∆ΩM

One probe at a time REMOVED
from the Joint analysis No BAO/RSD

No SN Ia
No Weak Lensing
No CMB
Joint analysis

Figure 4. Geometry-growth constraints for all individual probes as well as the joint analysis in
the split ΛCDM model, where the matter density which has been split into Ωgeom

M and Ωgrow
M . Left

panel: Ωgeom
M − Ωgrow

M plane. The dashed black line shows the equality limit of Ωgeom
M = Ωgrow

M . Right
panel: one-dimensional posteriors for the difference ∆ΩM = Ωgrow

M − Ωgeom
M , which is particularly

well-constrained by the CMB. The vertical dashed black line shows ∆ΩM = 0. Note that the right
panel shows constraints where one probe at a time has been removed from the joint analysis.

computational time needed to calculate the cosmological observables. On the other hand,
since the split technique introduces new parameters and, consequently, new degeneracies, the
computational time spent on MCMC sampling is considerably longer. For example, in the
joint analysis — where we combine all available probes — the split case takes three or four
times longer than the unsplit case.

We explore the parameter space using the Metropolis-Hastings sampler, and stop upon
convergence, which is indicated by the Gelman-Rubin criterion [39] of R − 1 < 0.05. This
threshold is similar to those considered in previous works [21, 22]. Figures and analysis of
the resulting chains are performed using the GetDist [40] package.

3.2 Unsplit case

We first analyze the standard cosmological model without the geometry-growth split. This is
helpful in order to 1) confirm consistency with similar results in the literature, and 2) provide
a fiducial reference for comparisons with the split results that follow below.

– 12 –



J
C
A
P
1
1
(
2
0
2
1
)
0
1
4

In line with the split analysis to follow, we present results for the two basic cosmological
models: flat ΛCDM, and flat wCDM. Whereas in the first case we have the usual six standard
free cosmological parameters (equivalent to eqs. (2.1) and (3.1) reduced by the condition
Ωgeom
M = Ωgrow

M ≡ ΩM ), in the second case we have seven parameters, corresponding to
eqs. (2.2) and (3.1) with the conditions Ωgeom

M = Ωgrow
M ≡ ΩM and wgeom = wgrow ≡ w. Our

results for both unsplit models are shown in figure 3.
The left panel of figure 3 shows the ΩM -S8 contour in the LCDM model. As expected,

SN Ia are insensitive to the parameter S8 which largely encodes the amplitude of mass
fluctuations. Weak lensing, on the other hand, is sensitive to both ΩM and S8, and places
stronger constraints on S8 than on ΩM . The BAO/RSD data also constrains both parameters;
its dependence on S8 comes exclusively from the RSD quantity fσ8 (see table 2). The CMB
provides the best individual constraints in this plane. The combined contour is very small
in comparison to the others due to degeneracy breaking in this multi-dimensional parameter
space — something that will become even more accentuated once we go to the split analyses.
Focusing on the KiDS and CMB analyses, it is worth mentioning that we reproduce the
aforementioned S8 tension (e.g. [9]). From this combined analysis the constraint on the
matter density that we obtain is

ΩM = 0.2998+0.0044
−0.0047 (ΛCDM, no split). (3.3)

The constraints for the other parameters are provided in table 5. While there exist prospec-
tive inconsistencies between different probes (e.g., S8 tension between KiDS-1000 and Planck
2018) we proceed to combine all data in a joint analysis since our main focus is not fidu-
cial parameter constraints, but to establish a reference result that can be compared with
constraints from the split cases.

Figure 3 show the ΩM -S8 contour (middle panel) and ΩM -w contour (right panel) of
our the unsplit wCDM analysis. The former plot is similar to the one for ΛCDM case, except
that the contours — especially for BAO/RSD and CMB — are broadened due to the addi-
tional degeneracy with the dark energy equation of state parameter. The ΩM -w plot shows
impressive complementarity of the different cosmological probes in breaking the degenaricies
in this plane; a feature first pointed out two decades ago [41]. The figure also shows that
most of these probes, and especially weak lensing, do not give strong constraints on their
own, yet play a critical role by breaking degeneracies in the joint analysis, as indicated by the
remarkably small contour for the joint analysis. The combined constraints on ΩM and w are

ΩM = 0.2997+0.0066
−0.0066

w = −1.002+0.027
−0.024

(wCDM, no split). (3.4)

Once again, constraints for all other parameters can be found in table 5.

3.3 Split ΛCDM model

Moving to the cases where the split parameterization is adopted, we first consider the split
ΛCDM model. Here the matter density, ΩM , has been promoted into two parameters re-
sponsible for geometry and growth, respectively. The cosmological parameter set is given by
eqs. (2.1) and (3.1). Key results are shown in figures 4 and 5, and in more detail in figure 8
(in the appendix) and in table 5.

The constraints from individual probes on familiar parameters such as H0 and S8 are
significantly weaker than those in the standard, unsplit ΛCDM model (see the appendix A).
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Figure 5. Left panel: the marginalized posteriors of ∆ΩM ≡ Ωgrow
M − Ωgeom

M and S8 in the split
ΛCDM case, for CMB, weak lensing, and the joint analysis (which includes BAO, RSD, and SN Ia as
well). The S8 constraints (1σ) from Planck 2018 (TTTEEE+lensing) [4], and KiDS-1000 COSEBIs [7]
are shown as the magenta and cyan arrows, respectively. The parameter ∆ΩM is correlated with S8
for both probes, with the CMB showing a slightly stronger correlation. The vertical black dashed line
shows ∆ΩM = 0. Right panel: points from the posterior in the Ωgeom

M − Ωgrow
M plane, color-coded by

the value of S8 in the joint analysis of the ΛCDM split model.

However, combining all the probes to perform a joint analysis enables massive degeneracy
breaking in the full parameter space [21], leading to fairly strong constraints not only on the
geometry sector, but even on the tough-to-constrain growth sector.

In the Ωgeom
M − Ωgrow

M plane (left panel of figure 4) we find, as expected, that the SN Ia
probe constrains Ωgeom

M but has no sensitivity to Ωgrow
M . We also see that the CMB provides

an excellent constraint on the difference between the geometry and growth matter densities,

∆ΩM ≡ Ωgrow
M − Ωgeom

M . (3.5)

This is entirely expected given our previous results from section 2.1 and figure 1. The CMB,
however, constrains the sum Ωgeom

M + Ωgrow
M much more poorly. Fortunately, the SN Ia and

BAO/RSD data play a crucial role in breaking the degeneracy in this latter combination.
As mentioned before, the combination of all probes, which is our joint analysis, provides

strong constraints on most cosmological parameters. The constraints we obtain on the matter
density parameters are

Ωgeom
M = 0.3012+0.0066

−0.0071

Ωgrow
M = 0.3017+0.0057

−0.0056
(split ΛCDM). (3.6)

We see that the geometry and growth matter-density are in remarkably good agreement with
each other, despite the small error bars in each. In general, the only appreciable differences
between the split ΛCDM constraints and those of the unsplit ΛCDM model are the slightly
larger error bars on H0 in the former (see table 5).

We also show the posteriors on ∆ΩM (right panel, figure 4). Since some of the individual
probes deliver weak constraints on this parameter, we do not show these individual-probe
constraints, but rather the joint analysis constraints after removing one particular probe
(e.g. the “No weak lensing” result corresponds to simultaneous constraints from BAO/RSD,
SN Ia, and CMB data). Removing weak lensing from the analysis (red line, figure 4) gives
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Figure 6. Similar to figure 4, but for the split wCDM model. We show constraints from the individual
probes and the joint analysis for the Ωgeom

M −Ωgrow
M (left) and wgeom−wgrow (right) planes. The diagonal

lines show the fiducial wCDM model where Ωgeom
M = Ωgrow

M and wgeom = wgrow, respectively.

essentially the same constraint as the full, unchanged joint analysis, which confirms the
expectation (from e.g. the left panel of the same figure) that weak lensing data alone do
not appreciably constrain ∆ΩM . Removing any one of the other probes shows qualitatively
similar results with slightly weaker constraints. As expected, the CMB provides by far the
strongest constraint on ∆ΩM , as evidenced by the significantly weaker constraints obtained
when it is removed from the joint analysis (orange line, figure 4). The numerical values for
each of these constraints is shown in table 6.

Following the procedure adopted in ref. [21], we can quantify the statistical significance
of departing from ∆ΩM = 0 by computing the fraction of the posterior that satisfy the
condition ∆ΩM ≶ 0,

p =
∫

∆ΩM≶0 d∆ΩM L (∆ΩM )∫
d∆ΩM L (∆ΩM ) . (3.7)

In practice, eq. (3.7) gives us the p-value for ∆ΩM ≶ 0. For example, in the “No BAO/RSD”
analysis we found p = 0.0430 for ∆ΩM < 0, and in the “No CMB” analysis we found
p = 0.1370 for ∆ΩM > 0. Since we are looking at a one-dimensional posterior, the p-value
can be roughly converted into the number of standard deviations using the one-dimensional
Gaussian approximation for the tails. From this, the p-values above correspond to 2.0σ and
1.5σ confidence level, respectively, of inconsistency with the ΛCDM model.

The combined constraint on the difference between the geometry and growth values of
ΩM is

∆ΩM = 0.0004+0.0020
−0.0020 (3.8)

Note that even though the CMB provides the best individual measurement of this parameter,
its individual constraint on ∆ΩM is a factor of four weaker than the combined constraint
in eq. (3.8). This is another lesson on the wonderful complementarity of cosmic probes
— even those that do not appear strong individually — to precisely constrain parameters
of interest. This combined constraint corresponds to 0.9σ confidence level of inconsistency
between geometric and growth parameters, which means we cannot reject the null hypothesis,
i.e., ∆ΩM = 0.

We are now well-positioned to assess whether the S8 tension, observed in ΛCDM, is
correlated with either geometry or growth. If so, it would be possible for the S8 tension to
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be reinterpreted (and perhaps explained) by a difference between the geometry and growth
parameters — that is, a nonzero ∆ΩM . Such a conjecture would be supported, for example,
by contours in the ∆ΩM − S8 plane that show discrepant measurements of S8 by CMB and
weak lensing for ∆ΩM = 0, but much better agreement between those two measurements for
some ∆ΩM 6= 0.

Such a plot is shown in the left panel of figure 5. Given our interest in the S8 tension, we
only show constraints from weak lensing, CMB, and the joint analysis (which uses all probes).
The key message is that the weak lensing constraint on ∆ΩM is very weakly correlated with
S8, and that result is likely to remain with any other current shear survey.8 The CMB
constraint on ∆ΩM shows only a slightly steeper scaling with S8, and so does not allow
a sharp consistency check with weak lensing because the latter constraint is rather weak.
Therefore, we conclude that the quality of the present data does not allow a sharp test of
whether a discrepancy between geometry and growth in the split-ΛCDM model can explain
the S8 tension. This conclusion is further supported by the right panel of figure 5 which
shows that along lines of constant ∆ΩM (roughly, going along the diagonal direction), S8 can
take a range of values, indicating that there is no discernable correlation between S8 and the
difference between Ωgeom

M and Ωgrow
M .

3.4 Split wCDM model

We now consider the geometry-growth extensions of the flat wCDM cosmological model,
which includes a constant dark energy equation-of-state parameter, w. Here both ΩM and w
have been split into their geometry and growth counterparts. The full cosmological parameter
set is given by eqs. (2.2) and (3.1). Key results are shown in figure 6, and more detail is
given in figure 9 in the appendix as well as table 5.

The constraints on H0, S8 and our four split parameters from individual probes now
show very significant degeneracies, as expected in this challenging-to-constrain parameter
space; see the appendix. However, when the probes are combined, we are again able to obtain
fairly accurate constraints on most cosmological parameters. The degeneracy breaking power
from using a diverse set of probes is once again at display here.

We focus on the split matter density and dark-energy equation of state in figure 6.
The left panel shows the constraints from individual probes and the joint analysis in the
Ωgeom
M − Ωgrow

M plane, and the right panel is the same but for the wgeom − wgrow plane.
As before, SN Ia are sensitive only to geometry parameters, while the CMB very tightly

constraints the difference ∆ΩM (discussed further below). All the numerical constraints for
the joint analysis are presented in table 5; those for the key parameters are

(Ωgeom
M , wgeom) = (0.3005+0.0069

−0.0081,−1.008+0.047
−0.044)

(Ωgrow
M , wgrow) = (0.3005+0.0071

−0.0073,−1.049+0.086
−0.071)

(split wCDM). (3.9)

Clearly, both pairs of parameters — Ωgeom
M and Ωgrow

M , as well as wgeom and wgrow —
are in good agreement with one another. Moreover, both equations of state are consistent
(at 95% confidence level) with the ΛCDM expectation of w = −1. Here, in parallel with our
definition of ∆ΩM in eq. (3.5), we introduce the analogous quantity for w

∆w = wgrow − wgeom. (3.10)
8For instance, the recent results released by the DES collaboration [42, 43] indicate that their constraints

from the weak lensing analysis are of the same order as KiDS-1000 (see figure 10 of [43]).
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Figure 7. Constraints on ∆ΩM ≡ Ωgrow
M − Ωgeom

M , ∆w ≡ wgrow − wgeom in the split wCDM model.
We show the joint constraints, as well as cases when one probe at a time has been removed from the
analysis.

Figure 7 shows the triangle plot for the parameters ∆ΩM and ∆w, marginalized over all
other parameters. We show 68% and 95% contours from the joint analysis, as well as cases
where one probe at the time has been removed from the analysis. The combined-probes’
constraints on the difference between the geometry and growth values of both ΩM and w are

∆ΩM = −0.0000+0.0026
−0.0027

∆w = −0.041+0.099
−0.084

(split wCDM). (3.11)

As in the split ΛCDM model, we find no evidence for departures from the standard model, as
we are consistent with ∆ΩM = ∆w = 0. We assess the significance of the pull away from zero
by using eq. (3.7) for ∆ΩM , and analogously for ∆w. We find the respective significances of
1.0σ (p = 0.3072) for ∆ΩM > 0, and 1.6σ (p = 0.1172) for ∆w > 0.

We would also like to investigate the individual constraints from the cosmological probes
on the parameters in the split wCDM model, but because the individual probes provide weak
constraints, we study the constraints when one probe at a time is removed from the joint
analysis. The results of these tests are shown in table 6 and figure 7.
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Paper Ωgeom
M Ωgrow

M ∆ΩM wgeom wgrow ∆w
This work 0.301±0.007 0.302±0.006 0.0004±0.0020 −1.01±0.05 −1.05±0.08 −0.041±0.090
Wang et al. [20] — — 0.0044±0.0058 — — −0.37±0.36
Ruiz & Huterer [21] 0.302±0.008 0.321±0.017 0.019? −1.13±0.06 −0.77±0.08 0.36?

Bernal et al. [22] 0.297±0.08 0.29±0.08 −0.007? −1.05±0.04 −0.96±0.03 0.09?

Muir et al. [23] 0.304±0.008 0.421±0.095 −0.116±0.092 — — —
Ruiz-Zapatero et al. [24] 0.29±0.02 0.27±0.04 −0.02? — — —

Paper Data
CMB Weak lensing BAO/RSD SN Ia Galaxy clusters

This work
Planck 2018

(TTTEEE+lensing)
KiDS-1000
(COSEBIs)

eBOSS DR16 Pantheon —

Wang et al. [20]
WMAP3, ACBAR,

BOOMERanG and CBI
(TTTEEE)

CTIO
(Aperture mass

statistic)

2dFGRS and
SDSS LRG

SNLS —

Ruiz & Huterer [21]
Planck 2013

(Shift parameter and
early universe priors)

CFHTLens
(Shear 2PCF ξij± )

6dFGS, SDSS LRG
and BOSS CMASS

SNLS
MaxBCG

(Cluster counts)

Bernal et al. [22]
Planck 2015

(TTTEEE+lensing)
—

6dFGS, SDSS-MGS,
BOSS-LOWZ,
BOSS-CMASS
and BOSS-Lyα

JLA
Chandra X-ray
and Planck tSZ(
σ8
(ΩM
α

)β)
Muir et al. [23]

Planck 2015
(Shift parameter)

DES Y1
(Shear 2PCF ξij± )

DES Y1 and
BOSS DR12

DES Y1 —

Ruiz-Zapatero et al. [24]
Planck 2018

(Shift parameter and
primordial power spectrum)

KiDS-1000
(Band powers
spectrum)

6dFGS, BOSS DR12
and BOSS DR14

— —

Table 4. Top: comparison of constraints from this work with existing literature. ΩM constraints
come from splitting only ΩM , and w constraints from splitting both w and ΩM . For works that do not
quote ∆ΩM and ∆w, we estimate them from reported values of {Ωgeom

M ,Ωgrow
M , wgeom, wgrow}. These

estimates are denoted by ?, and their uncertainties are omitted as they cannot be computed from the
provided results. Wang et al. [20] only quoted ∆ΩM and ∆w, Muir et al. [23] could not constrain
the wgeom − wgrow plane, and Ruiz-Zapatero et al. [24] did not study the wCDM split, so all values
are omitted. Bottom: the various datasets for each probe used by all existing works. Missing values
indicate a probe was not used in an analysis. Note that even if two works use the same dataset(s) for
a probe, the variety in split implementation means that different parts of the data inform the growth
and geometry constraints. For CMB, weak lensing and galaxy clusters, we identify in parenthesis the
specific observable used in each work.

The most interesting result when removing one probe at a time is seen in the case when
the BAO/RSD data is excluded from the joint analysis. In this case, the constraints are
inconsistent with the standard model, and show ∆ΩM = 0.0305+0.0076

−0.0050 and ∆w = −0.88+0.50
−0.25.

Converting the p-value into a Gaussian sigma, we find statistical significance at the level of
4.2σ for ∆ΩM < 0, and 3.6σ (p = 0.0004) for ∆w > 0.

This apparent discrepancy with the ΛCDM expectation — for constraints where the
BAO/RSD dataset has been removed from the joint analysis — can be understood as follows.
In the “No BAO/RSD” case, the CMB and weak lensing largely inform the constraints on
∆ΩM and ∆w, as the SN Ia constrains only the geometry. Even in the unsplit wCDM model,
the CMB-only constraints do not perfectly agree with the standard model; they prefer lower
values for ΩM and a phantom (w < −1); see the middle and right panels of figure 3. This
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ΛCDM wCDM split ΛCDM split wCDM
100 ωb 2.246+0.013

−0.013 2.246+0.013
−0.014 2.249+0.014

−0.015 2.250+0.014
−0.015

H0 68.87+0.39
−0.36 68.90+0.65

−0.79 68.58+0.66
−0.65 68.67+0.81

−0.85
ln 1010As 3.040+0.014

−0.014 3.040+0.014
−0.014 3.042+0.015

−0.015 3.039+0.015
−0.015

ns 0.9673+0.0033
−0.0037 0.9672+0.0037

−0.0040 0.9684+0.0039
−0.0042 0.969+0.0045

−0.0042
τreio 0.0529+0.0068

−0.0070 0.0526+0.0072
−0.0069 0.054+0.0077

−0.0080 0.0533+0.0079
−0.0073

Ωgeom
M 0.2998+0.0044

−0.0047 0.2997+0.0066
−0.0066

0.3012+0.0066
−0.0071 0.3005+0.0069

−0.0081
Ωgrow
M 0.3017+0.0057

−0.0056 0.3005+0.0071
−0.0073

wgeom
−1 −1.002+0.027

−0.024 −1 −1.008+0.047
−0.044

wgrow −1.049+0.086
−0.071

S8 0.8072+0.0081
−0.0088 0.8074+0.0087

−0.0079 0.8081+0.0090
−0.0085 0.8136+0.013

−0.013
∆ΩM 0 0 0.0004+0.0020

−0.0020 −0.0000+0.0026
−0.0027

∆w 0 0 0 −0.041+0.099
−0.084

Table 5. The full parameter constraints (mean and 1σ uncertainties) for the standard ΛCDM and
wCDM models as well as the split analogs to each. From top to bottom we show the following
parameters: (i) the scaled baryon energy density wb = Ωbh

2, (ii) the Hubble expansion rate at the
present epoch, (iii) the amplitude of the primordial curvature power spectrum at kpiv = 0.05 Mpc−1,
(iv) spectral index of density fluctuations, (v) optical depth to reionization, (vi - vii) the geometry
and growth counterparts for the total matter energy density, (viii - ix) the geometry and growth
counterparts for the dark energy equation of state. This is a fixed parameter wgeom = wgrow = −1 in
the split ΛCDM models. (x) the amplitude of density fluctuations on a scale 8h−1Mpc then scaled by
Ωgrow

M : S8 = σ8(Ωgrow
M /0.3)0.5, (xi - xii) the differences between the geometry and growth parameters,

∆ΩM ≡ Ωgrow
M − Ωgeom

M and ∆w ≡ wgrow − wgeom.

behavior is amplified in the split case, as can be seen in figures 6 and 9. Thus, it is not
particularly surprising to see a discrepancy in the “No BAO/RSD” analysis.

Finally, regarding the joint analysis, the constraints on ∆ΩM do not have any discernible
correlation with S8, while the departures of ∆w 6= 0 occur only for high values of S8 that are
not allowed by the data; see figure 10 in the appendix.

4 Discussion

There are a number of previous works on geometry-growth split analyses, each using different
data (see table 4) and split implementations (see section 2). Such differences prevent a
straightforward, unambiguous comparison across the literature, but there are still some trends
worth highlighting.

When splitting only ΩM (or ΩΛ, which is an equivalent split choice for a flat universe), al-
most all studies find no preference for ∆ΩM 6= 0. The one exception is ref. [22], who found a ≈
4σ departure from ∆ΩM = 0, but they point out that they could not properly isolate the im-
pact of systematics, particularly from the galaxy cluster and RSD probes, on this discrepancy.

When splitting both ΩM and w, however, the picture is more interesting. Two previous
works have found wgrow > wgeom [21, 22], meaning the data prefer less growth at late times
than predicted by the standard model. Our joint analysis results, on the other hand, are
consistent with wgrow = wgeom. This preference could arise from differences in data between
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the analyses; the growth constraints in previous works are informed primarily by probes
whose theoretical modeling is challenging — RSD data in [21], and both galaxy cluster and
RSD data in [22] — whereas in our work stronger constraints from the easier-to-model CMB,
weak lensing, and BAO accentuates their contribution to the overall information content.
Interestingly, our constraints from just BAO/RSD do prefer wgrow > wgeom (blue contour,
right panel, figure 6), but this preference vanishes with the addition of other data. The
CMB constraints in particular show contrary behavior to BAO/RSD, with a preference for
wgrow < wgeom. This behavior is also consistent with Wang et. al [20], who used the same split
implementation as us in CMB physics, but much older CMB data. Note, however, that these
features in both the CMB and the BAO/RSD analyses are found at low significance (< 2σ).

Omitting BAO/RSD from our joint analysis leads to constraints that display 4.2σ and
3.6σ deviations away from ∆ΩM = 0 and ∆w = 0, respectively. These constraints are
primarily informed by the CMB, which is known to show preference for phantom cosmo-
logical model in wCDM; for example, the Planck constraint on the equation of state in
the base_w_plikHM_TTTEEE_lowl_lowE_post_lensing model is w = −1.57+0.16

−0.33. Adding
BAO/RSD data, however, both strengthens the constraints dramatically and returns them
to agree well with ΛCDM; see the third panel of figure 3. Ruiz & Huterer [21] also found
similar behaviors for datasets and split implementations that are different in detail from those
of this work.

Finally, we address our decision to combine different datasets — notably KiDS-1000
and Planck — despite possible statistical inconsistencies between them. The nice feature
of our geometry-growth test is that, if interpreted purely as a consistency test of the stan-
dard cosmological model, it is reasonably robust to assumptions about internal consistency
of the data. This is because a failure to recover the standard model (here, Ωgeom

M = Ωgrow
M

and wgeom = wgrow) would indicate some inconsistency in the underlying standard cosmo-
logical model (or else unaccounted-for systematics), regardless of assumptions about internal
consistency of the probes.

5 Summary and conclusion

In this work, we consider a geometry-growth extension to the ΛCDM and wCDM cosmo-
logical standard models to check (i) if the different probes prefer models that deviate from
GR, and (ii) whether such deviations can resolve the current S8 − ΩM tension between the
CMB and large-scale structure. To constrain our extension model we use a diverse set of
probes, including SN Ia, BAO, RSD, CMB, and weak lensing. While individual probes may
often provide only weak constraints on the parameters of interest, combining the probes en-
ables powerful degeneracy breaking and leads to precise constraints on the parameters that
describe the geometry and the growth of structure in the universe.

Our model parameterization involves the split of late-time cosmological parameters that
describe dark energy into a pair of sets: one set captures the geometry from the expansion
history while the other set describes the growth of structure. We consider split analyses of
two cosmological models: flat ΛCDM and flat wCDM model. When we “split” the ΛCDM
model, we replace the matter density ΩM with two parameters, (Ωgeom

M , wgeom), while for
the wCDM model, we replace (ΩM , w) with four parameters: (Ωgeom

M ,Ωgrow
M , wgeom, wgrow).

We assign the geometry parameters to theoretical modeling of the distances and geometric
projections (in lensing kernels), while we use the growth parameters to model the sound
horizon at the drag epoch, the matter power spectrum, and the CMB source functions.
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While there exist multiple ways to implement the geometry-growth split in detail [20–23], all
implementations are equally valid when performing a consistency check of GR: if GR holds,
then the null-hypothesis, Ωgrow

M = Ωgeom
M and wgrow = wgeom, must be satisfied regardless of

the specific implementation of the split.
We pay particular attention to constraints on the parameter differences ∆ΩM ≡

Ωgrow
M − Ωgeom

M and ∆w = wgrow − wgeom that describe departures from the standard model.
In our implementation of the parameter split, we find that the parameter difference ∆ΩM

is particularly well constrained both from the CMB alone, and from all probes combined,
indicating an excellent ability to constrain departures from Λ/wCDM.

In our split ΛCDM analysis, the posteriors for the joint analysis are consistent with
∆ΩM = 0, and show no preference for departures from GR (figure 4). The CMB provides
the strongest constraint for this parameter, but all the other individual probes are also
consistent with ∆ΩM = 0. In the S8 − ∆ΩM plane, we find that the CMB constraints
are anti-correlated — S8 decreases with increasing ∆ΩM — while weak lensing constraints
show no correlation. This implies that there exists a value of ∆ΩM > 0 for which the CMB
constraints on S8 would be brought into agreement with weak lensing. However, the weak
lensing constraints in this parameter space are broad. Thus we find that the current datasets
do not have enough constraining power to inform whether the geometry-growth split of the
ΛCDM standard model can resolve the S8 - ΩM tension between CMB and weak lensing.

In the split wCDM analysis, the joint-probe posteriors are entirely consistent with
∆ΩM = 0 and ∆w = 0. Interestingly, the individual constraints from BAO/RSD prefer
wgrow > wgeom at ≈ 1.4σ, which is a feature seen in previous works with different data and
split implementations [21, 22]. Removing BAO/RSD from the joint analysis results in an even
more anomalous result, with ∆ΩM > 0 at 4.2σ significance, and ∆w < 0 at 3.6σ. We conjec-
ture that constraints from the combination of SN Ia, CMB and weak lensing are primarily
informed by the CMB, and thus inherit the well-known preference of Planck’s data for a phan-
tom (w < −1) cosmological model in wCDM, which now manifests itself as a preference for
nonzero ∆ΩM and ∆w. That preference goes away when BAO/RSD is added to the analysis.

Overall, we find that the standard cosmological model passes another test — though
just barely. It will be very interesting to see how the geometry-growth split constraints
improve and evolve as new, better data are added. Particularly interesting will be seeing
how different cosmological probe evolve in relation to one another. High quality data from
upcoming Stage III (DES Y6, Hetdex, HSC) and Stage IV (J-PAS, DESI, LSST, WFIRST,
Euclid, SKA) surveys will enable such exciting tests of the standard cosmological model.
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A More details about the constraints

While our main results focus primarily on the split parameters, Ωgeom
M , Ωgrow

M , wgeom, and
wgrow, we also constrain all the other parameters of the standard cosmological model. Here we
present the constraints for all parameters (including those presented in our main analysis) for
both the split ΛCDM and split wCDM models. All contours show 68% and 95% confidence
intervals. For each 2D posterior, all other cosmological and nuisance parameters have been
marginalized over.

Figure 8 shows the posteriors of H0, S8, Ωgeom
M , and Ωgrow

M . As expected, the geometry-
growth split introduces new degeneracies leading to individual constraints that are consider-
ably weaker compared to the fiducial ΛCDM model. For example, the CMB constraint on
H0 drastically weakens relative to that of the ΛCDM model (and is also very non-Gaussian
now), and the same happens to both the CMB and weak lensing constraints on S8 as well.

Nevertheless, there are some success stories even among the individual-constraint cases;
for example, SN Ia individually constrain Ωgeom

M very well, while BAO/RSD constrains both
Ωgeom
M and Ωgrow

M . Moreover, weak lensing, while unable to provide strong constraints on its
own, helps break the degeneracy between H0 and Ωgrow

M as measured by the CMB. Finally,
the combination of cosmological probes in the full dimensional parameter space once again
breaks degeneracies, and the joint constraints are precise for all parameters shown in figure 8.

Figure 9 shows the posteriors of H0, S8, Ωgeom
M , Ωgrow

M , wgeom and wgrow. There are large
degeneracies in the constraints of individual probes, indicating the intrinsic difficulty in con-
straining this parameter space [21]. Nevertheless, we observe that the purely geometrical SN
Ia data constrain the geometry parameters reasonably well, while BAO/RSD measurements
give a respectable individual constraint on both geometry and growth parameters. When the
probes are combined, we obtain a fairly precise constraint on most cosmological parameters.

Finally, we comment on the tightness of the combined constraint in the split wCDM
model. Figure 10 shows a subsampling of Markov chains in the plane with (Ωgeom

M ,Ωgrow
M )

(left panel) and (wgeom, wgrow) (right panel). In each plane, we show representative values
of the two split parameters, with colors showing the S8 value for each point. As in the split
ΛCDM model, we observe that the difference ∆ΩM = Ωgrow

M −Ωgeom
M is very well constrained,

without a noticeable dependence on the value of S8. In contrast, wgeom is much better
determined than wgrow and the two parameters are not particularly correlated. The difference
∆w ≡ wgrow − wgeom is nonzero only for cases when S8 is considerably higher than its
concordance value of S8 ' 0.8.
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Figure 8. Constraints in the split ΛCDM model, showing the 68% and 95% limits on the parameters
H0, S8, Ωgeom

M , and Ωgrow
M . The different-color contours show constraints from individual probes, and

the black contours show the joint constraint.

– 23 –



J
C
A
P
1
1
(
2
0
2
1
)
0
1
4

65 70
H0

1.5

1.0

0.5

w
gr

ow

1.5

1.0

0.5

w
ge

om

0.3

0.4

Ω
gr

o
w

M

0.3

0.4

Ω
ge

o
m

M

0.8

0.9

S
8

0.8 0.9
S8

0.3 0.4
Ωgeom
M

0.3 0.4
Ωgrow
M

1.6 1.0
wgeom

1.6 1.0
wgrow

BAO/RSD
SN Ia
Weak  Lensing
CMB
Joint analysis

Figure 9. Constraints in the split wCDM model, showing the 68% and 95% limits on the parameters
H0, S8, Ωgeom

M , Ωgrow
M , wgeom, and wgrow. The different-color contours show constraints from individual

probes, and the black contours show the joint constraint. Note that the joint constraint in the Ωgeom
M -

Ωgrow
M plane is extremely thin and difficult to see (recall that we constrain ∆ΩM really well), and

largely overlaps with a few dashes of the diagonal line.
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Figure 10. Similar as the right panel of figure 5, but for the split wCDM model. Left panel: points
from the posterior in the Ωgeom

M − Ωgrow
M plane, color-coded by the value of S8. Right panel: points

from the posterior in the wgeom − wgrow plane, color-coded by S8.

ΛCDM split
No BAO/RSD No SN Ia No Weak Lensing No CMB

100 ωb 2.245+0.015
−0.014 2.248+0.015

−0.015 2.236+0.013
−0.015 2.484+0.140

−0.029
H0 71.2+1.5

−1.7 68.67+0.67
−0.72 68.02+0.66

−0.64 68.03+0.47
−1.30

ln 1010As 3.044+0.014
−0.015 3.041+0.014

−0.013 3.052+0.014
−0.015 3.27+0.22

−0.16
ns 0.9674+0.0043

−0.0042 0.9678+0.0039
−0.0045 0.9651+0.0048

−0.0036 0.989+0.099
−0.096

τreio 0.0546+0.0070
−0.0078 0.0536+0.0074

−0.0073 0.0571+0.0065
−0.0092 —

Ωgeom
M 0.275+0.014

−0.015 0.3004+0.0069
−0.0076 0.3090+0.0066

−0.0079 0.295+0.013
−0.014

Ωgrow
M 0.281+0.012

−0.012 0.3011+0.0056
−0.0060 0.3098+0.0056

−0.0064 0.279+0.012
−0.015

S8 0.789+0.013
−0.013 0.8077+0.0090

−0.0087 0.828+0.010
−0.010 0.780+0.017

−0.017
∆ΩM 0.0057+0.0035

−0.0031 0.0008+0.0022
−0.0021 0.0008+0.0020

−0.0020 −0.016+0.012
−0.016

wCDM split
No BAO/RSD No SN Ia No Weak Lensing No CMB

100 ωb 2.250+0.016
−0.015 2.251+0.014

−0.016 2.244+0.016
−0.014 2.456+0.170

−0.038
H0 78.1+3.5

−1.4 68.6+1.4
−1.6 67.96+0.77

−0.74 68.35+0.60
−1.70

ln 1010As 3.036+0.015
−0.015 3.038+0.015

−0.015 3.043+0.014
−0.015 3.03+0.32

−0.24
ns 0.9687+0.0042

−0.0043 0.9688+0.0042
−0.0045 0.9670+0.0045

−0.0043 1.01+0.10
−0.10

τreio 0.0520+0.0076
−0.0077 0.0528+0.0077

−0.0076 0.0541+0.0072
−0.0083 —

Ωgeom
M 0.203+0.012

−0.026 0.301+0.011
−0.011 0.301+0.011

−0.011 0.297+0.017
−0.018

Ωgrow
M 0.2330+0.0085

−0.0200 0.301+0.013
−0.013 0.3086+0.0072

−0.0070 0.287+0.014
−0.019

wgeom −0.804+0.058
−0.041 −1.004+0.096

−0.085 −1.014+0.043
−0.045 −1.004+0.073

−0.066
wgrow −1.69+0.48

−0.22 −1.043+0.087
−0.069 −1.25+0.14

−0.11 −1.36+0.40
−0.18

S8 0.934+0.045
−0.048 0.812+0.016

−0.017 0.858+0.018
−0.018 0.800+0.032

−0.028
∆ΩM 0.0305+0.0076

−0.0050 0.0004+0.0032
−0.0044 −0.0011+0.0026

−0.0030 −0.016+0.020
−0.024

∆w −0.88+0.50
−0.25 −0.039+0.120

−0.099 −0.23+0.14
−0.12 −0.35+0.40

−0.19

Table 6. The full parameter constraints (mean and 1σ uncertainties) for the joint analyses after
removing one particular probe. We show the same parameters as table 5.
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