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ABSTRACT
Future large-scale structure surveys will measure the locations and shapes of billions of galaxies. The precision of such catalogues
will require meticulous treatment of systematic contamination of the observed fields. We compare several existing methods for
removing such systematics from galaxy clustering measurements. We show how all the methods, including the popular pseudo-
C� Mode Projection and Template Subtraction methods, can be interpreted under a common regression framework and use this
to suggest improved estimators. We show how methods designed to mitigate systematics in the power spectrum can be used to
produce clean maps, which are necessary for cosmological analyses beyond the power spectrum, and we extend current methods
to treat the next-order multiplicative contamination in observed maps and power spectra, which reduced power spectrum errors
from �χ2

C�
� 10 to � 1 in simulated analyses. Two new mitigation methods are proposed, which incorporate desirable features

of current state-of-the-art methods while being simpler to implement. Investigating the performance of all the methods on a
common set of simulated measurements from Year 5 of the Dark Energy Survey, we test their robustness to various analysis
cases. Our proposed methods produce improved maps and power spectra when compared to current methods, while requiring
almost no user tuning. We end with recommendations for systematics mitigation in future surveys, and note that the methods
presented are generally applicable beyond the galaxy distribution to any field with spatial systematics.

Key words: methods: data analysis – methods: statistical – surveys – cosmology: observations – large-scale structure of Uni-
verse.

1 IN T RO D U C T I O N

Over the past 40 yr, cosmological surveys have produced increasingly
detailed maps of the large-scale structure (LSS) in the Universe (de
Lapparent, Geller & Huchra 1986; Lumsden et al. 1992; York et al.
2000; Colless et al. 2001; Drinkwater et al. 2010; Dawson et al. 2013;
de Jong et al. 2015; Abbott et al. 2018; Aihara et al. 2018). These
observations have proven crucial for testing our understanding of
gravity and cosmological structure formation, and helped to constrain
cosmological parameters to the percent level (e.g. Anderson et al.
2014; Alam et al. 2017; Abbott et al. 2018). Recent observations
from DES have for the first time imposed strong constraints on dark
energy using an LSS survey alone, independently of the cosmic
microwave background (Abbott et al. 2019). Upcoming ground-
based missions like DESI (DESI Collaboration et al. 2016), and the
Rubin Observatory’s LSST (Collaboration 2012), along with space-
based missions like SPHEREx (Doré et al. 2014), Euclid (Amendola
et al. 2018), and RST (formerly WFIRST) (Spergel et al. 2013) will
truly herald the age of precision cosmology, mapping up to ∼20
billion galaxies across the sky and bringing unprecedented precision
to measurements of the dark energy equation of state and modified
gravity. Such statistical precision makes the control of systematic
errors in these data sets of paramount importance to avoid biasing
cosmological analyses.

� E-mail: nweaverd@umich.edu

Cosmological information is extracted from LSS observations
in multiple ways. The most common approach is to calculate the
two-point correlation function or its Fourier counterpart, the power
spectrum, to characterize the spatial distribution of galaxies (galaxy
clustering) or their shapes (weak lensing). To date, these have been
used in cosmological analyses to great success (Hauser & Peebles
1973; Peebles & Hauser 1974; Davis & Peebles 1983; Peacock
& Nicholson 1991; Saunders, Rowan-Robinson & Lawrence 1992;
Baugh & Efstathiou 1993; Fisher et al. 1993a, b; Feldman, Kaiser &
Peacock 1994; Baugh 1996; Dodelson & Gaztañaga 2000; Eisenstein
& Zaldarriaga 2001; Huterer, Knox & Nichol 2001; Miller & Batuski
2001; Peacock et al. 2001; Percival et al. 2001; Connolly et al. 2002;
Dodelson et al. 2002; Tegmark et al. 2004; Blake 2019)

The two-point function contains all available information when the
field it characterizes is Gaussian, but non-linear gravitational collapse
induces non-Gaussianity at late times and small scales. Therefore
there is considerable cosmological information that is inaccessible
to the two-point function. This has led to growing interest in using
complementary statistical representations of LSS observations, such
as higher order N-point functions (Peebles & Grot(Peebles & Groth
1975; Cooray & Hu 2001; Feldman et al. 2001; Feldman et al.
2001; Scoccimarro et al. 2001; Scoccimarro et al. 2001; Verde et al.
2002; Sefusatti et al. 2006; Marı́n et al. 2013; Gil-Marı́n et al. 2015;
Slepian & Eisenstein 2015; Slepian et al. 2015) et al. 2015; Slepian &
Eisenstein 2015; Slepian et al. 2015), statistics of peaks (Jain & Van
Waerbeke 2000; Marian et al. 2011; Liu et al. 2015) and voids (White
(White 1979; Fry 1986; Biswas, Alizadeh & Wandelt 2010; Bos et al.
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5062 N. Weaverdyck and D. Huterer

2012; Leclercq et al. 2015; Nadathur & Hotchkiss 2015; Pisani et al.
2015), density-split statistics (Friedrich et al. 2018), marked power
spectra (Sheth (Sheth 2005; White & Padmanabhan 2009; White
2016; Philcox, Massara & Spergel 2020), Minkowski functionals
(Gott, Weinberg & Me(Gott, Weinberg & Melott 1987; Hikage,
Komatsu & Matsubara 2006; Kratochvil et al. 2012; Munshi et al.
2012; Petri et al. 2015; Mawdsley et al. 2020), wavelet transforms
(Allys et al. 2020; Cheng et al. 2020) and more. These methods
rely on the accurate mapping of the underlying cosmological fields
from which they are derived, so there is increasing need for tools to
mitigate systematic contamination at the levels of both the map and
the two-point functions.

Here, we consider a very general class of systematics that describes
an arbitrary spatial modulation of the observed field. Such generic
sources of error are one of the most serious contaminants in our quest
to probe cosmology with future surveys. For definiteness, we focus on
the case of galaxy clustering, where the systematic error corresponds
to a modulation of the galaxy selection function in redshift or across
the observing footprint. However, the methods we test and develop
in this paper are general enough to apply to any real or complex field
for which there exist maps of potential contaminants (e.g. shear or
Sunyaev-Zeldovich-effect fields).

Spatially varying systematics in LSS maps may be caused by a
large variety of physical effects. These include observing conditions
and dust extinction (both of which effectively create a position-
dependent ’screen,’ obscuring background galaxies), bright objects
and star–galaxy separation (which can eclipse, change the shape,
or be confused for galaxies close to them on the sky), and varia-
tions in sensitivity of the detector (which include potentially time-
and position-dependent variations in the focal plane), or imaging
pipeline. In all of these cases, failure to fully account for variability
in the selection function will result in residual artifacts – calibration
errors – in the final data product and potentially bias results (Huterer,
Cunha & Fang 2013; Shafer & Huterer 2015; Weaverdyck, Muir
& Huterer 2018). The presence of calibration errors is evidenced
by a number of surveys (Vogeley 1998; Scranton et al. 2002; Goto,
Szapudi & Granett 2012; Ho et al. 2012, 2013; Pullen & Hirata 2013;
Giannantonio et al. 2014; Agarwal, Ho & Shandera 2014a; Agarwal
et al. 2014b) which have shown a significant excess of power at
large scales where calibration errors are thought to be most prevalent.
Recent observations (e.g. from the Dark Energy Survey Leistedt et al.
2016) demonstrate, however, that such contamination is by no means
limited to large scales alone. In addition to adding power, calibration
errors induce a multiplicative effect, coupling different scales and
thus affecting all scales in the survey, including those smaller than
the typical size of the calibration systematic itself (Huterer et al.
2013; Shafer & Huterer 2015). Much recent work (Ross et al. 2011;
Ho et al. 2012; Leistedt et al. 2013; Pullen & Hirata 2013; Leistedt
& Peiris 2014; Agarwal et al. 2014b; Morrison & Hildebrandt 2015;
Rykoff, Rozo & Keisler 2015; Awan et al. 2016; Delubac et al. 2016;
Kalus et al. 2016; Prakash et al. 2016; Suchyta et al. 2016; Bautista
et al. 2018; Awan & Gawiser 2019; Kalus et al. 2019; Kitanidis et al.
2020; Kong et al. 2020; Rezaie et al. 2020; Ross et al. 2020; Wagoner,
Rozo & Fang 2020) has focused on mitigating these systematics in
order to probe the underlying cosmology.

The simplest strategy to ameliorate the effects of calibration errors
is to simply mask scales or data points suspected having large
levels of contamination. More sophisticated strategies include using
maps of suspected contaminants – so-called ‘templates’ – to correct
the observations. An alternative and complementary approach is
to forward-model many possible realizations of the cosmic initial
conditions (e.g. Jasche & Kitaura 2010; Jasche & Wandelt 2013;

Kitaura 2013; Wang et al. 2014; Jasche, Leclercq & Wandelt 2015;
Wang et al. 2016; Modi et al. 2019; Porqueres et al. 2019). One then
evolves these initial conditions in time (while adding realizations of
non-linearities, bias, and observational/instrument systematics), and
performs joint inference of cosmology, the initial conditions and late-
time ’true’ fields, given observations. Another forward-modelling
approach involves the injection of false images into observations in
order to sample the selection function (Suchyta et al. 2016; Kong
et al. 2020). While such forward approaches are powerful and very
general, they also require extensive computational resources and
are complicated to implement. In contrast, using templates to clean
contaminated observations and directly infer the underlying fields
is straightforward to implement and can be readily incorporated
into ongoing or completed analyses. They have been the dominant
approach in the community thus far, and so these are the methods we
focus on here.

In this paper, we revisit and extend state-of-the-art LSS
systematics-cleaning strategies. We interpret them through a re-
gression framework to highlight commonalities and differences of
the methods, as well as some tacit assumptions. In doing so, we
show that the common pseudo-C� Mode Projection (MP) method is
equivalent to linear regression. We use this framework to propose
straightforward extensions that leverage the extensive body of litera-
ture and tools that have been developed for regression analyses. We
rigorously test the performance of several existing methods, plus new
ones that we propose, on a common set of simulated observations
from current and future surveys.

We study performance using an ensemble of simulated galaxy
overdensity maps, such that we can assess both the accuracy and
precision of each method. We provide a library of templates and
a contaminated overdensity map as input to each cleaning method,
which then produces an estimate of the true overdensity map and
power spectrum that we assess for accuracy. We repeat the process
over a large number of sky realizations and for various configurations
of templates to asses the precision and robustness of each method. A
schematic outline of this process is shown in Fig. 1.

The paper is organized as follows. In Section 2, we describe in
detail our general model for contamination, which encompasses
a wide range of systematics due to foregrounds or instrument
calibration errors. In Section 3, we describe several existing methods
for systematics mitigation; in Section 4, we reinterpret the methods
through a common framework to facilitate comparison, and in
Section 5 we use this to map several aspects on to well-known
techniques in statistics and propose two new mitigation methods.
In Section 6, we describe the fiducial synthetic surveys on which we
test the efficacy of the methods that we study. Section 7 shows the
results of these performance comparisons, while Section 9 has our
conclusions. Several appendices show important but more technical
and detailed aspects of the investigation.

2 C O N TA M I NAT I O N MO D E L

We first introduce the model for contamination of the observed
LSS fields. It is very general, encompassing most known sources
of real-world contamination. We can model the observed number
density map as a combination of the true galaxy number density map
(Ntrue(n̂)) modulated by a direction-dependent screen (1 + fsys(n̂)),
plus an additive contamination term Nadd(n̂):

Nobs(n̂) = (1 + fsys(n̂))Ntrue(n̂) + Nadd(n̂). (1)

We will primarily address multiplicative contamination as this
characterizes most known LSS contaminants; one exception is a
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Mitigating contamination in LSS surveys 5063

Figure 1. Analysis procedure for a single map. A set of templates is generated (dashed box) along with a true overdensity map δtrue. A subset of the templates
(orange box) contaminates the true overdensity map to generate the observed overdensity field δobs. We generate an estimated signal map δ̂ using one of the
cleaning methods, and compare it to the truth, either at a map-level or power spectrum level. This is repeated for many realizations of the signal map and the
performance of each cleaning method is assessed.

contaminating population of objects such as stars, which we discuss
briefly in Section 4.2. Therefore, we take Nadd(n̂) → 0 for simplicity
and focus on the first term fsys(n̂), which fully characterizes the sys-
tematic modulation of the true field such that pixels with fsys(n̂) = 0
are free of contamination. Using N = N̄ (1 + δ) and defining the
ratio of true to observed mean number density as γ = N̄true/N̄obs, the
observed overdensity can be written as

δobs(n̂) = γ (δ(n̂) + 1)(fsys(n̂) + 1) − 1. (2)

Here, γ enforces the constraint that 〈δobs〉pix = 0 across the survey
footprint, even though this is not necessarily true for the true
overdensity field δ. This is due to the fact that we can only access
the observed mean number density N̄obs, which differs from the
true mean both because of systematic contamination and because of
sample variance from a limited survey footprint (see Section 4.2 for
details).

This model for contamination is similar to the one used in
(Huterer et al. 2013; Shafer & Huterer 2015; Muir & Huterer 2016;
Weaverdyck et al. 2018) to assess the impacts of residual calibration
errors that remain in the data after cleaning. Here we focus on the
methods used to perform such cleaning, and so use the screen model
to describe contamination more generally.

We extend the screening formalism by considering that the total
systematic modulation is comprised of Nsys individual systematics,
each of which acts as its own screen. Thus, we have

1 + fsys = ∏Nsys
i=1 (1 + fi)

� 1 + ∑Nsys
i=1 fi + ∑Nsys

j �=k fjfk + [higher order terms], (3)

where we have suppressed n̂ in the notation for convenience both
here and in what follows. Note that even if a systematic individually
contributes to fsys linearly, there exist interaction terms with other

systematics up to order Nsys. Here, and in general, fi ≡ fi(n̂) is a
column vector with each element corresponding to a pixel, unless
otherwise noted.

3 BAC K G RO U N D : EX I S T I N G MI T I G AT I O N
M E T H O D S

The principal goal of this paper is to compare various proposed
systematics mitigation methods. The methods that we test are all
designed to use maps that trace potential contamination in order
to mitigate the impact of systematics, i.e. they assume that the
systematic fi(n̂) is a function of some tracer ti(n̂). We refer to
these tracer maps as templates, and examples include maps of stellar
density, extinction, or summary statistics of observing conditions
(e.g. mean g-band seeing) in each region of the sky throughout
the duration of the survey (see Leistedt et al. 2016 for a detailed
description of the process for creating templates from multiepoch
observational data for the Dark Energy Survey). Sources of error for
which we have no templates (e.g. shot noise) are implicitly subsumed
into the overdensity field.

We will investigate how effectiveness depends on analysis choices
and suggest improvements where possible. We start with three
principal methods that have been applied in the literature: the
Dark Energy Survey Year 1 method (henceforth DES-Y1), the
Template Subtraction (TS) method, and the MP method. While at
face value the algorithms associated with these methods seem quite
different, we demonstrate that they can be translated into a common
mathematical framework of linear regression. Doing so allows us to
distill commonalities and differences between the methods, as well
to identify simplifications and extensions to them. We include three
additional methods based on these insights.
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5064 N. Weaverdyck and D. Huterer

Figure 2. Illustration of the DES-Y1 cleaning method, showing the total ob-
served pixel overdensity (δobs) as a function of a template’s pixel overdensity,
in 10 evenly spaced bins. Given the estimated covariance matrix (diagonals
shown by blue error bars), the best-fit trend (blue line) can be calculated
and used to reweight the observed map, producing a corrected map whose
dependence on the template is removed (orange points, with corresponding
standard errors on the pixel means). The process is then iterated for other
templates until a satisfactory threshold is reached; see the text for details.

For all the methods, we will work with maps that are divided into
pixels in HEALPix1 (Gorski et al. 2005) format, which summarize
the mean galaxy overdensity or template values within each pixel (see
Section 6 for details). Furthermore, while we work in the context of
cleaning galaxy overdensity fields, the methods are applicable more
generally to corrections of any field for which we have templates
of potential contamination, and so we denote the true signal more
generally as s and the observed field as dobs. In our application, these
correspond to the true and observed galaxy overdensity fields, δtrue

and δobs. In the sections that follow, we use x̂ to denote an estimate
of x, and C̃xx

� to indicate a realization-specific measurement of the
power spectrum, as compared to its theoretical mean Cxx

� .

3.1 Dark energy Survey Y1 method

The method used to derive galaxy weights for the Year-1 DES release
is one of the more sophisticated mitigation methods applied to date.
It is described in detail in Elvin-Poole et al. (2018), but we review its
main features here. Hereafter referred to as ‘DES-Y1,’ it builds on
the method first proposed as the ‘Weights’ method in Ross et al.
(2011), wherein one-dimensional relationships between observed
galaxy densities and systematic templates (there called ‘survey
property maps’) are removed by iteratively applying multiplicative
factors (‘weights’) to galaxies. Fig. 2 shows one example of how the
observed overdensity varies with a template. Multiplicative weights
are applied to galaxies to de-trend the data, shifting the blue line to lie
atop the dashed line. This method is explicitly a regression method,
with versions employing linear fits (Ross et al. (Laurent et al. 2017;
Ross et al. 2017; Ata et al. 2018), splines (Hernández-Monteagudo
et al. 2014) or higher order polynomials (Nicola, Refregier & Amara
2016) as fitting functions for the 1D relationships.

Here, we describe the version we adopt, which closely follows
the implementation in Elvin-Poole et al. (2018) used on the DES-Y1
data. For each template ti, we group pixels into 10 evenly spaced

1http://healpix.sourceforge.net

bins based on their template values, and independent of location
on the sky (e.g. all pixels with a mean i-band seeing value within
10 per cent of the max would be grouped). We then find the mean
galaxy overdensity over the pixels in each bin.2 A 10 × 10 covariance
matrix of these bin means is estimated by performing the same
bin-averaging process on a set of 400 uncontaminated mock maps,
generated with a fiducial power spectrum for the overdensity field
(we assume the true overdensity power spectrum to generate these
mocks).

Next, we use scipy.optimize and the estimated covariance
to find the parameters {mi, bi} of the best-fitting line3 of the binned
overdensity to each binned template i:

〈Nobs〉j
N̄obs

= mi〈ti〉j + bi (4)

where 〈 · 〉j indicates the average pixel value in bin j of the given
template. See Fig. 2 (blue points and trend) for an illustration.

The template with the most significant fit is used to reweight the
number density in each pixel as N ′

obs(n̂) = Nobs(n̂)/(m̂i t(n̂) + b̂i),
where the significance metric is defined below. Having removed the
effect of the dominant systematic, the whole process is repeated:
for each template, the pixels are assigned to bins and averaged, the
new best-fitting parameters are computed from equation (4), and
the trend from the most significant template is removed from the
data. The process stops when all templates are below a predefined
significance threshold.

In general, the more contamination from template i, the stronger
relationship the relationship with the observed galaxy density.
However, some level of correlation is expected just by chance, and
this depends on the spatial clustering of each template. The DES-
Y1 method addresses this in two ways: (1) by using a different
covariance matrix for the observed overdensity for each template as
described above, and (2) by having a template-specific significance
threshold, calibrated on mocks. Specifically, the significance statistic
used is �χ2

i /[�χ2
i ]68, where �χ2

i is the improvement in χ2 for the
binned fit on template i, compared to a null hypothesis of mi = bi

= 0. It is normalized to the 68th percentile of the same quantity
measured on uncontaminated signal mocks ([�χ2

i ]68). We use the
stopping criterion �χ2

i /[�χ2
i ]68 < �χ2

threshold = 2, but find that our
results change little when changing this threshold between 1 and 4
(see Appendix F).

There are a number of required parameter choices in the DES-
Y1-type method. These include the criterion for selecting the most
significant template,4 the significance threshold that determines when
to stop weighting, the prior power spectrum for generating mocks,
and choices associated with binning (e.g. number of bins, equally
spaced versus equally filled, etc.). Here, we use the fiducial choices
from Elvin-Poole et al. (2018), and investigate some of the effects of
these choices in Appendix F.

2In Elvin-Poole et al. (2018), extreme regions are removed by eye: each
template is inspected and bins that exhibit an average fluctuation in number
density of > 20 per cent are masked, as are regions where visual inspection
suggests a deviation from non-monotonic behaviour (see their fig. 3). We
neglect this step, as it is difficult to automate robustly and in our tests we
found that it did not alter our results.
3Elvin-Poole et al. (2018) also use linear fits for almost all templates, with
only a couple exceptions. As noted in Section 4.2, even if a template is
thought to contaminate non-linearly, the relationship can usually be made
linear through an appropriate transformation of the template.
4E.g. one could consider an R2 statistic, the commonly used F-statistic,
Akaike or Bayesian information criteria, etc.
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3.2 Template subtraction

The TS method uses the cross-power of templates with the observed
sky to estimate contamination of each template at each angular scale.
Contamination is subtracted directly from the two-point clustering
statistics. The method was proposed in Ho et al. (2012) and Ross
et al. (2011) where it was called the ‘cross-correlation’ technique,
and we review it here.

TS assumes the observed overdensity dobs is a linear combination
of the true galaxy overdensity s and individual template overdensities
ti:

dobs = s +
Ntpl∑
i=1

αiti . (5)

Any systematics or noise not accounted for by templates are sub-
sumed into the signal s. In Ho et al. (2012), dobs and ti are taken to
be in multipole space, such that 〈ss〉 → 〈s�ms�m〉 = Css

� (where 〈 · 〉
is the ensemble average over many sky realizations), and α → α� is
a function of �. The companion paper of Ross et al. (2011) works in
configuration space, so in their version of TS the data vectors are in
pixel-space (they also take some additional steps; see footnote 7).

We will work in harmonic space and so follow Ho et al. (2012), but
we will keep the notation general until dealing with the two-point
functions where we will explicitly work with power spectra. The
treatment for configuration space is largely identical. To apply the
method, one would simply substitute the correlation function for the
power spectrum C

ij

� → wij (θ ) and α� → α(θ ). See e.g. Crocce et al.
(2016) for an application of TS to the correlation function.

If we consider just a single contaminant for simplicity (Ntpl = 1),
and assume that it is uncorrelated with the underlying galaxy field,
then from equation (5) the two-point function of the observed field
is

〈dobsdobs〉 = 〈ss〉 + α2〈t t〉. (6)

Then, on average,

〈tdobs〉/〈t t〉 = Ctd
� /Ctt

� = α� (7)

and the contamination at each multipole can be estimated as

α̂� = C̃�
td

/Ctt
� , (8)

where the tilde in C̃� indicates the power spectrum that is measured
from the observed sky realization, and C̃tt

� = Ctt
� since we take

templates to be fixed.
An estimate of the power spectrum can then be found to be

Ĉss
� = (

C̃dd
� − α̂2

�C
tt
�

)(
1 − 1

2� + 1

)−1

. (9)

Here, [1 − 1/(2� + 1)]−1 = [(2� + 1)/(2�)] is a factor found by Elsner,
Leistedt & Peiris (2016) that is needed to debias the estimator.5

The bias arises because the process is too aggressive – any chance
correlation between template and the true signal is also removed,
resulting in an underestimate of the true clustering power.

The TS method is easily generalized to multiple templates by
extending the dimensionality of terms as

α� (scalar) → α� (Ntpl)

Ctt
� (scalar) → CT T

� (Ntpl × Ntpl)

5In the case of the correlation function, the bias cannot be written in a
signal-independent fashion, and so requires a prior signal power spectrum or
simulations to estimate.

and equations (8) and (9) become

α̂� = [C̃
T T

� ]−1[C̃
T d

� ], (10)

Ĉss
� = (

C̃dd
� − α̂†CTT

� α̂
)( 2� + 1

2� + 1 − Ntpl

)
. (11)

For the cut-sky equations, we refer the reader to Elsner et al. (2016).
While previous work on TS has focused on the cleaned power

spectrum, an estimate of cleaned overdensity field itself is also of
interest for cosmological study, as it contains more information than
just its power spectrum.

A map estimate from the TS method can be produced as

ŝT S(n̂) =
∞∑

�=1

�∑
m=−�

ŝT S
�m Y�m(n̂), (12)

where the harmonic coefficients of the map are given by

ŝT S
�m = (dobs)�m −

Ntpl∑
i=1

(t�m)i(α̂�)i (13)

and the (biased) power spectrum of the cleaned map is equivalent to
the first factor in equation (11).

3.3 Mode projection

MP (Kalus et al. 2016; Percival 2018; Alonso, Sanchez & Slosar
2019; Kalus et al. 2019; Nicola et al. 2019) assumes the same
contamination model as TS, given by equation (5). The original
formulation (Rybicki & Press 1992; Leistedt et al. 2013) cleans
the map-level systematics by assigning infinite variance to contam-
inating templates. This procedure desensitizes the power spectrum
estimate to the templates and is equivalent to marginalizing over the
contamination amplitude of each template (Leistedt et al. 2013).

In particular, it updates the map-level covariance matrix C as
follows

C ′ =
⎡
⎣C +

Ntpl∑
k

lim
β→∞

(βktkt
†
k )

⎤
⎦

= lim
β→∞

[
C + βT T †] (14)

where tk are the individual template maps, which can represent
either real spin-0 or complex spin-2 fields (Alonso et al. 2019),
and which can be assembled into a matrix T, with tk as the kth

column. In previous works with MP, the maps have been represented
in pixel space, but in principle the operations can also be performed
in harmonic space, e.g. representing a spin-0 field by its complex
harmonic coefficients. For clarity and continuity, we will assume the
maps are Npix-length vectors in what follows, as opposed to their
multipole transforms. There are some benefits to performing MP in
harmonic space, however, which we explore in Section 4.

The main challenge with the original formulation of MP is that
it requires the construction and inversion of a covariance matrix
for the whole map, which is often intractable. To remedy this,
Elsner, Leistedt & Peiris (2017) extended MP to the popular (albeit
sub-optimal) pseudo-C� estimator. In practice, this is achieved by
computing the pseudo-C�s of the overdensity field after first applying
a filter F, where

F = lim
β→∞

(
I + βT T †)−1

= I − T (T †T )−1T †,
(15)
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5066 N. Weaverdyck and D. Huterer

where the second expression follows from the Sherman–Morrison–
Woodbury formula. It is easy to see that T(T†T)−1T† is a projection
matrix, projecting an Npix-dimensional map on to a Ntpl-dimensional
subspace. The filter thus removes any components of the observed
map within the subspace spanned by the templates (hence the
alternate name of Mode Deprojection).

Taking the case of a single template map t for simplicity, F then
takes the form (I − (tt†)/(t†t)), resulting in a filtered overdensity map

ŝ = F dobs (16)

= [
I − t(t†t)−1t†

]
dobs (17)

= dobs − t α̂mp (18)

where

α̂mp = (t†dobs)/(t†t) = σ̃ 2
td/σ

2
tt , (19)

and σ̃ 2
td is a measure of the covariance of maps t and d. Note that

this is very similar to the TS estimate in equation (8), but here the
covariances are taken over the whole footprint, rather than for a single
mode �. We can make the connection even more explicit by noting
that in the full-sky case,

σ̃ 2
td = 1

4π

∞∑
�=0

(2� + 1)C̃�
td

(20)

While Elsner et al. (2017) introduce this filtered map only as a
means to compute the power spectrum, it can be used on its own as
an estimate for the cleaned overdensity field. However, as with TS,
the power spectrum of this cleaned map is a biased estimate of the
true power spectrum, as some of the signal is removed in the cleaning
process:

〈Cŝŝ
� 〉 = 〈(dobs − t α̂mp)†(dobs − t α̂mp)〉 (21)

= Css
� − Ctt

�

4π(σ 2
t t )

2

(
2Css

� σ 2
t t − 1

4π

∑
�′ (2�′ + 1)Css

�′ Ctt
�′
)
. (22)

In the full sky case, the power spectrum estimate can be debiased
analytically (Elsner et al. 2017):

Ĉss
� = ∑

�′
[
(I + B)−1

]
��′ C

ŝŝ
�′ , (23)

where

B��′ = Ctt
�

4π
(
σ 2

t t

)2

(
−2σ 2

t t δ��′ + 2�′ + 1

4π
Ctt

�′

)
(24)

and δ��′ is the Kronecker delta. In the presence of a mask, one can
debias via iteration or assuming a prior power spectrum (Elsner et al.
2017). As we work in the full-sky case, we debias analytically via
equation (23), though we do not expect an iterative or prior-based
debiasing to significantly alter our conclusions.

The procedure outlined above easily generalizes to multiple maps
by extending the dimensionality of the terms:

α (scalar) → α (Ntpl),

t (Npix) → T (Npix × Ntpl),

σ 2
td (scalar) → σ 2

Td (Ntpl),

C tt
� (scalar) → CTT

� (Ntpl × Ntpl),

σ 2
tt (scalar) → σ 2

TT (Ntpl × Ntpl). (25)

Hereafter, we will use ‘MP’ to refer to the pseudo-C� MP
method described above, due to the popularity of the pseudo-C�

power spectrum estimator and the adoption of this version into

NaMaster6(Alonso et al. 2019), in anticipation of LSST. We again
refer the reader to Elsner et al. (2017) for the modifications necessary
to account for the mask, and specifically to their equation (21) for
the multi-template version of the debiasing matrix, which we use to
correct for all MP power spectrum estimates (see Alonso et al. (2019)
for the equivalent formulae for spin-2 fields).

4 PL AC I N G I N TO A C O M M O N
M AT H E M AT I C A L F R A M E WO R K

To facilitate a comparison of the methods, it is useful to place
them into a common mathematical framework. In this section, we
show how all three methods presented so far can be interpreted
through a regression analysis lens, and in doing so help identify
different assumptions within each method and possible avenues for
improvement. Moreover, we can leverage the powerful suite of tools
that have already been developed and tested for regression to the task
of systematics removal, facilitating and accelerating the process.

4.1 Connections to regression

We have purposefully formulated the methods (e.g. equations 19 and
8) in a manner designed to make the connections between MP and
TS apparent. TS is equivalent to running the MP algorithm, but with
each original template (ti(n̂)) decomposed into a set of independent
templates (t i

�(n̂)), where

t i
�(n̂) =

�∑
m=−�

t i
�mY�m(n̂). (26)

Fig. 3 shows this schematically. In other words, (pseudo-C�) MP
can be considered a special case of TS, where the contamination is
assumed to be independent of scale and the full template map is used
to estimate such contamination. It has been pointed out before in the
context of 3D clustering estimates that TS and MP can be related if
they use equivalent templates (Kalus et al. 2016).

Casting the two methods into this form allows us to make
the connection to standard linear regression wherein a measured
response y is assumed to be a linear combination of predictors given
by the α and a noise term ε:

y = Xα + ε. (27)

X is a n × p matrix, where p is the number of predictors (potentially
including a column of ones – the intercept term), α a vector of length
p, and y and ε vectors of length n.

Perhaps the most common regression method, Ordinary Least
Squares (OLS), finds the vector α̂ that minimizes the squared
residuals:

α̂ = argminα|| y − Xα||2 (28)

= (X†X)−1 X† y, (29)

where the second expression follows if X is full column-rank (i.e.
the number of observations exceeds the degrees of freedom from the
predictors). This is equivalent to the maximum-likelihood solution
if one assumes the noise of each element, εi, is independent and
identically Gaussian distributed,

P ( y|Xα) ∼ N (0, Iσε). (30)

6https://github.com/LSSTDESC/NaMaster
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Mitigating contamination in LSS surveys 5067

Figure 3. Schematic illustration of the difference between the TS and (pseudo-C�) MP methods. TS allows templates to have different levels of contamination
at each scale. This is analogous to performing MP, but first decomposing each template map into a series of derived templates, each corresponding to a different
harmonic �. See Section 4.1 for details.

such that the log-likelihood goes as L ∝ | y − Xα|2. Even if the
assumption of Gaussianity is violated, by the Gauss-Markov theorem
equation (28) still corresponds to the unbiased estimator with
minimum variance if the errors ε are uncorrelated and have equal
variance.

We can write equation (27) in terms of the OLS estimates as

y = Xα̂ + ε̂ = X(X†X)−1 X† y + ε̂ (31)

where the residuals are defined as

ε̂ = y − Xα̂. (32)

The quantities of interest in the typical regression problem are the
coefficients α or the predicted response ŷ = Xα̂, with the goal
of understanding the influence of predictors or to predict future
observations, and hence the residuals are largely used to assess
whether the basic OLS assumptions hold. However, comparing
equation (32) to equations (13) and (18), we see that both MP
and TS can be interpreted as OLS regression methods where the
observed overdensity signal is regressed on to the templates, and
the reconstructed overdensity signal ŝ and power spectrum Cŝŝ

�

correspond to the map and power spectrum of the residuals ε̂.
MP uses the full map footprint, with each pixel corresponding to

a single observation, for a total of Ntpl fit coefficients. In contrast, TS
can be interpreted as performing multiple OLS regressions in parallel
on smaller subspaces – one at each multipole in our case – for a total
of N� × Ntpl fit coefficients (see Fig. 3).

We can write the TS amplitudes computed by equation (10) in
OLS form as

α̂� = (T †
� T �)−1T †

� d�, (33)

where T� is a (2� + 1) × Ntpl matrix, with each column corresponding
to a template, consisting of all the harmonic coefficients for a fixed

�:

T � =

⎛
⎜⎜⎜⎜⎝

t1
�,−� t2

�,−� · · · t
Ntpl
�,−�

t1
�,−�+1 t2

�,−�+1 · · · t
Ntpl
�,−�+1

...
...

. . .
...

t1
�,� t2

�,� · · · t
Ntpl
�,�

⎞
⎟⎟⎟⎟⎠ . (34)

In cases where the multipoles (or angular scales) are binned, the
number of fit coefficients is reduced to Nbins × Ntpl, which reduces
the variance of the contamination estimate. Indeed, MP corresponds
to a limiting case, where the modes of each template are averaged
with equal weight before fitting. However, in principle one could
apply weights differently across scales, and as we will show, this
can produce improved coefficient estimates. Alternatively, one could
fit individual modes as in TS but combine at the coefficient level –
potentially useful if certain scales are of particular interest for a given
analysis.7

An immediate consequence of the OLS interpretation of these
methods is in making explicit the assumptions that MP and TS are
making about the underlying density field – they are exactly the
’OLS’ assumptions for the error term ε in the regression model: in-
dependent, Gaussian and of equal variance, in whatever basis the map
is represented. These assumptions hold well for TS, which performs
a separate regression at each multipole �. In this case, the assumed
OLS ’noise’ terms are the set of harmonic coefficients of the map

7In their real-space analysis of SDSS galaxies, Ross et al. (2011) seem to
implement a version of this. They use TS to produce fit coefficients for a
large number of scales and templates, but ultimately select one coefficient to
apply to all scales for each template. However, it is unclear how they compute
the single summary coefficient.
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5068 N. Weaverdyck and D. Huterer

(s�m) at that multipole, which have Cov[s�m1 , s�m2 ] = Css
� δm1m2 . For

MP, these assumptions are violated, as the covariance matrix between
overdensity pixels is not diagonal, Cov[s(n̂i), s(n̂j )] �= σ 2

sigδij .
Since the primary contribution to the ’noise’ of the OLS fit is the

clustering signal itself, we can diagonalize it by performing MP in
multipole space, with the maps d, s, and ti becoming complex column
vectors comprised of the map spherical harmonic coefficients. The
noise of the observed overdensity d�m is then Cov[s�1m1 , s�2m2 ] =
Css

� δ�1�2δm1m2 . While diagonal, this varies strongly with � and
therefore violates the assumption of equal variance, a property known
as ‘heteroskedasticity’ in the statistics literature.

However, once the noise is diagonal, we can improve the MP
estimate of α̂ by weighting the observed data and template modes by
(a prior inferred) 1/

√
Css

� :

α̂ =
∑∞

�=0(2� + 1)C̃�
td

/Css
�∑∞

�=0(2� + 1)C̃�
tt
/Css

�

. (35)

This is equivalent to a weighted least-squares approach and recovers
the maximum-likelihood estimate of α̂, eschewing the erroneous
assumption of a flat signal power spectrum. This of course only works
in the ideal full-sky case, but in principle it should not be difficult to
extend to a masked sky, e.g. using a predicted cut-sky Css

� computed
using the standard coupling matrix from the mask (e.g. Hivon et al.
2002; Elsner et al. 2017) along with the cut-sky harmonics of the
templates and datavector, or appropriate binning of modes. This can
be viewed as a form of ‘prewhitening’ the data, which accounts
for the off-diagonal pixel covariance in the likelihood through an
appropriate transform. We explore the potential improvement from
such prewhitening in Appendix B, finding that it improves cleaning,
but is subdominant to differences between cleaning methods and
higher order corrections we discuss below.

Finally, we note that both the TS bias from Elsner et al. (2016),
as well as the pseudo-C� MP bias from Elsner et al. (2017) result
trivially when interpreting them through the OLS lens, in which the
variance of observed residuals is well known to be biased low:

〈ε̂†ε̂〉 =
(

Ndata − p

Ndata

)
ε†ε. (36)

For TS, the regression at each harmonic has Ndata = 2� + 1 and
number of predictors p = Ntpl, leading exactly to the debiasing terms
for the signal power estimate in equations (9) and (11). The debiasing
terms for MP in equation (22) are more complicated and dependent
on the signal and template clustering, but if we take both Css

� and Ctt
�

to be independent of �, equation (22) reduces to

〈ŝ ŝ〉 = Css

(
1 − 1∑�max

�′=0(2�′ + 1)

)
, (37)

where p = Ntpl = 1 and Ndata = ∑�max
�′=0(2�′ + 1) = (�max + 1)2 is the

total number of Fourier modes in the map. This is in keeping with the
interpretation of Elsner et al. (2017), wherein each template removes
one degree of freedom from the number of observed Fourier modes.
This interpretation can help to assess the risk of overfitting based on
the size of the template library.

By making connections between current methods and linear
regression explicit, we not only facilitate their interpretation, but
can more easily identify the tacit assumptions within these methods,
as well as readily improve upon them, drawing on the large body
of research into the statistical properties of various regression
approaches.

4.2 Additive versus multiplicative treatment

The systematic contamination described in equation (2) results in
both additive and multiplicative contributions to the overdensity field.
One way in which the methods described here differ is whether or
not they ignore the multiplicative contributions. These take the form
δ(n̂)fsys(n̂) and, if unaddressed, can bias cosmological constraints in
upcoming surveys (Shafer & Huterer 2015). Here, we show how so-
called ’additive methods’ like MP (or any other regression method)
and be readily adapted to account for these multiplicative terms and
so lead to improved map and power spectrum estimates.

For clarity, we reformulate equation (2) in the general notation of
Section 3 for direct comparison with the additive methods, taking
δobs → dobs and δ → s, such that

dobs = γ (1 + s)(1 + fsys) − 1 (38)

where again we have suppressed the pixel index. γ = N̄true/〈Nobs〉pix

accounts for the so-called integral constraint, wherein the mean
observed number density is used to compute the overdensity field,
rather than the true full-sky mean density (see Appendix D for a more
in depth look at the impact of this monopole term).

To compare with the additive methods, it is convenient to define a
zero-centred systematic as

f ′
i ≡ fi − f̄i

1 + f̄i

, (39)

and write equation (38) in an equivalent but zero-centred form:

dobs = γ ′(1 + s)
(

1 + f ′
sys

)
− 1, (40)

with the new prefactor

γ ′ ≡ γ (1 + f̄sys) =
(

1 + 〈s ′f ′
sys〉pix + s0

)−1
(41)

ensuring that the monopole in dobs is zero, and having the property
that 〈γ ′ 〉 ≈ 1.8 Here, s0 ≡ 〈s〉pix characterizes the global overdensity
in which the footprint resides, and s

′ ≡ s − s0 is the deviation from
that local overdensity.

Thus the observed overdensity field contaminated with a generic
systematic fi can be equivalently written as contamination from a
zero-centred systematic with a rescaled amplitude, f ′

i .
Expanding equation (40), we have

dobs = s + γ ′f ′
sys + γ ′sf ′

sys + (γ ′ − 1)(s + 1), (42)

Comparing to additive models like MP and TS, which take

dadd
obs = s + f ′

sys = s +
Ntpl∑
i=1

f ′
i , (43)

we see that they assume that γ
′ = 1 (no mean local overdensity

and a vanishing correlation between signal and systematics over the
footprint), as well also that sf ′

sys = 0 for every pixel, a much stronger
assumption. Despite these assumptions, additive estimates of the
total contamination are unbiased, provided the templates T span the
space of the true contamination:

〈f̂sys〉 = 〈T α̂〉 = 〈T (T †T )T †dobs〉 (44)

≈ T (T †T )T †f ′
sys = f ′

sys. (45)

8Here the approximation stems from making the assumption 〈x−1〉 ≈ 〈x〉−1,
which holds very well for the cases we are studying where the mean is taken
over a footprint with Npix � 105 and shot noise is subdominant.
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Intuitively this makes sense, since in the ensemble average the
multiplicative term sf

′
will vanish.

From equation (40), we can then make an improved estimate of
the signal map as

ŝ = 1+dobs
1+f̂sys

− 1, (46)

= dobs−f̂sys

1+f̂sys
(47)

where the second form makes clear that this is a simple rescaling
of the additive signal estimate, dobs − f̂sys. Therefore, in a model
with multiplicative contamination, signal estimates from additive
methods can be improved by weighting the estimated signal map by
1/(1 + f̂sys). Such reweighting should be avoided for contaminants
that are thought to contribute additively to the number density
(such as stellar contamination), as these modify γ and result in an
additive contribution to the overdensity, but no direction-dependent
multiplicative terms (see e.g. Crocce et al. (2016), Nicola et al.
(2019)).

To explicitly close the loop on the aforementioned methods, the
DES-Y1 method performs a series of 1-D regressions and iteratively
weights the observed overdensity in a manner equivalent to equa-
tion (46) for each template, whereas MP estimates contamination
via a single Ntpl-dimensional regression, with a signal estimate that
can be improved via equation (47).9 Applying the multiplicative
correction makes MP equivalent to the Weights model where the
coefficients are derived from a simultaneous multiple regression on
all the templates (such as in Bautista et al. (2018), Ross et al. (2020)),
but with an additional correction to debias the inferred two-point
function. Thus a pixelized weights map for MP can be produced10

as

w(n̂) = (ŝ(n̂) + 1)/(dobs(n̂) + 1), (49)

Fig. 4 illustrates the effect of the multiplicative terms – as well as
the impact of neglecting them – on the residuals of a map with a

9As noted in Section 2 even linear contaminants will have interaction terms
up to order Ntpl, such that in principle, for equation (44) to fully capture
fsys, additional templates up to ti tj tk ...tNtpl would need to be included in the
template library. A more precise and efficient approach would be to not add
any interaction templates, but instead combine the base systematic estimates
as

f̂sys,alt =
Ntpl∏
i=1

(1 + f̂i ) =
Ntpl∏
i=1

(1 + α̂i ti ), (48)

where recall ti corresponds to the ith template and ith column of T, and α̂i

the ith element of α̂. This is closer to the treatment of the DES-Y1 method,
wherein weightings for each f̂i are applied in series and thus cumulatively.

In practice, we find that equation (44) is a very good approximation since
σ 2

sys � O(10−2), so the non-linear interaction contributions to fsys due to
each systematic acting as its own multiplicative screen are fairly negligible,

i.e. f ′
sys ≈

(∑ Ntpl
i=1f ′

i

)
, as long as the templates sufficiently capture the

form of contamination: f ′
i = αi ti . Of course this latter condition is a basic

requirement of all of the methods we describe here, one that can and should
be verified through standard residual plots and other regression diagnostic
techniques to ensure an appropriate contamination model for each template.
Methods that incorporate template selection criteria, such as the proposed
Elastic Net, can help to satisfy this by allowing a large number of templates
to be included in order to address potential higher order terms with little
penalty.
10This can be released on its own or, as with the DES-Y1 data release, as an
additional column at the catalogues level. cf. https://des.ncsa.illinois.edu/re
leases/y1a1/key-catalogs/key-redmagic).

Figure 4. The error in estimates of the overdensity δ in a toy Gaussian map
when contaminated with a single template. Gray points indicate the pixel-
based difference between the observed, uncleaned overdensity and the true
overdensity when the contamination is multiplicative (additive contamination
would lie directly along the dotted line). Orange points are the result when
erroneously assuming the contamination is only additive. Blue points are the
result when correctly treating the multiplicative component.

Figure 5. Distribution of pixel errors before cleaning (grey), after cleaning
with MP but before multiplicative correction (orange), and after multiplicative
correction (blue). The errors have been calculated as the RMSE of each pixel
across 100 cleaned mocks in our fiducial configuration of a DES-like survey
as described in Section 6, and have been normalized to the expected dispersion
from the true overdensity field.

single linear, multiplicative contaminant. The diagonal, dotted line
shows the expected relation that would be precisely followed by
a purely additive contaminant. A multiplicative contamination adds
significant scatter around this relation, shown as the grey points. This
scatter remains when the contamination is cleaned with an additive
method (orange), but is effectively removed when the multiplicative
component is taken into account (blue). Fig. 5 shows how errors on
the estimated overdensity field are drastically reduced when applying
the multiplicative correction of equation (47) to a realistic use case
with multiple contaminating systematics (see Section 6 for details of
implementation).
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5070 N. Weaverdyck and D. Huterer

4.3 Multiplicative effect on likelihood

While the multiplicative term vanishes in the ensemble average,
resulting in the same ensemble pixel mean as the additive-only
prediction (〈dobs〉 = f ′

sys), the pixel variance is modulated:

Var[dobsi] ≈ 〈[sγ ′(1 + f ′
sys)]

2〉
≈ 〈s2〉(1 + f ′

sys)
2

= σ 2
sig(1 + f ′

sys)
2,

(50)

where for large Npix � 105, 〈γ ′ 〉 ≈ 〈γ ′2〉 ≈ 1. The corresponding
covariance between pixels is

Cov(dobs, dobsj ) ≈
〈

(γ ′)2
[
si(1 + fsys

′
i
)
] [

sj (1 + fsys
′
j
)
]〉

. (51)

This is the source of the systematic-dependent scatter in Fig. 4,
which will result in biased two-point statistics from additive methods.
Because the contamination estimate is unbiased, the correction
of equation (47) almost fully suppresses this variance, but the
multiplicative terms also impact the likelihood when performing
the regression. In pixel-space a simple fix would be to iterate: use an
initial estimate of 〈f̂sys〉 with equation (50) to apply inverse variance
weights to the maps before making a second estimate of 〈f̂sys〉. In
practice these are ’errors on the errors’ and so the impacts will be
subdominant to the multiplicative correction to the datavector itself.

5 A PP LIC ATION S

We can use the insights of the previous sections to propose two
additional methods, as well as to estimate the errors on the cleaned
map. We now describe these in turn.

5.1 Iterative forward selection

We include an iterative Forward Selection method that incorporates
some of the main features of the DES-Y1 method, but adopts some
of the simplifying assumptions of MP. The result is greatly simplified
and easier to implement than the full DES-Y1 method.

We keep the core of the template selection algorithm, but modify
the fit procedure and significance criterion to eliminate the need
to generate mocks. We do this by adopting the same implicit
assumptions of MP: that pixels are uncorrelated and have equal
variance. This allows for an analytical solution for the best-fitting
parameters θ = {mi, bi} and their covariance Covθ for each template,
which we obtain using numpy.polyfit.11 We then adopt a
simplified significance criterion of �χ2

FS = θT [Covθ ]−1θ , and use
the same stopping threshold as the DES-Y1 method.12

This Iterative Forward Selection method is a fast and simple
method that incorporates some of the key aspects of the DES-
Y1 method, the iterative weighting and template selection, while
avoiding the most computationally expensive parts, the generation
of mocks. We expect some loss of precision by not including a

11To estimate Covθ , numpy.polyfit assumes a diagonal Gaussian co-
variance of the pixels, scaled so that the best-fit model has reduced χ2 of
χ2

red = χ2/(Npix − 2) = 1
12As with the DES-Y1 method, this method can suffer from a lack of
convergence when the threshold is low, where chance correlations between
the signal realization and templates result in a loop of the same series of
templates being repeatedly reweighted. We adopted a limit of 10 × Ntpl

reweightings for each signal realization before breaking the loop and using
the resulting signal estimate as is. This occurred occasionally and at very low
thresholds, with no discernible effect on the estimated maps or power spectra.

covariance matrix in the fitting step, but on the other hand to gain
some precision by not having to bin pixels, so this method can help
to benchmark the importance of including the covariance matrix in
a DES-Y1-like method.

5.2 Elastic net

We also propose a method that closely mimics MP but incorporates
template selection, thereby reducing the impact of overfitting when
the template library is large.13 Having shown that MP is equivalent to
linear regression, we adopt a regression method specifically designed
to automatically select predictors based on the data.

This selection is accomplished by modifying the Loss function
that is optimized when fitting, which is equivalent to applying a prior
to the template coefficients and finding their maximum a posteriori
(MAP) estimate. Specifically, instead of finding α̂ that minimizes the
square of the residuals (||dobs − Tα||2), we instead minimize

Loss = 1

2Npix
||dobs − T α||22 + λ1||α||1 + λ2

2
||α||22, (52)

where

||α||1 =
Ntpl∑
i

|αi | (53)

is the L1-norm of α, and

||α||2 =
⎛
⎝ Ntpl∑

i

|α†
i αi |

⎞
⎠

1/2

(54)

is the usual vector L2-norm of α. Here, λ1 and λ2 are hyperparameters
that are tuned from the data, which we now discuss in turn:

(i) The L1-norm term incentivizes sparsity in α by penalizing non-
zero coefficients of templates, thus naturally performing template
selection. This is useful because the number of templates in modern
surveys can be enormous – e.g. Leistedt & Peiris (2014) produce
∼3700 templates for their analaysis of SDSS quasars – and so it is
common to pre-select only a handful to use, for fear of removing
true signal. Since we don’t know a priori which templates are
contaminating, the incorporation of an automated selection scheme
enables a more agnostic, data-centric approach to cleaning a large
library of templates, while mitigating the risk of overfitting. The use
of this penalty term in isolation (i.e. setting λ2 = 0) is often called the
Least Absolute Shrinkage and Selection Operator (Foster & George
1994), and has a Bayesian interpretation of applying a zero-centred
Laplace prior on the elements of α, with a width ∝1/λ1 (see e.g.
Starck et al. (2013) for a discussion). L1 priors to induce sparsity
have been used in a variety of astrophysical problems, such as for
source separation in cosmic microwave background analyses (Bobin
et al. 2007, 2013; Wagner-Carena et al. 2019) or in reconstructing
mass maps from weak lensing data (Leonard, Lanusse & Starck
2014; Lanusse et al. 2016; Jeffrey et al. 2018).

(ii) The L2-norm term helps address collinearity (i.e. correlation)
between template maps which, when present, can cause the matrix
T†T to be ill-conditioned and the variance of contamination estimates
to be large. When it is the only additional penalty term (i.e. λ1 = 0),
this is often called Ridge Regression, or Tikhonov Regularization.
It is straightforward to show that, from a Baysian perspective, this

13See Leistedt & Peiris (2014) for an alternative approach that preselects
templates for projection using a χ2 threshold.
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Figure 6. Best-fitting L1 and L2 penalty coefficients in the regularization
technique described in Section 5.2, as a function of the number of templates
used for cleaning, Ntpl (new signal and template maps are generated at each
value of Ntpl). In all cases, 12 templates are contaminating the observed data
(vertical dashed line). The importance of the L1 penalty, facilitating template
selection, becomes increasingly important as more templates are included for
cleaning. Lines and shaded region indicate the median and central 68 per cent
probability mass of 50 mocks at each Ntpl for the central bin of our fiducial
DES-like survey. Here, ρtpl = 0.2 within template groups, though plots for
other ρtpl look similar. See Section 6 for details of implementation.

method is equivalent to placing a zero-centred Gaussian prior on the
elements of α, with a width ∝1/λ2.

Since each penalty term addresses a different issue with standard
regression, it is not uncommon to combine them, as proposed by
Zou & Hastie (2005), in a method known as the ’Elastic Net’. We
use the scikit-learn (Pedregosa et al. 2011) implementation,
ElasticNetCV, with a hyperparameter space of λ1/(λ1 + λ2) ∈
{0.1, 0.5, 0.9} and 100 values of (λ1 + λ2) spanning three orders of
magnitude, which are automatically determined from the input data
(the default setting). We use fivefold cross-validation to determine
the best λ1 and λ2, trained on a random selection of 30 per cent of
the input map pixels.14

In this five-fold cross-validation scheme, the training sample
(30 per cent of the map) is itself partitioned into five equal sub-
samples. For each combination of hyperparameters, one subsample
is withheld for validation, while the other four are used to train the
model by minimizing equation (52). The mean squared error (MSE)
of the validation sample is then computed and stored (i.e. the first
term in equation 52). One of the four training subsamples is then
withheld as the new validation set, and the process is repeated until
each of the five subsamples has been used exactly once for validation,
with their average MSE used to characterize the goodness-of-fit for
the given set of hyperparameters λ1 and λ2.

Setting λ1 = λ2 = 0 reduces to OLS regression and hence to
the pseudo-C� MP method, while sampling extreme values for the
relative weight of the L1 versus L2 penalty allows for the effective
use of only one of the penalty terms, if preferred by the data. The use
of cross-validation on a subset of the map allows the data to dictate
which model is most appropriate, with minimal risk of overfitting.
We illustrate the utility of this in Fig. 6, which shows how the

14We performed the cross-validation procedure on a subset rather than the
full footprint as further protection against overfitting, but this is likely overly
cautious and subsequent tests showed little difference in performance between
training on 30 per cent as compared to the full footprint.

cross-validation scheme naturally increases the L1 penalty when
fitting for more (uncontaminating) templates. We found that the L2
penalty became increasingly important when the correlation between
templates increased beyond ρ tpl � 0.9.

5.3 Map errors

We can use the regression framework to gain insight into how errors
in the estimated overdensity map are distributed across pixels. This
aids the propagation of map errors in cross-correlation studies and
summary statistics beyond the two-point functions, as well as helps
to identify regions that may benefit from masking.

For simplicity, we assume additive contamination and correction
and ignore higher order terms:

dadd = s + fsys = s + T α. (55)

The estimated contamination amplitude is then

α̂mp = (T †T )−1T †dadd (56)

= α + (T †T )−1T †s (57)

such that our signal estimate is

ŝmp = dadd − T α̂mp (58)

= s − T (T †T )−1T †s (59)

≡ (I − H )s, (60)

where the matrix H ≡ T(T†T)−1T† is often called the ‘Hat’ or
‘Projection’ matrix in the statistics literature. Then

Var[(ŝmp − s)i] = Var[(Hs)i] = [HVar[s]H †]ii . (61)

If we make the assumption that the signal covariance is diagonal,
then Var[s] ≈ σ 2

sigI and

Var[(ŝmp − s)i] ≈ σ 2
sig(HH †)ii = σ 2

sigHii, (62)

where we have used the fact that H is both Hermitian and idempotent
so that HH† = HH = H.

Despite a number of simplifying assumptions and the fact that
some of the methods only fit for some of the templates, we find
that with the exception of TS, Hii is a remarkably good predictor15

of how the errors in the overdensity estimates are distributed for
all the methods. The errors arise from removing real signal during
the cleaning process, with Hii as a measure of how susceptible
pixel i is to such overcorrection. This also indicates that while
to first order all correlation with templates is removed from the
estimated overdensity field, the templates remain imprinted on the
map through their absence; there is missing signal in precisely their
spatial configuration.

Intuitively, Hii as a distance measure of pixel i from the centre of
mass of other pixels in the Ntpl-dimensional space spanned by the
templates. This is sometimes referred to as ‘leverage’, as pixels with
higher Hii have larger impact when performing a regression.16 This

15Note that H ii I only requires the diagonal elements of H, which are far more
tractable to calculate than the full Npix × Npix matrix.
16This phenomenon is very familiar from the simple case of fitting a 1D line
to a scatter of 2D points {x, y}, where the best-fit line is ‘pulled’ preferentially
to points that lie farther from x̄.
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5072 N. Weaverdyck and D. Huterer

Figure 7. RMSE of pixel overdensity estimates, normalized to expected dispersion from the true overdensity due to cosmic variance, versus pixel leverage for
100 signal realizations. The vertical axis shows the standard error across pixels in 1000 equal-sized bins (in this case 197 pixels per bin at Nside=128). The
error in both observed and estimated overdensity scales as roughly ∝ H

1/2
ii for all methods (dashed line, to guide the eye). The dotted vertical line indicates

a commonly used threshold of 3 times the mean leverage across pixels to identify pixels that may have an undue impact on regression fit parameters. The
histogram in the top panel indicates the number of pixels at a given leverage. Ntpl = 27, Nsys = 11, and σ 2

sys = 0.01.

can be seen by observing that the estimated systematic field can be
written as

f̂sys = Hdobs (63)

such that the leverage

Hii = ∂f̂ (i)
sys

∂d
(i)
obs

(64)

encodes the sensitivity of the contamination estimate to an observed
over- or underdensity at pixel i. Because pixels with high leverage can
have an outsized effect on the estimated contamination, we expect
leverage to be a useful tool for identifying potentially problematic
pixels that should be masked before cleaning, in addition to providing
error estimates for those pixels that remain.

It is straightforward to derive the mean leverage value as

H̄ii ≤ Ntpl/Npix, (65)

with the equality holding if T is full rank, since

Npix∑
i

Hii = Tr(H ) ≤ Ntpl, (66)

providing a basis on which to determine extreme leverage values.
The main panel of Fig. 7 shows the root mean squared error

(RMSE =
√

〈(ŝ − s)2〉) of each pixel computed over 100 cleaned
DES-like mock maps plotted against leverage Hii from 27 cleaning
templates, 11 of which are contaminating. Pixels are grouped into
1000 bins of 197 pixels, according to their leverage value, and we
show the mean and standard error of the RMSE for each bin. We
see that pixels with low leverage value have much smaller error in

the estimated overdensity map, and that the error goes roughly as
∝ H

1/2
ii (diagonal dashed line), as predicted by equation (62). The

TS method is an exception to this trend likely because the regression
happens in a different space, at each harmonic separately, and so
does not relate cleanly to the pixel leverage.17

The top panel of Fig. 7 shows the fraction of map pixels below
a given leverage (note the log scale), with the vertical dotted line
indicating 3 × H̄ii , which is one of two common thresholds used in
statistics to flag points that may bias a regression analysis (2 × H̄ii

being the other). Here, 0.5 per cent of map pixels exceed 3 × H̄ii ;
these pixels potentially merit further inspection or masking, as they
are particularly prone to biasing the regression. The trend of the
uncleaned data may be surprising, but as noted in Section 4.2, because
of the integral constraint, dobs is insensitive to a monopole in fsys and
so as long as templates approximately trace the true contamination,
overdensities near the mean of the templates (i.e. low H II ) will be
most accurately measured, even if contamination is greater than at
other points in the map (see Appendix D).

A complementary statistic is the ‘Cook’s distance’ (Cook 1977,
1979) for each pixel, which uses Hii and ŝi to provide a measure
of the total change in the ŝ map if pixel i were to be masked
(assuming additive contamination and correction). Along with the
leverage, we expect this to be a useful tool when performing template-
based mitigation of spatial systematics and for mask creation. We
leave further investigation of these as diagnostic tools, as well as
generalization to the multiplicative case, to a later work.

17In principle, one could construct the analogous leverage quantity H�m =
t�m[CTT

� ]−1t
†
�m in harmonic space for the analysis of errors in ŝ�m, which may

be useful for cross correlation analyses in harmonic space.
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We next describe the fiducial survey on which we test the
performance of foreground-cleaning methods.

6 EVA L UAT I N G PE R F O R M A N C E

Our analysis is fully synthetic, with the procedure depicted in Fig. 1.
We compare the cleaning methods described, including results for
both the standard additive MP case (denoted ‘MP (add.)’) as well as
one with the multiplicative correction from equation (47) (denoted
simply ‘MP’). For the Elastic Net, we only show results that include
the multiplicative correction.

We only consider full-sky maps in this paper. Extension to partial-
sky surveys should be fairly straightforward, requiring the usual
correction of cut-sky power spectra, but this applies equally across
the full-sky spectra estimated with each method here and so we do
not expect it to qualitatively change the main results.

6.1 Templates

We first describe the fiducial set of templates that we use, for both
contamination and cleaning purposes. We adopt several classes of
templates in order to span a range of possible contaminants and their
spectral behaviour. In most cases, we use multiple templates of the
same class by generating Gaussian realizations of maps from the
same theoretical power spectrum. The classes of template we use are
as follows:

(i) C�∝(� + 1)0 (white noise);
(ii) C�∝(� + 1)−1;
(iii) C�∝(� + 1)−2;
(iv) C�∝exp [ − (�/10)2];
(v) a ’Cat-scratch’ map, with 128 horizontal stripes to model a

basic scanning pattern and/or differences in depth due to overlapping
tiles;

(vi) a 2D Gaussian ’spot’ map; and
(vii) a E(B – V) extinction map, with dependence on latitude

removed.

The last three correspond to static maps which do not change
throughout the analysis. We use the full-sky E(B – V) map18 from
Planck (Abergel et al. 2014), but since this is dominated by emission
near the galactic plane, which LSS surveys typically avoid, we
reweight the map to remove its major latitudinal dependence.

We normalize the individual templates to the same overall vari-
ance, and construct a total systematic map as a product of some or
all of the individual template maps:

1 + fsys = ∏Nsys
i=1 (1 + αiti) (67)

Note that this model can generally encompass contamination to any
polynomial order simply by including templates that are products of
others (e.g. tnew ≡ t2

i ), and incrementing Nsys accordingly. Similarly,
non-linear contamination can often be made linear through an ap-
propriate transformation of the template map.19This total systematic
map is then scaled to a desired overall map variance σ 2

sys, thus
determining the overall contamination field fsys. We use a fiducial
level of contamination of σ 2

sys = 0.01, as we found this to produce

18https://wiki.cosmos.esa.int/planckpla/index.php/CMB and astrophysical
component maps#The .5Bmath.5DE.28B-V.29.5B.2Fmath.5D map for e

xtra-galactic studies
19E.g. Elvin-Poole et al. (2018) fit linear models to the square root of exposure
time and sky brightness, based on how how they contribute to the depth map.

fluctuations similar to those seen in the DES-Y1 data (Elvin-Poole
et al. 2018); this corresponds to an RMS error on δ of ∼ 10 per cent.
Changing the level of contamination σ 2

sys did not significantly alter
our results.

We perform the contamination and cleaning procedure shown in
Fig. 1 on each redshift bin and for each cleaning method over many
sky realizations, and plot the mean and central 68 per cent probability
mass of the relevant quality statistic. We use the same set of templates
and total systematic map for across redshift bins and sky realizations,
but generate a new set for each unique combination of parameter
choices (e.g. level of cross-correlation between templates, number
of templates used, etc.) in order to minimize any effects from specific
template realizations.

We use CLASS (Lesgourgues 2011) to compute theoretical galaxy
clustering power spectra for a mock LSS survey, including contri-
butions from redshift-space and Doppler distortions and lensing. We
found gravitational potential terms to contribute � 1 per cent to the
resultant C� for � > 7 but increased computation time by an order of
magnitude, so we neglect them. Since we find the cleaning procedures
are not strongly sensitive to the signal power spectrum, this should
not impact our results. We then use Healpy (Zonca et al. 2019)
to generate full-sky Gaussian realizations of LSS overdensity (δ ≡
δρ/ρ) maps for each redshift bin with NSIDE = 128. We compare
the impact of using lognormal maps in Appendix A, finding it does
not change our results.

6.2 Cosmological model and simulated survey

We assume a standard Lambda cold dark matter cosmological model
with one species of massive neutrino and parameter values from
best-fit Planck 2018: {�c, �b, h, ns, σ 8, mν /eV} = {0.26499,
0.04938, 0.6732, 0.96605, 0.8120, 0.06}. Given the precise parame-
ter constraints from current probes, the dependence of our results on
cosmological parameters is expected to be very minimal. In contrast,
the choice of the parameter set to be determined from the survey may
be highly dependent on the residual systematics.

In general for comparing the methods, the exact form of the galaxy
power spectra is not very consequential, so we use a fiducial survey
comparable to the completed Y5 Dark Energy Survey, for which a
realistic level of contamination can be estimated based on existing
data. We assume the number density distribution of galaxies to be in
the form

dn

dz
∝

(
z

z0

)α

exp
[−(z/z0)β

]
, (68)

where z0 = 0.55, α = 2.65, and β = 3.34. We assume five redshift bins
centred at redshifts {0.225, 0.375, 0.525, 0.675, 0.825}, with galaxy
bias of {1.4, 1.6, 1.6, 1.95, 2}, respectively, and containing galaxies
with Gaussian redshift dispersion of σ z = 0.05. These values were
chosen to closely approximate the REDMAGIC redshift distribution
given in Elvin-Poole et al. (2018).

We choose to work primarily in harmonic space. Therefore,
starting with some map with overdensity δ ≡ δN/N, where N is the
galaxy count over some patch, the expansion in spherical harmonics
gives

δ(n̂) =
∞∑

�=0

�∑
m=−�

a�mY�m(n̂), (69)

and the angular power spectrum is given by

C� =
�∑

m=−�

|a�m|2
2� + 1

. (70)
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Because we are working in the full-sky limit, all well-known
estimators of power return the same result, so here we make use of the
anafast and alm2cl functions in Healpy. To more accurately
account for the cosmological impact of the cleaning methods on data
from a DES Y5-like survey, we divide the assumed sample variance
σ 2

C�
by a factor of fsky = 0.116.

We add shot noise to the theoretical power spectrum as C� →
C� + n̄−1, with n̄ = 1.5 × 108, but this is negligible at the large scales
we work with (� ≤ 350). We are primarily interested in studying the
systematic impacts of cleaning (or not) using spatial templates, so it
is reasonable to focus on cases where the signal-to-noise is large (i.e.
shot noise is negligible).20

7 SIMULATION R ESULTS

To compare methods, we compare the fidelity of the cleaned data
products to the truth, either at the map level or at the level of the
power spectrum, rather than look for cosmological-parameter biases.
We do this for a few reasons: (1) the map and power spectrum
are more general, being independent of (but easily mapped to) any
specific cosmological model one wants to test, or summary statistic
one wants to use; (2) while we primarily study applications to galaxy
clustering data here, the methods themselves are quite general and
can easily be applied to other data sets for which one has tracers
of potential contamination, such as shear or convergence maps; and
(3) galaxy clustering alone leads to relatively weak cosmological
constraints and is rarely used on its own to constrain cosmology.

We therefore limit ourselves to investigating biases in data space
and leave the investigation of impacts on cosmological constraints
to a later work when weak lensing data can be incorporated in
a more realistic fashion. At this stage, the test bed is sufficiently
representative to compare foreground-cleaning methods in a manner
to inform future LSS analyses.

7.1 Characterizing performance

We first study the impacts of the different methods on the estimated
maps and power spectra for a single configuration and compare the
residual biases of each. For this fiducial comparison, we generate
50 mocks for each redshift bin and contaminate them with 11
systematics, two from each of the four Gaussian classes, plus the
three static templates. We construct a template library that contains
the contaminating templates, plus four additional realizations from
each Gaussian class, for a total of 27 cleaning templates. Each method
uses this library to produce estimates of the overdensity field and
power spectra.

We show map residuals of each cleaning method for the lowest
redshift bin in Fig. 8, where the residuals are binned into deciles
of the true overdensity. Results for other redshift bins are similar.
From left- to right-hand side, in approximate order of performance,
the figure shows the TS method (red), MP without (green) and with
(orange) multiplicative correction, the Elastic Net method (purple),
Forward Selection (brown), and the DES-Y1 method (blue).

20Shot noise may have the effect of (1) rendering the the regression
residuals more diagonal in pixel-space (or flattening them in harmonic space),
which could actually improve the regression procedure, and/or (2) introduce
significant skewness in the distribution. We would expect the impacts of these
to be similar to those of prewhitening the data or using lognormal mocks, and
so based on our results in Appendices A and B, we do not expect shot noise
to significantly impact on our findings.

Figure 8. Error in overdensity estimates for different cleaning methods,
binned in deciles of the true overdensity and with points offset for clarity.
The top plot includes error bars indicating the standard deviation of pixel
errors in each bin, while the bottom plot is a zoomed-in version to better
display how the means deviate from zero. Overcorrection at the map-level is
only significant for TS, which underestimates the magnitude of both peaks
and voids, while other methods are very close to unbiased. See the text for
details.

The overcorrection of TS is evident, with density fluctuations
consistently under-estimated (i.e. peaks and voids are both less
extreme than they should be). The other methods are all very close
to unbiased with respect to the true overdensity field, with bias
of the mean � 0.001 for each bin. The multiplicative methods
show significantly reduced within-bin scatter (i.e. smaller error bars)
compared to the additive ones – the additive TS and MP methods
(leftmost, red and green) have typical errors in the overdensity of σ s

∼ 0.1 and σ s ∼ 0.01 − 0.05, respectively, compared to the errors
of σ s ∼ 0.005 − 0.02 for the multiplicative methods. This suggests
that applying the multiplicative correction results in significantly
improved map estimates, making them excellent candidates for map-
based analyses, such as as counts-in-cells or density-split statistics.

While the signal estimates are unbiased (with the exception of
TS), the errors of the additive methods increase near extremes of the
density field. This is similar to the result in Fig. 5, which showed
larger errors at extreme template values, in part for the same reasons.
Both Figs 7 and 8 indicate a clear stratification of the methods,
with the methods that fail to treat the multiplicative component of
contamination showing significantly larger error.

We also compare the maps in harmonic space. The left-hand
panel of Fig. 9 shows the per-multipole performance of the cleaning
algorithms as (1 − Cŝs

� /Css
� ) versus the multipole �, where

Csŝ
� = 〈s�mŝ∗

�m〉. (71)

This quantifies the fractional missing cross-power between the true
and estimated maps, such that a perfect reconstruction corresponds to
0, and pure noise corresponds to 1 (note the log scale). This conveys
the approximate level of error expected when using cleaned maps for
cross-correlation studies.

All of the methods that treat the multiplicative contamination
perform significantly better than the additive methods. The corrected
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Figure 9. Left-hand panel: Error in map reconstruction for each method as a function of multipole � in a DES-like survey, shown as the deficit in correlation
at each multipole between the true and cleaned maps (1 − Csŝ

� /Css
� ). A perfect reconstruction corresponds to 0, whereas pure noise corresponds to 1. For all

methods (except perhaps TS), the cleaned map is a good approximation of the true map for cross-correlation purposes, especially at scales � � 30. Right-hand
panel: Error in power spectrum estimation shown as the residual angular power relative to sample variance (C̃est

� − C̃ss
� )/σC�

in bins of �� = 10. Solid lines
indicate means of cleaning performed on 50 signal realizations of each bin and shaded regions indicate the central 68 per cent probability mass of the 250 total
realizations. The multiplicative correction applied to MP removes most of the bias of the method (green to orange). Here, we use 27 templates, of which 11 are
contaminating the data.

MP and Elastic Net, and the DES-Y1 method all have excellent
performance at � � 30 or scales below about 0.2 degrees on the
sky, showing � 0.1 per cent error. Maps cleaned with these methods
should therefore be excellent candidates for cross-correlation studies.
Even the additive MP method performs quite well with error of
� 1 per cent in this case, and as such it may be adequate for many
studies.

In the right-hand panel of Fig. 9 we show the error in the power
spectrum estimate as the difference between the estimated (after
cleaning) and true angular power in bins of �� = 10 and normalized
to sample variance (C̃est

� − C̃ss
� )/σC�

, where for σC�
we use the

standard Gaussian approximation for cosmic variance, scaled by
1/fsky. Unlike Csŝ

� , this quantity is insensitive to phase-differences
between the true and reconstructed maps of the map.

To lowest order, all of the methods work well, and the residual
biases are below cosmic variance for the large angles studied here
(note that systematic shifts will become more significant with larger
multipole bins). For MP, the performance is satisfactory only once it
is corrected for the multiplicative bias via equation (46), which both
reduces bias and uncertainty in the estimated power spectra. We do
not show TS on the right for clarity – its mean traces the mean for
the additive MP method, but the dispersion is very large, exceeding
the plot limits.

The Elastic Net and Forward Selection methods show a similar
deficit at large scales as does MP before it is debiased via equa-
tion (47). This is because the power spectra of the clustering signal
and most of the cleaning templates peak at low �, such that more

power is removed from large scales. The contribution from the signal
power spectrum to this effect (i.e. heteroskedasticity) is mitigated for
the DES-Y1 method, which uses the signal covariance. In practice,
biases exhibited by any of the methods for the signal power spectrum
could be estimated and removed by running on realistic contaminated
mocks.

7.2 Susceptibility to overfitting
Any template-fitting model faces a challenge to neither underfit nor
overfit the data. In the case of underfitting, residual contamination
will be left over in the map and inferred to be signal. In the case
of overfitting, a portion of the signal will be inadvertently removed
from the map, having been mistaken for systematics. Additionally,
increasing the number of fitted templates increases the variance of
the estimated power spectrum, which will increase the error of C̃est

�

in a mean-squared sense (Elsner et al. 2017).
MP and TS address the risk of overfitting by estimating how much

signal power is lost from over-correction given the template library
and scaling the power spectrum accordingly (equations 11 and 23). In
contrast, the DES-Y1 and Forward Selection methods use thresholds
to limit the templates used for cleaning to only those that are most
significant, an approach that was also implemented in the Extended
MP method of Leistedt & Peiris (2014) for the QML power spectrum
estimator (though as shown by Elsner et al. (2016), this comes at the
cost of an unknown bias in the power spectrum). As described in
Section 5.2, the Elastic Net reduces overfitting by adding a prior on
the template coefficients to reduce the number of templates used.
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5076 N. Weaverdyck and D. Huterer

Figure 10. Bias in the angular power spectrum, �χ2
C�

, as a function of the number of templates fit to the map. We consider Gaussian templates which have
a correlation of ρtpl = 0.2 within each of the four template classes, as defined in Section 6.1. We generate two template realizations per class with which to
contaminate each signal map (Nsys = 2, denoted by the vertical dotted line). The templates used to perform the cleaning vary from one to 48 for each type of
template spectrum, for a total of four to 196 templates, with new realizations generated for each Ntpl (this is the source of the noise in the ‘Uncleaned’ line).
The TS, MP, and Forward Selection methods are all mildly susceptible to overfitting – signaled by the increase in �χ2

C�
for Ntpl > 2 – though only TS to a

degree where it overcomes the penalty for neglecting a contaminating template (Ntpl = 1). For the additive MP method, �χ2
C�

is dominated by the bias from not
addressing the multiplicative contribution to the power spectrum (see Fig. 9, right-hand panel), while the other methods are dominated by increased variance
from chance correlations. The bias from failing to correct for the multiplicative term dominates even when fitting for ∼200 templates. The DES-Y1 and Elastic
Net display a lesser dependence on Ntpl, and so are more robust to overfitting. See Section 7.2 for details.

While each of the methods addresses overfitting in its own way,
the library of templates fed to them has in most cases already been
narrowed from a much larger set of possible templates through
decisions made by researchers. For example, almost all modern
surveys observe any given patch of sky multiple times, resulting
in multiple values for each observing condition for every pixel. To
produce a scalar template map requires compressing these values into
a summary statistic and, as it isn’t known a priori which statistic will
best capture systematic contamination of the data, multiple statistics
may be computed, each corresponding to its own template (see
e.g. Leistedt et al. 2016). If just one statistic (such as the mean)
is chosen as representative as is often done, there is the very real risk
of discarding potential templates that more accurately capture the
contamination, resulting in residual contamination, or underfitting.

Therefore, one of the key performance metrics for these methods
is their ability to handle increasing numbers of non-contaminating
templates without degrading map or power spectrum estimates, and
so simultaneously mitigate the risks of under and overfitting.

To characterize the error in the reconstructed angular power
spectrum, we use the sum of squared errors between the true and
reconstructed power spectra, normalized by sample variance:

�χ2
C�

=
∑
zbins

350∑
�=�min

(
C̃est

� (z) − C̃ss
� (z)

)2

σ 2
Css

�
(z)

, (72)

where �min = 2, except for TS where �min = Ceil[(Ntpl − 1)/2], since
with Ntpl templates, all signal is removed for � ≤ (Ntpl − 1)/2.

In Fig. 10, we show �χ2
C�

as a function of the number of
templates used to clean the maps (Fig. E1 shows the same plot

for map-level statistics, which demonstrate very similar behaviour to
�χ2

C�
). We generate two template realizations per class with which to

contaminate each signal map, and vary the number of templates used
to perform the cleaning from one to 24 for each template class. The
true contaminants are always ‘selected first’, such that Ntpl = Nsys

= 2 represents correctly fitting for the two contaminating templates
from each class (vertical dotted line), whereas Ntpl > 2 indicates
the penalty for overfitting of non-contaminating templates. The error
bars come from many signal realizations for the same template maps,
and different template and signal map realizations are used for each
value of Ntpl.

Fig. 10 demonstrates that all methods are susceptible to overfitting,
as indicated by the fact that �χ2

C�
increases for Ntpl > 2, but that

some are more susceptible than others. TS and additive MP are
the worst-performing methods with �χ2

C�
� 10 for all cases, with

TS showing a strong dependence on Ntpl. Multiplicative MP and
Forward Selection display approximately the same �χ2

C�
∝̃Ntpl

scaling as TS, whereas The Elastic Net and DES-Y1 methods show
a much weaker scaling, indicating that they are much more robust
to a larger number of templates.

The trend for additive MP method indicates the importance of the
multiplicative correction. Here, the error in the power spectrum does
not scale with Ntpl as strongly as that of TS or the multiplicative
MP method because it is dominated by the bias from not addressing
the multiplicative contribution to the power spectrum (see Fig. 9,
right-hand panel), not the increased variance from a larger number
of templates. The bias from failing to correct for the multiplicative
term dominates the additive MP error even when overfitting by ∼200
templates (or equivalently, roughly 19 templates to quadratic order).
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Figure 11. Error in the angular power spectrum, �χ2
C�

, as a function of the level of cross-correlation imposed between the templates within the same class.
We assumed contamination from two realizations from each of the four classes (i.e. Nsys = 8). The left-hand panel assumes cleaning with only one of the
contaminating templates from each class, while in the right-hand panel we clean for four templates from each class, including the contaminating ones. Note
that in the case where template correlation ρtpl → 1, the two templates are identical and it is equivalent to cleaning only for one contaminating templates, an
ideal scenario. In the right-hand panel, we see that while the DES-Y1 outperforms others when templates are completely orthogonal, it suffers as the level of
correlation between templates increases. The Elastic Net method mitigates this problem.

Were the plot to continue to the right, we would expect the error to
begin to scale similarly to the other MP and TS methods.21

Another key point is that for all cases except TS, the penalty for
overfitting is dwarfed by the penalty for neglecting contaminating
templates (Ntpl = 1 on the x-axis). This suggests that the researchers
should err on the side of overfitting, rather than risk removing con-
taminating templates from the cleaning library. This is especially true
if using a method that is more robust to overfitting, such as the Elastic
Net or DES-Y1 method. In sum, the DES-Y1, Forward Selection, MP
with multiplicative correction, and Elastic Net methods all perform
very well relative to the uncleaned case, with the Elastic Net and
DES-Y1 methods being most robust to overfitting and achieving the
best performance with �χ2

C�
� 1 even when Ntpl � Nsys.

7.3 Impact of correlated templates

Real templates often have groups of templates that are highly similar
to one another in their spectral behaviour and/or in their correlation
to one another, which we have modeled here as different template
classes. The same tracer/property measured in different wavelength
bands, or different summary statistics (e.g. the mean versus median)
for the same tracer in a multiepoch survey are both common examples
that can result in very similar templates. We wish to investigate the
impact of selecting a non-optimal template for cleaning, which only
partially describes the true systematic. This could be either through
the choice of a non-optimal summary statistic, or through the a
priori choice of a ‘representative’ template from a group of similar
templates in order to mitigate the risk of overfitting, as is commonly
done in current surveys.

We test this by cleaning with sets of templates that have
varying levels of within-class correlation. For each template

21The multiplicative bias is not the dominant contribution for TS because its
effective number of templates is much larger, since it performs N� regressions
for each template.

class (corresponding to one of the spectra listed in Sec-
tion 6.1) we use Healpy.synfast to generate template re-
alizations with off-diagonal covariance terms between templates
i and j of

C
ij

� =
{

ρtpl

√
Cii

� C
jj

� , if i and j in same class
0, if i and j in different classes

.

We only use the first four classes from Section 6.1, which are
defined by their spectrum and from which we can generate multiple
Gaussian realizations with defined levels of cross-correlation.

Fig. 11 shows the performance of the methods when the within-
class correlation between templates is varied. We again consider the
case of two contaminating systematics from each of the four Gaussian
template classes. The left-hand panel shows the case where for each
class we have chosen only one of the templates to clean with, deeming
it ’representative’ of the template group. As within-class correlation
between the systematics increases, the cleaning templates are more
representative and can increasingly remove more of the unaccounted
for contamination. At ρ tpl = 0.9, the multiplicative methods are able
to reduce the error to �χ2

C�
∼ 6 compared to �χ2

C�
∼ 300 for the

uncorrelated case.
Despite the additional freedom of the TS method to fit multipoles

independently, it does not do a better job than the other methods
of correcting for the ’unknown’ systematics. The multiplicative
methods have almost identical performance, with the dominant
contributions to residual errors in the power spectrum resulting from
the unaccounted for systematics and, to a lesser extent, failing to treat
the multiplicative term of the contamination.

The right-hand panel in Fig. 11 illustrates the other approach of
including many possible templates rather than preselecting a few: we
use six cleaning templates from each class: the two true systematics,
plus four more that are uncontaminating, for a total of 24. We
find that with the exception of the DES-Y1 method, performance
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of the methods is largely independent of the correlation between
templates.22

Comparing the panels, even if using a high threshold of similarity
of ρ tpl = 0.9 to discard templates, significantly more error is
introduced through neglecting a contaminating template than through
overfitting, so it is better to not preselect templates solely on the
basis of similarity to others and instead err on the side of too many
templates rather than too few. TS is the one exception to this, where
each additional template results in N� additional fits. While the
additional freedom does not substantially protect against unknown
systematics, it does result in a much steeper penalty for overfitting
from higher Ntpl.

7.4 Extensions

By interpreting current LSS systematics cleaning methods in the
context of regression, we have facilitated their comparison and
interpretation, as well as motivated several possible extensions to
them. We have explored some of these extensions in this work, such
as the Elastic Net method in Section 5.2, and the use of the leverage
statistic to predict overdensity errors and aid mask creation, but with
the extensive body of regression methods, there are many more that
we must leave to future work. For example, one promising avenue
for regression methods that use a threshold for template selection
would be to motivate that threshold by controlling the ratio of Type
I (false correction) to Type II (false omission) errors in the selection
process via the False Discovery Rate (Benjamini & Hochberg 1995),
based on the relative impact of each type of error on the analysis.

We have noted individually multiple cases where the assumptions
made by the methods do not hold and how they might be improved.
A full treatment of these effects is beyond the scope of this paper
and would include the full non-Gaussian likelihood of P (dobs|f̂sys),
including contributions from systematics, but as we show in Appen-
dices A and B, the corrections from these are minor compared to
the methodological differences and the improvements we suggest.
Generalized linear models may be a promising compromise for
future mitigation routines, preserving off-the-shelf implementation
and diagnostic tools, while providing greater specificity for the
likelihood and relaxing some of the tacit assumptions of MP and
OLS regression.

The methods presented here are general enough to be applicable
in any situation where one has an external prediction (template)
for systematic contamination of observational data, and is equally
applicable to spin-2 fields. The insights gained can be used to further
extend linear models like the ones in this work, or inform the formu-
lation of non-linear contamination models, non-parametric methods,
or machine learning approaches such as that of Rezaie et al. (2020).

8 SU M M A RY O F M E T H O D S

Here, we summarize our findings about the performance of
systematic-cleaning methods.

22We found this to be true for both map-level and 2-pt reconstruction statistics,
though we only show the latter here. It is not obvious from the outset that
this would be the case – Forward Selection methods are often criticized for
being less reliable when predictors are correlated, though this is in the context
of the more typical regression scenario where it is the predictors themselves
that are of interest, as opposed to the residuals which is our focus here. The
source of the dependence of the DES-Y1 results on ρtpl is not entirely clear,
but our investigations found it to be mildly impacted by both binning choices
and the total monopole of systematic maps.

(i) DES-Y1 method: The most complicated method of the ones we
studied, the DES-Y1 method resulted in some of the lowest biases
in the cleaned maps. It usefully includes prior information about
the covariance between pixels in the fitting procedure, albeit in a
coarse way. However, it is also somewhat complicated to implement,
as it requires a large number of parameter choices on the part of
the researcher (binning number and procedure, significance statistic
and threshold, power spectrum prior) and the generation of realistic
mocks. We observed some degradation of its performance as the
correlation between templates increased. It is one of the two methods
most robust to overfitting when using a large library of templates that
are not actually contaminating the data (the other being Elastic Net).

(ii) MP: The standard pseudo-C� MP method, as introduced in
Elsner et al. (2017) and implemented in NaMaster(Alonso et al.
2019). We showed that it is equivalent to removing the result of
an OLS regression of the observed data on to the template maps
(thus providing a map estimate), with an additional step to debias the
power spectrum. This removes most of the contamination present,
but can be simply adapted to, and significantly improved by, treating
the multiplicative component of contamination instead of just the
additive term. We demonstrate how to do this in Section 4.2. In all
cases we studied, the error from not correcting the multiplicative
term dominated over error induced from overfitting – as Fig. 10
illustrates, in the ideal case where our templates exactly matched
the systematics, not treating the multiplicative term introduced as
much error as using ∼30 times more templates than systematics in
the cleaning procedure.

(iii) TS: Equivalent to performing an individual OLS regression
at each multipole, resulting in large variance and significant loss of
signal from overfitting. As a result, it does not reconstruct maps well
and generally performs most poorly in all of our tests. However, our
implementation is a limiting case, where each harmonic from each
template is allowed to contaminate independently, in contrast to MP
where all modes contaminate identically. The work here should make
it straightforward to construct a hybrid method where all modes
contribute identically like in MP (as is physically motivated) and
hence have small variance, but where certain modes are prioritized
for cleaning, based on the analysis case.

(iv) Iterative forward selection: This is a method we propose,
which is a much simpler version of the DES-Y1 method that requires
only a single tunable parameter (a significance threshold) and no
mocks. We found that it produces excellent results and is robust to
correlation between templates, but is not as robust to overfitting,
displaying the same dependence of roughly �χ2

C�
∝ Ntpl as the MP

and TS methods.
(v) Cross-validated elastic net: A cleaning method we introduce,

which we find has the best overall performance, being consistently
low error and robust to overfitting. It is equivalent to MP, but
with the amplitude of contamination for each template having a
mixed Gaussian/Laplace prior applied to encourage sparsity and
thus automatically select the important templates. The ‘priors’ are
not strictly such in a Bayesian sense, as their strengths are deter-
mined by the data through cross-validation. It is easy to implement
using out-of-the-box software and does not require a user-defined
prior for the power spectrum or debiasing step, providing the best
balance of performance, ease of implementation, interpretability and
robustness.

9 C O N C L U S I O N S

In this paper, we carried out a broad comparison of methods used
to remove astrophysical, atmospheric, and instrumental systematic
errors that affect galaxy-clustering measurements. We have gener-
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alized previous work by (1) showing how different methods can be
interpreted under a common regression framework, (2) jointly assess-
ing the robustness of methods on simulated data, (3) investigating the
reconstruction fidelity of LSS map(s), rather than just their clustering
statistics, as the maps are useful points of departure for numerous
other analyses (e.g. summary statistics beyond the power spectrum,
cross-correlations, searches for signatures of dark matter or exotic
new physics); and (4) proposing improvements to current methods,
as well as new, hybrid and efficient methods for the systematics
cleaning.

We employed a simple and general model for systematics, given
in equation (1), which allows for spatially varying multiplicative and
additive systematic errors with a range of clustering properties to any
generic cosmological field. Equipped with that model, we defined a
testing procedure that attempts to mimic real-world conditions for
LSS surveys, where the true galaxy map is contaminated with an
unknown set of systematics and a set of known templates is used
to model and correct for the contamination. Given our methodology
(pictorially described in Fig. 1) and a set of assumptions about the
fiducial DES Y5-like survey used to generate the maps, we studied
the performance of the systematics-cleaning methods under different
conditions.

We showed that both TS and MP, while developed independently,
can be interpreted through a regression framework where the signal
of interest corresponds to the noise term of a regression model. This
allowed us to straightforwardly apply known statistical results and
techniques to these methods. We used this to adapt additive methods
to account for multiplicative errors (Fig. 5), and identify potentially
highly contaminated map pixels as a function of their ’leverage’
(Fig. 7), while opening up avenues for further improvement. One
such avenue we touched on was to optimize MP (or other regression
methods) by prewhitening the maps in harmonic space. Recognizing
that the noise of the regression is the clustering signal itself, we
proposed that the maps could be efficiently and optimally inverse-
variance weighted in harmonic space, where the clustering signal
is diagonal. This is equivalent to accounting for the off-diagonal
pixel covariance in the pixel-based regression methods, which is
rarely done for tractability reasons (but see Wagoner et al. 2020 for
one approach). We found this to improve results (Fig. B1), but be
subdominant to the multiplicative correction and differences between
the cleaning methods.

We introduced two new methods for cleaning: (1) the ‘Forward
Selection’ method, which is a greatly simplified version of the
DES-Y1 method that achieves similar performance albeit being less
robust to a large number of templates; and (2) the ‘Elastic Net’
method, a simple out-of-the-box method that implements MP, but
which automatically selects important templates. We found that the
Elastic Net method is very robust, with strong performance even
when there is a large number of templates (Fig. 10) or templates
are highly correlated (Fig. 11); both are cases where other methods
display weaknesses. This method is very easy to implement, and we
recommend it for future surveys.

On the whole, we found that all of the methods perform quite
well, dramatically improving the chi-squared difference between
the cleaned and true (uncontaminated) angular power spectrum. At
the map level, TS was the only method that did not significantly
reduce the RMS overdensity error across pixels (Figs 7 and E1),
and so we do not recommend the version implemented here for map
reconstruction. Once we adopted only the algorithms that take into
account both additive and multiplicative errors, all of the methods
improved �χ2

C�
by three orders of magnitude relative to the uncleaned

case. Moreover, overfitting did not lead to large degradation in the

reconstructed power spectra (see Fig. 10), which is encouraging.
Finally, we found that the performance of the various systematics-
cleaning methods is very weakly dependent on the level of cross-
correlation between the template maps used for the cleaning, with
the DES-Y1 method being mildly more susceptible.

We end with several recommendations based on this work as
follows:

(I) Current and future cleaning methods should account for multi-
plicative contamination. ‘Weights’ methods like the DES-Y1 method
already do this and other methods like (Pseudo-C�) MP can easily
do so via equations (46)–(47).

(II) Cleaning methods based on a single OLS regression are
equivalent to (Pseudo-C�) MP and so should debias inferred two-
point functions accordingly. For more complicated methods where
the bias cannot be determined analytically, it can be characterized
and removed through performing cleaning on mock catalogues.

(III) Analyses should err on the side of overfitting rather than
underfitting for templates, as the error from the former tends to
be small provided templates do not contain any more information
about the true density field than would occur by chance. Researchers
should avoid arbitrarily removing templates from the library prior
to cleaning based solely on their similarity to other templates.
Larger template libraries result in increased variance of the map and
power spectrum estimators, especially with the very large number of
templates that will be available to future surveys. Therefore:

(IV) In scenarios where a very large template library is available,
the data itself should be used to select a subset for cleaning.
Among the methods that we studied, this is accomplished by either
a DES-Y1 type method or the Elastic Net with cross-validation.
Both show good robustness, and the latter is simple to implement
with common software. The theoretical connections we have made
between methods should make alternative template selection routines
such as those in Leistedt et al. (2016) and Rezaie et al. (2020) simple
to adapt and implement.

(V) The cleaning methods used thus far can – and should – be
viewed in the context of regression, with the estimated overdensity
field corresponding to the regression residuals. Researchers should
make use of the powerful suite of existing tools and diagnostic
measures to assess the validity of regression models when cleaning
LSS data (e.g. leverage for outlier detection, Q–Q plots, partial
regression/residual plots) and to aid mask creation. This is applicable
to all methods studied in this paper.
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A P P E N D I X A : LO G N O R M A L V E R S U S
GAUSSIA N SIGNAL MAPS

While the methods presented here are quite general for any case
where systematic contamination can be traced using a template, we
have specifically worked in the context of galaxy clustering. In this
case, the signal map s that we are attempting to model is the galaxy
overdensity δ, which is subject to the constraint δ > −1 (as is the case
for any overdensity statistic). Thus our assumption that s is Gaussian
breaks down at low redshift and at small scales, when |δ| can be
large.

It is well known that galaxy and shear overdensities are better
approximated by a lognormal distribution (see e.g. Coles & Jones
1991; Taruya et al. 2002; Hilbert, Hartlap & Schneider 2011; Xavier,
Abdalla & Joachimi 2016), so we run the methods on a series of
lognormal maps to see if the relative performance of the methods
changes.

We generate 100 Gaussian signal realizations sG(n̂) of the lowest
redshift bin of our fiducial DES survey, for which the cosmological
signal will be most non-Gaussian. We generate lognormal versions
of these maps by first computing the transformation that achieves
zero-mean lognormal overdensity field in the ensemble (Hilbert
et al. 2011), then centring and scaling so that each realization
of the lognormal field has the same mean and variance as its
Gaussian counterpart. The two steps correspond to the mathematical
operations:

(i) s ′
LN (n̂) = esG(n̂) − eVar[sG(n̂)]/2

(ii) sLN (n̂) =
√

Var[sG(n̂)]
Var[s′

LN
(n̂)]

(
s ′
LN (n̂) − s̄ ′

LN (n̂)
)
.

Figure A1. Distribution of pixel overdensities across all 100 realizations of
the lognormal (orange) and Gaussian (blue) maps of the galaxy overdensity
in the lowest redshift bin of our fiducial DES-like survey. The Gaussian maps
contain pixels with s < −1, which is non-physical in cases like this where s
corresponds to an overdensity.

Figure A2. Box plot showing the performance of each cleaning method when
using Gaussian (blue, left) versus lognormal (orange, right) signal maps, as
measured by �χ2

C�
of the power spectrum. Filled boxes show the 25-50-

75 per cent quartiles, with whiskers encompassing the rest of the distribution
out to 1.5 × the inter-quartile range. Points beyond this range are indicated
by diamonds. Regardless of whether lognormal or Gaussian maps are used,
the relative performance of the methods to one another is largely unchanged,
and the Gaussian approximation is negligible compared to neglecting the
multiplicative correction of Section 4.2.

The resulting lognormal realizations are then of the form

sLN(n̂) = λ1esG (n̂) − λ0, (A1)

with scale and shift parameters of λ1 = 0.9123 ± 0.0017 and λ0 =
0.9697 ± 0.0017, respectively, for our lowest redshift bin, which is
the most non-Gaussian.

Fig. A1 shows the distribution of pixel overdensities across all
realizations of the lognormal and Gaussian signal maps. It is clear
that the Gaussian maps contain many pixels with s < −1, which is
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non-physical for our case, where s corresponds to an overdensity. The
lognormal maps avoid this problem and are a better approximation
of the true overdensity distribution. As we have shown, most of
the cleaning methods can be viewed under a regression framework
wherein the signal distribution is assumed to be Gaussian, so we
investigate whether our comparison of methods changes when using
a more realistic lognormal distribution.

Fig. A2 shows the error in the power spectrum reconstruction,
given by the �χ2

C�
statistic, for the different methods. We find that

while there is some overall shift, using the lognormal signal maps
does not change the relative behaviour of the methods; none of them
display a unique susceptibility to the assumption of Gaussianity in
the signal maps.

APPENDIX B: EFFECT OF PREWHITENING

In their derivation of the bias on the estimated power spectrum after
(pseudo-C�) MP, Elsner et al. (2017) assume that the map d has been
decorrelated (’prewhitened’) before projecting out the templates.
This is quite difficult to do in practice, as it requires the inversion of
an Npix × Npix matrix, the same problem with QML estimators for
the power spectrum. Indeed, one of the assumptions of pseudo-C�

estimation is that pixels are uncorrelated (though individual pixels
are weighted by an estimate of their inverse noise variance and by
the mask, see e.g. Alonso et al. (2019).)

As shown in Section 4.1, however, the dominant ‘noise’ in
our observations is actually our true clustering signal, so a true
‘prewhitening’ step should more appropriately inverse weight the

Figure B1. Impact of prewhitening before cleaning with the multiplicative
and additive versions of the MP method on 1000 realizations for our
fiducial contamination model. The standard MP method assumes a flat
power spectrum for the target signal, resulting in a suboptimal estimate of
contamination. This can be improved through ‘prewhitening’ the data vector
and templates using a prior power spectrum, which can be shown to be
equivalent to a standard weighted regression procedure in harmonic space.
There is clear but modest improvement from the standard case (blue) to
the nearly optimal, prewhitened case (orange), with the most improvement
seen for realizations that have large error. This can be seen by the preferential
reduction of extreme points at the high end of the box plots in the prewhitened
case (note the log scale).

data by the expected clustering variance. This can be done efficiently
in harmonic space when there is no mask, as the clustering signal is
diagonal, circumventing the need to invert a large covariance matrix.

We can define prewhitened data vectors for our observed overden-
sity field and templates as

(dobs)
′
�m = (dobs)�m/

√
Css

� , (B1)

(ti)
′
�m = (ti)�m/

√
Css

� , (B2)

which results in coefficient estimates of

α̂ = (T ′ †T ′)−1T ′ †d ′
obs, (B3)

where T
′

is a N�m × Ntpl matrix with complex entries defined in
equation (B2). We can compute the amplitudes directly with

α̂ =
∑�max

�=0 (2� + 1)C̃�
td

/Css
�∑�max

�=0 (2� + 1)C̃�
tt
/Css

�

. (B4)

We found that prewhitening improved �χ2
C�

by a mean of ∼0.05
with dispersion 0.08 across the mocks, with similar shifts regard-
less of whether the multiplicative correction was applied or not.
Fig. B1 shows the improvement from the standard case (blue) to the
prewhitened case (orange) for both additive and multiplicative MP.
While we do not show it, we found that the benefit of prewhitening
increased for realizations that had worse power spectrum estimates
(higher �χ2

C�
), in effect catching and mitigating particularly bad

realizations.
In practice, one would either assume a prior power spectrum for

prewhitening or compute it iteratively, just as one does for the MP
debiasing step, so this could easily be incorporated into existing
MP routines such as NaMaster. As noted in Section 4.1, since
MP is equivalent to regression, this improvement also quantifies the
expected level of improvement that would come from accounting for
the covariance between pixels in pixel-based regression methods.

Analyses on real data will of course be complicated by the mask,
which correlates different multipoles, but this can be addressed by
suitable binning of the multipoles. Indeed, the standard pseudo-C�

MP assumes a flat power spectrum and so can be thought of as
the limiting case of using only a single bin across multipoles with
equal weighting, such that even a rough estimate of the signal power
spectrum should offer improvement.

The other methods tested here should benefit similarly from
prewhitening, with the possible exception of the DES-Y1 method,
which already incorporates an estimate of the covariance of s
(which accounts for much of the methods’ complexity). The Forward
Selection method we presented may be particularly impacted, since
the estimated covariance of the fit parameters is underestimated when
the pixel covariance is neglected, and this is used for the significance
criterion for selecting a template. This could be one reason why the
Forward Selection method sometimes failed to reduce all templates
to below a significance of �χ2/�χ2

0 = 2 – such a threshold was
artificially low compared to what would be expected from random
variation.

As noted in equation (51), the prewhitening step in equation (B2)
should optimally include contributions from the systematics as
well. However as this represents minor perturbations to the major
prewhitening correction above and is hence a small ‘error on the
error’, the effects should be small. This is consistent with Elvin-
Poole et al. (2018), who found negligible impact on their method from
neglecting the additional systematics contribution to their estimated
covariance matrices.
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Figure B2. Validation tests of the MP map-cleaning procedure. Left-hand panel: Comparison of MP performance on an additive-only contaminated map (as
assumed by the MP method), using NaMaster (blue) and our own implementation (orange). The agreement between the two is very good. Right-hand panel:
Impact of not precentreing cleaning templates in NaMaster. The blue curve indicates the standard use case, where contamination is additive and completely
described by the templates, which have been individually centred at zero. If templates are instead centred at another value (here we add a constant 2σ tpl, i offset
to each template, where σ tpl, i is the standard deviation of values in template map i. Adding a monopole template completely mitigates the bias from non-centred
templates.

APPEN D IX C : C OMPARISON W ITH NaMaster

We have used our own implementation of the MP method and
have tested it against that of NaMaster, finding good agreement.
NaMaster computes the power spectra given a set of templates and
observations, but does not produce map estimates, so we compare
the two implementations using the cleaned power spectrum only.
The left-hand panel of Fig. B2 shows the relative error of the
estimated power spectrum when cleaned using NaMaster versus
our own implementation, using the exact same contaminated map
and templates and we find good agreement (this held true for all
realizations tested). There is very slight disagreement at larger scales
(low �), which may be numerical artifacts from the Master (Hivon
et al. 2002) algorithm implemented to account for mode coupling
on a cut sky being applied to full-sky input maps. Regardless, the
deviations between the two are small for � > 2.

A P P E N D I X D : AC C O U N T I N G FO R T H E
M O N O P O L E

It is worth saying a few words about the monopole term, both as in
terms of prediction and as it relates to regression.

First, the overdensity residuals do not correspond to the number
density residuals. Even with a perfect reconstruction ŝ = s, the true
number density will be unknown up to a factor of γ ,

Ntrue = γ 〈Nobs〉pix(s + 1), (D1)

and as such the estimated number density could be quite different
from the truth. Fig. 4 shows a somewhat unintuitive consequence of
this. The single systematic that contaminates the field has the form
fsys∝ − t, so that it only obscures galaxies from view (fsys ≤ 0). At t =
0, there is no contamination and so Nobs = Ntrue, however as the figure
shows the over-density residuals are quite large. This is because the
mean number density is significantly underestimated, so pixels with
no obscuration are preferentially (and wrongly) estimated to reside
in overdense regions.23

23In other words, γ > 1, so from equation (38), 〈dobs|fsys=0〉pix > 0.

Secondly, a net monopole in fsys corresponds to the intercept in the
regression methods (a column of ones in T). In OLS regression (or
pseudo-C� MP), the fit is guaranteed to go through the centre of mass
of the points, (t̄ , d̄obs), such that including a monopole is unnecessary
with such methods if working with overdensities and zero-centred
templates. In such cases, the ‘projection’ of the monopole has already
been done by subtracting the mean from the density and template
maps (consider equation 17 with a template of all 1s). We showed
in equations (38)–(44) how how this also holds in the multiplicative
case.

In realistic situations, there is high susceptibility to human error
if a monopole term is not included – previously zero-centred maps
can easily shift through template transformations, mask adjustments,
and the application of a mask to mocks, resulting in wildly biased
contamination estimates that may be difficult to detect. For example,
it is easy to pass templates that are not zero-centred to current
pseudo-C� MP methods such as implemented in NaMaster and
receive highly biased spectra without warning (see right-hand panel
of Fig. B2).

The DES-Y1 and Forward Selection methods both already include
an intercept term, in keeping with the original formulation of the
DES-Y1 method, though in practice it should be very close to zero.

We therefore opt to include a monopole term in our Elastic
Net method, as this ensures the method is robust and generalizes
the process beyond overdensities to non-zero mean fields, and it
will naturally be ignored as a template if it does not contribute
information.

A P P E N D I X E: MA P E R RO R W H E N VA RY I N G
NUMBER OF TEMPLATES

Fig. E1 shows the RMSE of the estimated overdensity map when
varying the number of templates used for cleaning (see Fig. 10 for
details). Typical map errors are small, with RMSEs � 0.03 for most of
the cases studied and trends similar to Fig. 10. TS shows particularly
bad map reconstruction due to the fact that it fully removes the
largest scale modes which have a small contribution to �χ2

C�
but a
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Figure E1. Same as Fig. 10 but showing the RMSE in the estimated overdensity map for each method, rather than error in the power spectrum. Trends are very
similar. See Section 7.2 for details.

large contribution to the RMSE because of inducing a bias on a large
number of pixels.

APPENDIX F: IM PAC T O F �χ2/�χ2
0 O N D E S - Y 1

ANALY SIS

Here, we investigate the effect of �χ2/�χ2
0 and σ 2

sys on the efficacy
of the DES-Y1 method, as described in Section 3.1. We describe

Figure F1. Dependence of the power spectrum error (�χ2
C�

) on the level of

contamination σ 2
sys (x-axis), and on the stopping criterion �χ2/�χ2

0 used for
the DES-Y1 method (colors). Points are offset for clarity. For comparison, the
variance across pixels from the true overdensity in each bin ranges from σ 2

sig ∈
[0.075, 0.122] for the five redshift bins of our fiducial survey, corresponding
to factors of 7.5 – 1220 times larger than σ 2

sys for the points shown.

the reconstruction quality with the residual chi-squared between the
cleaned and true model, �χ2

C�
.

Fig. F1 shows how �χ2/�χ2
0 affects the reconstruction quality

for the DES-Y1 method, as a function of the level of contamination
parametrized by the systematic-error variance σ 2

sys. We find little
reduction in error by lowering the significance threshold below
�χ2

threshold = 4.
At our fiducial level of contamination (σ 2

sys = 10−2), almost all
contaminating templates exceed the highest threshold displayed of
�χ2/�χ2

0 = 32 and so are corrected for. The larger the contam-
ination, the more precisely its form can be determined, so as the
level of contamination decreases, some contaminated templates are
left uncorrected for. This results in the somewhat counter-intuitive
turnover in the error for a given threshold level. We found that
the lowest threshold of �χ2/�χ2

0 = 1 consistently outperformed
higher thresholds, despite the risk of overfitting, in agreement with
our results in Section 7.2, which showed that the extra power from
residual contamination is likely more pernicious than the excess
removal of power due to overfitting.
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