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WEAK LENSING AS A CALIBRATOR OF THE CLUSTER MASS-TEMPERATURE RELATION
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ABSTRACT

The abundance of clusters at the present epoch and weak gravitational lensing shear both constrain roughly
the same combination of the power spectrum normalization and matter energy density . The cluster constraintj Q8 M

further depends on the normalization of the mass-temperature relation. Therefore, combining the weak-lensing
and cluster abundance data can be used to accurately calibrate the mass-temperature relation. We discuss this
approach and illustrate it using data from recent surveys.

Subject headings: cosmology: theory — large-scale structure of universe

1. INTRODUCTION

The number density of galaxy clusters as a function of their
mass, the mass function, and its evolution can provide a pow-
erful probe of models of large-scale structure. Historically, the
most important constraint coming from the present-day abun-
dance of rich clusters has been the normalization of thelinear
theory power spectrum of mass density perturbations (e.g., Ev-
rard 1989; Frenk et al. 1990; Bond & Myers 1991; Henry &
Arnaud 1991; Lilje 1992; Oukbir & Blanchard 1992; Bahcall
& Cen 1993; White, Efstathiou, & Frenk 1993; Viana & Liddle
1996, 1999; Henry 2000). The normalization is typically quoted
in terms of , the rms density contrast on scales of 8h�1 Mpc,j8

with the abundance constraint forcing models to a thin region
in the - plane.Q jM 8

Since the mass, suitably defined, of a cluster is not directly
observable, one typically measures the abundance of clusters as
a function of some other parameter that is used as a proxy for
mass. Several options exist, but much attention has been focused
recently on the X-ray temperature. CosmologicalN-body sim-
ulations and observations suggest that X-ray temperature and
mass are strongly correlated with little scatter (Evrard, Metzler,
& Navarro 1996; Bryan & Norman 1998; Eke, Navarro, & Frenk
1998; Horner, Mushotsky, & Scharf 1999; Nevalainen, Markev-
itch, & Forman 2000). How well simulations agree with obser-
vational results is far from clear, and several issues need to be
resolved. On the simulation side there are the usual issues of
numerical resolution and difficulties with including all of the
relevant physics. On the observational side, instrumental effects
can be important (especially for the older generation of X-ray
facilities) in addition to the worrying lack of a method for es-
timating “the mass.” In this respect it is worth noting that there
are numerous differing definitions of whichM andT are to be
related in theM-T relation (White 2001)!

With current samples, thedominant uncertainty in the nor-
malization in fact comes from the normalization of theM-T
relation (Eke, Cole, & Frenk 1996; Viana & Liddle 1996; Don-
ahue & Voit 1999; Henry 2000; Pierpaoli, Scott, & White 2001;
Seljak 2002). Or phrased another way, the cluster abundance
is a sensitive probe of the normalization of theM-T relation.

The abundance of clusters is, of course, not the only way
to constrain the cosmological parameters. In this regard it is
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interesting to note that weak gravitational lensing provides a
constraint on a very similar combination of and . There-Q jM 8

fore, the two constraints can be combined to check for con-
sistency of our cosmological model, to provide a normalization
for the M-T relation, to probe systematics in either method,
and/or to measure other parameters not as yet included in the
standard treatments.

While the cluster constraint comes primarily from scales of
about h�1 Mpc, current weak-lensing surveys constrainR p 10
somewhat smaller scales. These surveys probe scales between
roughly 1� and 10�, which for source galaxies located atz �

in a L cold dark matter (LCDM) cosmology corresponds to1
. Therefore, weak lensing probes�1 �10.7 h Mpc ! R ! 7 h Mpc

slightly smaller scales than clusters. As lensing surveys push
to larger scales, the overlap will become even better.

In this Letter we argue that a natural application of com-
bining the cluster abundance and weak-lensing constraints is
to calibrate theM-T relation for galaxy clusters (see also Hu
& Kravtsov 2002). In § 2 wedefine theM-T relation and derive
how cluster abundance constraints depend on and . InQ jM 8

§ 3 we illustrate how combining the two constraints can fix
the normalization of theM-T relation using two recently ob-
tained data sets. Finally, in § 4 we discuss this approach further.

2. THE MASS-TEMPERATURE RELATION

Throughout, we are interested in the abundance of massive
clusters at low redshifts, so we parameterize theM-T relation
as

3/2 �3/2M(T, z) T Q (z)L2 �1/2p (D E ) 1 � 2 , (1)c( ) [ ]M T D15 ∗ c

where , is the mean overdensity inside15 �1M p 10 h M D15 , c

the virial radius in units of the critical density, which we com-
pute using the spherical top-hat collapse model, and2E p

. is the normalization coeffi-3 2Q (1 � z) � Q � Q (1 � z) TM L k ∗
cient that we seek to constrain; it roughly corresponds to the
temperature of an cluster. If measured13 �1M p 7.5# 10 h M,

in units of keV, the value of is precisely equivalent tobT∗
from Pierpaoli et al. (2001) and is of Bryan & Norman1.34fT

(1998).
Let us explore the sensitivity of cluster abundance onQM

and . The Press-Schechter formula gives the number of col-j8

lapsed objectsdn per mass interval (Press & Schechterd ln M
1974); we define . Further definingN(M, z) p dn/ (d ln M)

, where is the rms density fluctuationn { d /j(M, z) j(M, z)c
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on a mass scaleM evaluated at redshiftz using linear theory
and is the linear threshold overdensity for collapse,d ≈ 1.686c

we have

22 r d ln j(M, z) nMN(M, z) p n exp � , (2)� ( )p M d ln n 2

where is the present-day matter density. Assuming we arerM

dealing with the current cluster abundance, . Followingz � 0
Pen (1998), for the mass scales of interest we can approximate

, where for the currently popularLCDM�aj(M) ∝ M a � 0.27
cosmology.

Let us examine the dependence ofN on , , andM. IgnoringQ jM 8

the term (which slowly varies), one obtainsd ln j/ (d ln n)

dN dQ dj dMM 82 2 2p (1 � a � n a) � (n � 1) � (1 � a � n a).
N Q j MM 8

(3)

Setting the left-hand side to zero and using the fact that
, for our fiducial cosmology and mas-dM/M p � (3/2)dT /T∗ ∗

sive clusters ( , or ) we have315 �1M ∼ 10 h M n � 2,

0.6 �1.1T ∝ (j Q ) . (4)∗ 8 M

Therefore, measurements of the cluster abundance at the present
epoch constrain a degenerate combination of and . One0.6T j Q∗ 8 M

of them cannot be determined without knowing the other. Thank-
fully, weak lensing happens to measure roughly this combination
of and accurately, and the orthogonal combination muchQ jM 8

less accurately (e.g., Bernardeau, van Waerbeke, & Mellier
1997). Consequently, weak lensing in conjunction with cluster
abundance can be used to constrain quite strongly.T∗

3. WEAK LENSING PLUS CLUSTERS: AN EXAMPLE

As a more concrete example of these ideas, let us examine
what value of is required to bring current cluster and weakT∗
lensing results into agreement. This analysis is necessarily il-
lustrative but is already quite enlightening.

3.1. The Cluster Data

We compute using a Monte Carlo method following thej8

steps outlined in Pierpaoli et al. (2001). Since some of the
details have changed, we sketch the procedure here.

We use HIFLUGCS of Reiprich & Bo¨hringer (1999), restricted
to clusters with . For simplicity we do not include0.03! z ! 0.10
“additional” clusters of lower flux/temperature, which could scat-
ter into the sample. The cosmic microwave background (CMB)
frame redshifts from Struble & Rood (1999) were used when
available and so were the two-component temperatures published
in Ikebe et al. (2002). For each , we sample from a distributionQm

of cosmological parameters includingh, n, and (the normal-T∗
ization of theM-T relation). For each such realization we generate
50 mass functions, where the temperature is chosen from a Gaus-
sian with the mean and variance appropriate to the observational
value and errors and a scatter of 15% in mass at fixedT is
assumed for theM-T relation. Using the mean values of the

3 Note that the dependence ofM (or ) on is stronger for more massiveT j∗ 8

clusters; a more detailed analysis gives for the most massive clusters�5/3T ∝ j∗
(Evrard et al. 2002).

M-T relation and theL-T relation from Ikebe et al. (2002),

kT35 2.5 �2L p 1.38# 10 h W, (5)X ( )1 keV

we compute the volume to which clusters of massM could be
seen above the flux limit of�14 �1 �2f p 1.99# 10 ergs s cmlim

the survey. For each realization of the mass function we compute
the best-fitting by maximizing the Poisson likelihood of ob-j8

taining that set of masses from the theory with all parameters
except fixed. The mass function can be computed using thej8

Press-Schechter (1974), Sheth-Tormen (1999), or Jenkins et al.
(2001) formulae. We have used the Sheth-Tormen prescription
throughout, with the mass variance computed using the2j (M)
transfer function fits of Eisenstein & Hu (1999) and masses
converted from to assuming a Navarro, Frenk, &M M180Q Dc

White (1997) profile with . The best-fitting is correctedc p 5 j8

from to . The mean of the 50 normalizations isz̄ z p 0 z p 0
then taken as the fit for that set of cosmological parameters (since
the error from Poisson sampling is completely subdominant to
the error in theM-T normalization we do not keep track of it
here). When quoting a best fit for a given triplet of ( , , ),Q j Tm 8 ∗
we marginalize (average) over the other cosmological parameters
h andn.

3.2. The Weak-lensing Data

As an example of weak-lensing measurements, we use shear
measurements obtained using Keck and William Herschel tele-
scopes (Bacon et al. 2002). These joint measurements used two
independent telescopes covering 0.6 and 1 deg2, respectively,
and enabled careful assessment of instrument-specific syste-
matics. The authors compute the shear correlation function and
compare with the theoretical prediction. Assuming the shape
parameter , the results are well fitted byG p 0.21

QM0.68j p 0.97� 0.13, (6)8 ( )0.3

which captures the total 68% CL error: statistical and redshift
uncertainty and uncertainty in the ellipticity-shear conversion
factor. These results are consistent with other recent measure-
ments of cosmic shear (van Waerbeke et al. 2002; Refregier,
Rhodes, & Groth 2002; Hoekstra, Yee, & Gladders 2002).

3.3. Calibrating the M-T Relation

Figure 1 shows the constraints in the - plane. The clusterQ jM 8

constraint has been marginalized overh and n as explained
above and plotted for three different values of . We haveT∗
checked that the allowed ranges forh andn are wide enough
so that essentially all of the likelihood is contained within those
ranges. The weak-lensing constraints assume the shape param-
eter . Note that the constraint regions from the twoG p 0.21
methods are indeed parallel, with very similar degeneracy di-
rections. This enables an accurate determination of the nor-
malization .T∗

In the example above, we see that a relatively low is pre-T∗
ferred ( keV) in order for cluster results to agree withT � 1.7∗
the weak-lensing results. While systematics in both methods
could still be important, it is interesting to note that this result
is in line with most earlier estimates (Evrard et al. 1996; Eke et
al. 1998; Bryan & Norman 1998; Yoshikawa, Jing, & Suto 2000),
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Fig. 1.—The 68% CL uncertainty contours in the - plane, for a weak-Q jM 8

lensing survey (Bacon et al. 2002) and 95% CL uncertainties for a cluster
survey (Reiprich & Bo¨hringer 1999). Cluster results are shown for three dif-
ferent values of the mass-temperature normalization parameter and areT∗
marginalized overn andh. The degeneracy regions for the two methods are
very similar, which in principle enables an accurate determination of .T∗

Fig. 2.—Estimates of theM-T normalization collected from the literature.T∗
The three points on the right are estimates from simulations, while the seven
points on the left are from the observations. Points with no error bars had
none quoted. Shaded region is roughly our favored range of values of .T∗

while it disagrees with values adopted more recently (e.g., Seljak
2002).

The fact that cluster abundance and weak lensing probe dif-
ferent scales opens a possibility that one might be able to secure
the agreement between the two methods by varying the shape
of the power spectrum or the spectral indexn rather than the
M-T normalization. Unfortunately, the constraints we have
combined above have individually been marginalized overh
andn. Ideally, one would combine the cluster and weak-lensing
likelihood functions and then marginalize over the relevant
parameters to get the probability distribution of :T∗

P(T ) p L (T , Q , j , n, h)∗ � clus ∗ M 8

# L (Q , j , n, h) dQ dj dn dh. (7)WL M 8 M 8

Then the results would be manifestly independent of the power
spectrum parameters. We do not have the ability to perform
such an analysis here.

Note, however, that the scales probed by lensing and clusters
are quite close, separated by an order of magnitude at most.
For example, it would require a spectral tilt of to maken ∼ 1.2
the recently obtained “low” normalization from cluster abun-
dance ( ) agree with the “high” normalization from weakj ∼ 0.68

lensing ( ), and such a high value ofn is already dis-j ∼ 0.98

favored by recent CMB experiments (Balbi et al. 2000; Net-
terfield et al. 2002; Pryke et al. 2002; Sievers et al. 2002).

4. CONCLUSIONS

There has been a lot of discussion recently regarding the
value of cluster normalization . While the “old” results favorj8

(Viana & Liddle 1999; Pierpaoli et al. 2001 and ref-j ∼ 18

erences therein), several new cluster abundance analyses favor
a significantly lower normalization (Reiprich & Bo¨hringer
1999; Borgani et al. 2001; Viana, Nichol, & Liddle 2002; Seljak
2002; Ikebe et al. 2002; Bahcall et al. 2002). The lower nor-
malization is also favored by the combined analysis of Two-
Degree Field Galaxy Redshift Survey and CMB data (Lahav
et al. 2002). On the other hand, recent weak-lensing results

(van Waerbeke et al. 2002; Bacon et al. 2002; Refregier et al.
2002; Hoekstra et al. 2002) tend to favor a higher value of

. The cause is of this discrepancy between various measure-j8

ments has not been identified yet; one candidate is larger than
anticipated systematic errors in one or both methods. Another
possibility is the bias in the relation between the mass and the
observable quantity—temperature or luminosity—used to con-
struct the abundance of clusters.

The cluster abundance constraint on crucially depends onj8

theM-T normalization . Figure 2 summarizes the current statusT∗
of our knowledge of . It shows seven determinations fromT∗
N-body simulations and three from direct observations, as com-
piled in Pierpaoli et al. (2001) and Muanwong et al. (2002). The
shaded region is roughly our favored range of values of . PointsT∗
without error bars had none quoted, and the three observed values
of assumed the isothermalb model. The measurement due toT∗
Muanwong et al. corresponds to their “radiative” and “preheat-
ing” cases that are cooling-flow corrected, while the value due
to Pierpaoli, Scott, & White is an average over the simulations.
The large discrepancy between the different measurements is
apparent, and it also appears that the observed values are sys-
tematically higher than the ones obtained from simulations (see
Muanwong et al. 2002 for further discussion).

We argue here that the cluster abundance–weak lensing com-
plementarity can be used to cross check theM-T relation. By
combining recent weak-lensing constraints from Bacon et al. and
HIFLUGCS of Reiprich & Böhringer, we have demonstrated the
utility of this method. While potential systematic errors in both
data sets are still a concern, the example we use prefers relatively
low values of theM-T normalization ( keV). We con-T � 1.7∗
clude that future weak-lensing surveys (the Visible and Infrared
Survey Telescope for Astronomy, the Large-aperture Synoptic
Survey Telescope, and theSupernova/Accleration Probe) com-
bined with new cluster data fromChandra and XMM-Newton
observations will provide a strong probe of theM-T relation.
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