
MNRAS 434, 2556–2571 (2013) doi:10.1093/mnras/stt1200
Advance Access publication 2013 July 26

The impact of systematic uncertainties in N-body simulations on the
precision cosmology from galaxy clustering: a halo model approach

Hao-Yi Wu‹ and Dragan Huterer‹

Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109-1040, USA

Accepted 2013 June 26. Received 2013 May 30; in original form 2013 March 4

ABSTRACT
Dark matter N-body simulations provide a powerful tool to model the clustering of galaxies and
help interpret the results of galaxy redshift surveys. However, the galaxy properties predicted
from N-body simulations are not necessarily representative of the observed galaxy populations;
for example, theoretical uncertainties arise from the absence of baryons in N-body simulations.
In this work, we assess how the uncertainties in N-body simulations impact the cosmological
parameters inferred from galaxy redshift surveys. Applying the halo model framework, we
find that the velocity bias of galaxies in modelling the redshift-space distortions is likely to
be the predominant source of systematic bias. For a deep, wide survey like BigBOSS, current
10 per cent uncertainties in the velocity bias limit kmax to 0.14 h Mpc−1. In contrast, we find
that the uncertainties related to the density profiles and the galaxy occupation statistics lead
to relatively insignificant systematic biases. Therefore, the ability to calibrate the velocity
bias accurately – from observations as well as simulations – will likely set the ultimate limit
on the smallest length scale that can be used to infer cosmological information from galaxy
clustering.

Key words: cosmological parameters – dark energy – dark matter – large-scale structure of
Universe.

1 IN T RO D U C T I O N

The large-scale distribution of galaxies has been used to probe the
structure and composition of the universe for over three decades.
From the pioneering analyses of the Lick catalogue (Groth &
Peebles 1977) and the CfA Redshift Survey (Huchra et al. 1983;
Geller & Huchra 1989) revealing the cosmic web, the APM Galaxy
Survey hinting the departure from the standard cold dark matter
(CDM) model (Maddox et al. 1990) to the subsequent 2dF Galaxy
Redshift Survey (Colless et al. 2001), the Sloan Digital Sky Survey
(SDSS; York et al. 2000) and the VIMOS-VLT Deep Survey (Le
Fèvre et al. 2005), galaxy redshift surveys have revolutionized the
view of the large-scale structure of the universe. Recently, the Wig-
gleZ Dark Energy Survey (Drinkwater et al. 2010) and the SDSS-III
Baryon Oscillation Spectroscopic Survey (BOSS; Schlegel, White
& Eisenstein 2009) have measured the galaxy clustering to un-
precedented precision and provided stringent constraints on the
cosmological parameters.

One of the most important features in the galaxy clustering is
the baryon acoustic oscillations (BAO), originating from the waves
in the primordial electron–photon plasma before the recombina-
tion. The sound horizon at the end of recombination is manifested
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as a peak in the real-space two-point correlation function or as
wiggles in the Fourier-space power spectrum. This characteristic
scale of BAO is considered as a standard ruler of the different
evolution stages of the universe, and as a dark energy probe with
relatively well-controlled systematics (Blake & Glazebrook 2003;
Seo & Eisenstein 2003). Indeed, since its discovery (Miller, Nichol
& Batuski 2001; Cole et al. 2005; Eisenstein et al. 2005), BAO has
been providing ever improving constraints on cosmological param-
eters (e.g. Percival et al. 2010; Blake et al. 2011; Anderson et al.
2012).

Beyond the BAO feature, the full scale dependence of the clus-
tering of galaxies contains much more information and can be used
to constrain cosmology (e.g. Tegmark et al. 2006; Reid et al. 2010;
Tinker et al. 2012; Cacciato et al. 2013) and the halo occupation
statistics (e.g. Abazajian et al. 2005; Tinker et al. 2005; van den
Bosch et al. 2007; Zheng & Weinberg 2007; Zehavi et al. 2011).
From the perspective of power spectrum P(k), the number of modes
increases as k3, and the information content increases dramatically
as one goes to smaller scales. However, when one tries to draw
information from high k, especially at low redshift, the density
perturbations become non-linear and difficult to model (e.g. Smith
et al. 2003; Heitmann et al. 2010; Jennings, Baugh & Pascoli 2011),
which can introduce significant systematic errors in the recovered
cosmological parameters (e.g. de la Torre & Guzzo 2012; Smith
et al. 2012).
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The analysis of galaxy clustering often relies on N-body simula-
tions and synthetic galaxy catalogues to model the non-linearity
on small scales, as well as to estimate the cosmic and sample
covariances. For example, the WiggleZ team has validated their
model for the non-linear galaxy power spectrum using the Gig-
gleZ Simulation1 (Parkinson et al. 2012), while synthetic galaxy
catalogues based on the Large Suite of Dark Matter Simulations
(LasDamas2) have been used in the galaxy clustering analysis of
SDSS (Chuang & Wang 2012; Xu et al. 2012).

For upcoming surveys, synthetic catalogues generated from N-
body simulations will likely be routinely used to calibrate galaxy
surveys. However, N-body simulations are not free from systemat-
ics. In N-body simulations, galaxies are assigned to haloes or dark
matter particles based on models such as halo occupation distri-
bution (HOD; Peacock & Smith 2000; Scoccimarro et al. 2001;
Berlind & Weinberg 2002), abundance matching (Kravtsov et al.
2004; Vale & Ostriker 2004) or semi-analytic models (White &
Frenk 1991; Kauffmann, White & Guiderdoni 1993; Somerville &
Primack 1999; Cole et al. 2000). The galaxy populations predicted
by simulations can be affected by intensive stripping in dense en-
vironment (e.g. Wetzel & White 2010) and the absence of baryons
(e.g. Weinberg et al. 2008; Simha et al. 2012). On the other hand,
when one uses dark matter particles to model the behaviour of galax-
ies, systematic errors may arise because the positions and velocities
of galaxies do not necessarily follow those of dark matter particles
(e.g. Wu et al. 2013a). Hydrodynamical simulations that include
proper treatments of baryonic physics can be another avenue to
predict the properties of galaxies more reliably; however, because
these simulations are more computationally intensive, it is not yet
practical to use them to achieve the statistics and high resolution
required by upcoming large surveys.

In addition, it has been shown that galaxies predicted from
N-body simulations cannot recover the spatial distribution of ob-
served galaxies. For example, Wu et al. (in preparation) have shown
that in high-resolution N-body simulations of galaxy clusters, sub-
haloes tend to be prematurely destroyed and fail to predict the loca-
tion of galaxies (also see Appendix A). The need to include ‘orphan
galaxies’ (galaxies not associated with subhaloes in simulations) to
improve the completeness of predicted galaxies has been frequently
addressed in the community (e.g. Gao et al. 2004; Wang et al. 2006;
Guo et al. 2011); however, even including orphan galaxies does not
lead to consistent galaxy clustering at all scales. For example, Guo
et al. (2011) have shown that the galaxy population generated us-
ing the semi-analytic model applied to the Millennium Simulations
overestimates the small-scale clustering (also see Contreras et al.
2013).

In this paper, we examine the impact of the systematics in N-body
simulations on the predictions of galaxy clustering. We calculate the
galaxy power spectrum based on the halo model, with inputs from
the results of recent N-body simulations. We use the information of
the full power spectrum of galaxies to forecast the cosmological pa-
rameter constraints and determine at which scale these systematics
start to become relevant. We specifically explore how these uncer-
tainties will limit our ability to utilize the cosmological information
from small scale.

This paper is organized as follows. In Section 2, we review the
halo model prediction for galaxy power spectrum. In Section 3,
we present our fiducial assumptions and discuss the information

1 http://tao.it.swin.edu.au/partner-resources/simulations/gigglez/
2 http://lss.phy.vanderbilt.edu/lasdamas/

content associated with P(k). Section 4 explores the self-calibration
of HOD parameters. Section 5 addresses the impact of the uncertain-
ties in the halo mass function on the cosmological constraints from
galaxy clustering. Section 6 focuses on various systematics associ-
ated with the properties of galaxies in dark matter haloes in N-body
simulations and presents the required control of these sources of
systematic error. We conclude in Section 7. In Appendix A, we
present the galaxy number density profile model used in this work.
In Appendix B, we provide a detailed derivation of the galaxy power
spectrum based on the halo model. In Appendix C, we derive the
power spectrum covariance.

2 H A L O MO D E L A N D G A L A X Y P OW E R
SPECTRUM: A REVI EW

Throughout this work, we use the power spectrum of galaxies P(k)
as our clustering statistic. Possible alternatives include the three-
dimensional correlation function ξ (r) and its two-dimensional ana-
logue – the angular two-point function w(θ ) or the projected two-
point function wp(rp). While the Fourier-space power is more diffi-
cult to measure from the galaxy distribution, it is ‘closest to theory’
in the sense that the other aforementioned quantities are weighted
integrals over P(k). Therefore, it is easiest to see the effect of the
uncertainties in theoretical modelling by using the power spectrum.
While these different functions measured in a given galaxy survey
contain the same information in principle, in data analysis some-
times discrepancies occur (e.g. Anderson et al. 2012).

2.1 Basic model

In this section, we provide the key equations of the galaxy power
spectrum derived from the halo model, following Scherrer &
Bertschinger (1991), Seljak (2000) and Cooray & Sheth (2002).
The detailed derivation is provided in Appendix B.

The halo model assumes that all galaxies are inside dark matter
haloes. To model the distribution of galaxies, we need the following
distributions.

(i) Statistics and spatial distribution of dark matter haloes:

(a) Halo mass function, dn/dM , the number density of haloes
as a function of the halo mass.

(b) Halo bias, b2(M) = Phh(k)/Plin(k), where Phh is the power
spectrum of haloes and Plin is the linear matter power spectrum.
We limit our use of b(M) to large scales where b(M) is scale
independent.

(ii) Statistics and spatial distribution of galaxies in a halo:

(a) HOD function, P(N|M), the probability distribution func-
tion of the number of galaxies in a halo of a given mass. The
number of galaxies N is further split into the contribution from
central galaxies Ncen (0 or 1) and from satellite galaxies Nsat.

(b) Galaxy number density profile, u(r|M), the radial depen-
dence of the galaxy number density inside a halo of a given mass.
We normalize u such that

∫
u(r|M) d3r = 1. We also use the den-

sity profile in Fourier space, ũ(k|M) = ∫
d3xu(x|M)e−ik·x , and

ũ → 1 for small k.

The mean galaxy number density is given by

n̄gal ≡ 〈
ngal

〉 =
∫

dM
dn

dM
〈N |M〉 . (1)

The power spectrum is contributed by two galaxies in two different
haloes (the two-halo term, P 2h

gg ) and two galaxies in the same halo

http://tao.it.swin.edu.au/partner
http://lss.phy.vanderbilt.edu/lasdamas/
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(the one-halo term, P 1h
gg ):

P (k) = P 1h
gg (k) + P 2h

gg (k) (2)

P 2h
gg (k) =

[
1

n̄gal

∫
dM

dn

dM
〈N |M〉 b(M)ũ(k|M)

]2

Plin(k) (3)

P 1h
gg (k) = 1

n̄2
gal

∫
dM

dn

dM

〈(
N

2

)∣∣∣∣M
〉

f (k|M). (4)

Here 〈X|M〉 indicates the average value of quantity X at a given halo
mass M. In the one-halo term,〈(

N

2

)∣∣∣∣M
〉

f (k|M) =
[
〈Nsat|M〉 ũ(k|M)

+ 1

2
〈Nsat(Nsat − 1)|M〉 |ũ(k|M)|2

]
,

which takes into account the contribution from central–satellite and
satellite–satellite pairs (Berlind & Weinberg 2002).

2.2 Redshift-space distortions

In observations, one cannot recover the exact three-dimensional
spatial distribution of galaxies, because the redshifts of galaxies are
impacted by their motions due to the local gravitational field and
do not reflect their true distances. On larger scales, galaxies tend
to move towards high-density regions along filaments, and these
motions tend to squash the galaxy distribution along the line of sight
and boost the clustering, a phenomenon known as the Kaiser effect
(Kaiser 1987). On small scales, the virial motions of galaxies inside
a halo tend to make the galaxy distribution in the redshift space
elongated along the line of sight, causing the so-called Fingers-of-
God effect and reducing the small-scale power. In this section, we
briefly describe the model we use for the redshift-space distortions
(RSD) for P(k), following Seljak (2001), White (2001) and Cooray
& Sheth (2002). We adopt one of the simplified models – assuming
the velocity distribution function to be Gaussian – and note that the
improvement of the RSD model is currently an active research area.

Since the one-halo term involves the halo scale, we only consider
the virial motions of galaxies inside a halo, which can be modelled
as (Peacock 1999)

δ̃z
gal(k) = δ̃gal(k)e− 1

2 [kσv(M)μ]2
, (5)

where δ̃z
gal and δ̃gal are the number density fluctuations of galaxies

with and without the effect of RSD, σ v(M) is the velocity dispersion
of galaxies inside a halo of mass M and μ = k̂ · r̂ . We average over
μ to obtain the angular averaged one-halo term

P 1h
gg (k) = 1

n̄2
gal

∫
dM

dn

dM

〈(
N

2

)∣∣∣∣M
〉

fR(k|M) , (6)

where〈(
N

2

)∣∣∣∣M
〉

fR(k|M) =
[

〈Nsat|M〉 ũ(k|M)R1(M)

+ 1

2
〈Nsat(Nsat − 1)|M〉 |ũ(k|M)|2R2(M)

]
.

The factor

Rp(M) =
√

π

2

erf[kσv(M)
√

p/2]

kσv(M)
√

p/2
(7)

comes from averaging over μ.

For the two-halo term, we multiply the large-scale and small-
scale effects together (see Peacock 1999 and section 4 in Peacock
& Dodds 1994)

δ̃z
gal(k) = (

δ̃gal(k) + f (�M)δ̃m(k)μ2
)

e− 1
2 [kσv(M)μ]2

. (8)

The first part is the familiar Kaiser result with f(�M) ≡ d ln D/d ln a,
where D(a) is the linear growth function of density fluctuations
and a is the scale factor. The density fluctuation of dark matter is
denoted by δ̃m. The calculation thus includes not only the galaxy
power spectrum, but also the matter power spectrum and the matter–
galaxy cross power spectrum. After averaging over μ, we obtain

P 2h
gg (k) =

(
F 2

g + 2

3
FgFv + 1

5
F 2

v

)
Plin(k) , (9)

where

Fg(k) = 1

n̄gal

∫
dM

dn

dM
〈N |M〉 b(M)R1(M)ũ(k|M) (10)

comes from the contribution of δ̃gal and

Fv(k) = f (�M)
1

ρ̄

∫
dM

dn

dM
Mb(M)R1(M)ũm(k|M) (11)

comes from the contribution of δ̃m. Here ũm(k|M) denotes the dark
matter density profile normalized the same way as ũ and ρ̄ is the
average matter density of the universe. We assume that ũm(k|M)
follows the Navarro–Frenk–White (NFW) profile (Navarro, Frenk
& White 1997) throughout the paper.

The left-hand panel of Fig. 1 shows an example of the contribu-
tion to the total galaxy power spectrum by the one-halo (blue) and
two-halo (red) terms. The input of halo model will be detailed in
Section 3.1. The solid and dashed curves correspond to including
and excluding the effect of RSD. As can be seen, including RSD
significantly reduces the power at small scale. We also note that the
scale where one- and two-halo terms cross shifts very slightly due
to RSD.

The right-hand panel of Fig. 1 presents the comparison between
our model and one of the power spectra from the WiggleZ survey,
provided by Parkinson et al. (2012). The green dashed/blue solid
curve corresponds to the theoretical P(k) before/after convolving
with the window function of WiggleZ. We assume that the HOD is
described by the five parameters in equation (27); we fit for these
five parameters and show the model corresponding to the best-
fitting parameters. This figure is only for the purposes of illustration;
details of the fitting procedure will be presented in a future paper.

3 BA S E L I N E M O D E L A N D F I D U C I A L DA R K
E N E R G Y C O N S T R A I N T S

In this section, we describe our inputs for the halo model, assump-
tions about the survey, predictions for the galaxy power spectrum,
and Fisher matrix calculations of the statistical and systematic
errors.

3.1 Baseline assumptions

We use the virial mass Mvir of dark matter haloes throughout this
work and adopt the following functions in our halo model calcula-
tions.

(i) Mass function (dn/dM) and halo bias (b(M, z)): based on the
fitting functions in Tinker et al. (2008, 2010), which are derived
from N-body simulations and can achieve approximately 5 per cent
accuracy for the mass function and 6 per cent for the halo bias.
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Figure 1. Galaxy power spectrum calculated based on the halo model. Left: the blue and red curves show the one- and two-halo terms, respectively. The
solid curves include the RSD, while the dashed curves do not. RSD greatly reduce the power spectrum at small scale (the ‘Fingers-of-God’ effect), and only
slightly shift the scale where one- and two-halo terms cross. Right: our model fit to WiggleZ data from Parkinson et al. (2012). The blue solid curve shows the
theoretical P(k) with the best-fitting HOD parameters and has been convolved with the observational window function.

(ii) Density profile: based on the universal NFW profile (Navarro
et al. 1997), which is described by one concentration parameter cvir,

uNFW(r|Mvir) ∝ 1

(r/rs)(1 + r/rs)2
,

cvir(Mvir) = Rvir/rs . (12)

(iii) Concentration–mass relation: based on the relation in Bhat-
tacharya et al. (2013), which will be further discussed in Section 6.1.
In the presence of significant scatter in the c–M relation, we perform
the integration

u(r|Mvir) =
∫

dcvirP (cvir|Mvir)u(r|Mvir(cvir)) . (13)

Throughout this paper, we assume that cvir has a Gaussian distribu-
tion for a given Mvir with a scatter of 0.33, based on the finding of
Bhattacharya et al. (2013).

(iv) Velocity dispersion: based on the scaling relation between
dark matter velocity dispersion and halo mass from Evrard et al.
(2008),

σ DM
v = 1082.9

(
h(z)M200

1015 M	

)0.3361

km s−1 . (14)

We convert the mass M200 to Mvir based on Hu & Kravtsov (2003).
Since the scatter in the velocity dispersion is expected to be small
(4 per cent), it is not included in our calculation.

(v) HOD: based on the parametrization from Zheng et al. (2005)
and the fiducial parameters from Coupon et al. (2012), both of which
will be discussed in detail in Section 4.

We assume a fiducial galaxy survey covering fsky = 1/3 of the
full sky (about 14 000 square degrees), similar to the BigBOSS
experiment.3 We assume that the survey depth is comparable to
the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS)
results presented in Coupon et al. (2012); specifically, we assume

3 http://bigboss.lbl.gov/

five redshift bins in the range 0.2 < z < 1.2, and the limiting
magnitude in each bin is summarized in Table 1. We assume no
uncertainties in the redshift measurements of galaxies. Given that
the assumption of such a deep, wide spectroscopic survey may be
somewhat optimistic, our required control of systematic errors may
be somewhat more stringent than what BigBOSS needs.

We include seven cosmological parameters, whose fiducial val-
ues are based on the Wilkinson Microwave Anisotropy Probe 7 con-
straints (Komatsu et al. 2011): total matter density relative to critical
�M = 0.275; dark energy equation of state today and its variation
with scale factor w0 = −1 and wa = 0, respectively; physical
baryon and matter densities �bh

2 = 0.022 55 and �Mh2 = 0.1352;
spectral index ns = 0.968; and the amplitude of primordial fluctu-
ations A = 	2

ζ (k = 0.002 h−1 Mpc) = 2.43 × 10−9. We assume a
flat universe; thus, dark energy density �DE = 1 − �M.

3.2 Likelihood function of P(k) and error forecasting

Here we follow the derivations in Scoccimarro, Zaldarriaga & Hui
(1999) and Cooray & Hu (2001) but use a different convention
for the Fourier transform (see Appendix B). If we assume a thin
shell in ln k space with width δ ln k around ln ki, the power spectrum
estimator reads

P̂ (ki) =
∫

ki

d3k
Vs(ki)

δ(k)δ(−k) + 1

n̄gal
, (15)

where

Vs(ki) = 4πk3
i δ ln k (16)

and 1/n̄gal accounts for the effect of shot noise. The first term of P̂ is
calculated based on the halo model results described in Section 2.2.

The covariance of power spectrum is given by

Cij ≡ 〈
P̂ (ki)P̂ (kj )

〉 − 〈
P̂ (ki)

〉 〈
P̂ (kj )

〉
= (2π)3

Vz

2P (ki)2

Vs(ki)
δij + T̄ij , (17)

http://bigboss.lbl.gov/
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Table 1. Fiducial values for the HOD parameters, adopted from Coupon et al. (2012) based
on CFHTLS.

Redshift Mg − 5 log10h log10Mmin log10M1 log10M0 σlog10 M αsat

0.2 < z < 0.4 −17.8 11.18 12.53 7.54 0.40 1.10
0.4 < z < 0.6 −18.8 11.48 12.66 10.96 0.43 1.09
0.6 < z < 0.8 −19.8 11.77 12.83 11.54 0.50 1.07
0.8 < z < 1.0 −20.8 12.14 13.21 12.23 0.35 1.12
1.0 < z < 1.2 −21.8 12.62 13.79 8.67 0.30 1.50

where the second term on the right-hand side is the contribution
from the connected term given by the trispectrum describing the
non-Gaussian nature of the random field,

T̄ij =
∫

ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj )
T (k1, −k1, k2, −k2) . (18)

We provide the detailed derivation in Appendix C. In equation (17),
Vz is the volume of the redshift bin, Vz = �survey

∫
r2(z)/H(z) dz,

where the integral is performed over the redshift extent of the bin.
The calculation of T̄ij involves four-point statistics, which is non-

trivial to calculate. Fortunately, Cooray & Hu (2001) have shown
that only the one-halo term dominates at the scale where the con-
tribution of T̄ij to Cij is not negligible; therefore, we only need to
calculate the one-halo contribution:

T 1h(k1, k2, k3, k4) = 1

Vzn̄
4
gal

∫
dM

dn

dM

×
〈(

N

4

)∣∣∣∣M
〉

f (k1, k2, k3, k4; M), (19)

where〈(
N

4

)∣∣∣∣M
〉

f (k1, k2, k3, k4; M)

=
〈(

Nsat

3

)∣∣∣∣M
〉

1

4

(
�3

i=1ũ(ki |M) + cyc.
)

+
〈(

Nsat

4

)∣∣∣∣M
〉

�4
i=1ũ(ki |M) . (20)

Analogous to the case of P 1h
gg considered in Section 2.1, the first

term accounts for quadruplets composed of one central and three
satellite galaxies, and the second term accounts for the quadruplets
composed of four satellite galaxies. We assume that P(Nsat|M) fol-
lows the Poisson distribution so that 〈(Nsat

3

)|M〉 = 〈Nsat|M〉3/3! and
〈(Nsat

4

)|M〉 = 〈Nsat|M〉4/4!.
We employ the Fisher matrix formalism to forecast the statistical

errors of the cosmological and nuisance parameters based on the
fiducial survey. The Fisher matrix reads

Fαβ =
∑

z

∑
i,j

∂Pi

∂θα

[
(2π)3

Vz

P 2
i

2πk3
i δ ln k

δij + Tij

]−1
∂Pj

∂θβ

=
∑

z

∑
i,j

∂ ln Pi

∂θα

[
(2π)3

Vz

1

2πk3
i δ ln k

δij + Tij

PiPj

]−1
∂ ln Pj

∂θβ

,

where α and β are indices of model parameters, while i and j refer
to bins in wavenumber which have a constant logarithmic width
δ ln k and extend out to the maximum wavenumber kmax. We adopt
δ ln k = 0.1, which has been tested to be small enough to ensure

convergence. The best achievable error in the parameter θα is given
by

σθα = [(F−1)αα]1/2. (21)

Throughout this work, unless otherwise indicated, the full set of
parameters considered is given by

θfull = (w0, wa, �DE, �Mh2, �bh
2, ns, ln A;

log10 Mmin, σlog10 M, log10 M0, log10 M1, αsat) . (22)

The first seven are the cosmological parameters introduced in Sec-
tion 3.1, while the last five are the nuisance parameters describing
the HOD and will be discussed in Section 4.1.

3.3 Fiducial constraints without systematics

To represent the statistical power of an upcoming galaxy redshift
survey, in the limiting case of no nuisance parameters, we con-
sider the inverse of the square root of the dark energy figure of
merit, originally defined as the inverse of the forecasted 95 per cent
area of the ellipse in the w0–wa plane (Huterer & Turner 2001;
Albrecht et al. 2006). In other words, our parameter of interest is√

σ (wa)σ (wp), where wp is the pivot that physically corresponds
to w(a) evaluated at the scale factor where the constraint is the
best. This quantity takes into account the temporal variation of dark
energy, and the square root serves to compare it fairly to the con-
stant w; the two quantities, σ (w) and

√
σ (w0)σ (wp), tend to show

very similar behaviour. For our fiducial survey, the statistical error
in our parameter combination of interest is

√
σ (wa)σ (wp) = 0.4

(or 0.003) for kmax = 0.1 (or 1) h Mpc−1, without external priors.
When we add the Planck Fisher matrix (Hu, private communica-
tion),

√
σ (wa)σ (wp) becomes 0.002 (or 0.0002) for kmax = 0.1

(or 1) h Mpc−1.
Fig. 2 presents the expected dark energy constraints as a function

of kmax, without nuisance parameters or systematic errors for the
moment, for three levels of sophistication in the theory. We proceed
in steps: the blue curve corresponds to no RSD (Section 2.1) with
a Gaussian likelihood function. In this case, the dark energy con-
straints increase sharply with kmax, indicating that these assumptions
are unrealistic. The green curve includes the RSD (Section 2.2),
which reduce the dark energy information from small scales. The
red curve further includes the effect of non-Gaussian likelihood [T̄ij

from equation (18)], which reduces the information at high k even
more.

3.4 Systematic bias in model parameters

In this work, we estimate the systematic shifts in parameter in-
ference caused by using an inadequate model. In particular, if
we assume a problematic model that produces a power spectrum
Psys(k) that systematically deviates from the truth Pfid(k), we will
obtain parameters that systematically deviate from their true values:
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Figure 2. Dark energy information content from P(k), based on our fidu-
cial survey assumptions. The x-axis corresponds to the largest k (smallest
scale) assumed to be reliably measured and interpreted. The blue curve cor-
responds to a Gaussian likelihood function and assumes no RSD; it leads
to unrealistically tight constraints for large kmax. The green curve includes
RSD, and the red curve further includes the trispectrum correction to the
covariance matrix. As can be seen, including these two effects reduces the
small-scale information.

θ sys = θfid +	θ . The systematic shifts in parameters can be obtained
through a modified Fisher matrix formalism (Knox, Scoccimarro &
Dodelson 1998):

	θα =
∑

β

(F−1)αβGβ , (23)

where

Gβ ≡
∑

z

∑
i,j

(ln Psys,i − ln Pfid,i)

×
[

(2π)3

Vz

1

2πk3
i δ ln k

δij + Tij

PiPj

]−1
∂ ln Pj

∂θβ

. (24)

To determine the significance of systematic errors, we calculate
the systematic shifts 	χ2

tot in the full high-dimensional parameter
space,

	χ2
tot = 	θTF	θ , (25)

where 	θ is the vector of the systematic shifts of parameters. Both
	θ and the Fisher matrix F include cosmological and nuisance
parameters. The systematic bias is considered significant if the in-
ferred θ sys lies outside the 68.3 per cent confidence interval of the
Gaussian likelihood function centred on θfid; in other words, the
bias is ‘greater than the 1σ dispersion’. For example, in a full
12-dimensional parameter space considered here, the 68.3 per cent
confidence interval corresponds to 	χ2

tot = 13.7.

4 SE L F - C A L I B R AT I O N O F H O D PA R A M E T E R S

In this section, we focus on the efficacy of self-calibrating the HOD
parameters, that is, determining these parameters from the survey

concurrently with cosmological parameters. Since these HOD pa-
rameters are not known a priori, one usually marginalizes over them
along with cosmological parameters (e.g. Tinker et al. 2012), which
inevitably increases the uncertainties in cosmological parameters.
Here we focus on the statistical uncertainties and assume no sys-
tematic error; in the next section, we will compare these statistical
errors with systematic shifts of parameters.

We focus on two parametrization of HOD: one is based on Zheng
et al. (2005) and the other is based on a piecewise continuous
parametrization.

4.1 Zheng et al. parametrization

The HOD describes the probability distribution of having N galaxies
in a halo of mass M. In principle, the HOD is specified by the
full distribution P(N|M); in practice, modelling of the two-point
statistics only requires 〈Ncen|M〉, 〈Nsat|M〉 and 〈Nsat(Nsat − 1)|M〉.
We follow the HOD parametrization from Zheng et al. (2005), which
separates the contribution from central and satellite galaxies:

〈Ncen|M〉 = 1

2

[
1 + erf

(
log10 M − log10 Mmin

σlog10 M

)]
(26)

〈Nsat|M〉 = 〈Ncen|M〉 ×
(

M − M0

M1

)αsat

. (27)

The first equation describes the contribution from the central galaxy;
Mmin corresponds to the threshold mass where a halo can start to
host a galaxy that is observable to the survey and σlog10 M describes
the transition width of this threshold. The second equation describes
the contribution from satellite galaxies, whose number is assumed to
follow a power law, and M0 is the cutoff mass. In addition, we make
the widely adopted assumption that P(Nsat|M) follows a Poisson
distribution, i.e.

〈Nsat(Nsat − 1)|M〉 = 〈Nsat|M〉2 . (28)

We adopt the fiducial values from Coupon et al. (2012), which
are constrained using the projected angular two-point correlation
function w(θ ) from the CFHTLS out to z = 1.2. We use the same
binning and limiting magnitude as in Coupon et al. (2012); the
values are summarized in Table 1. We do not use the error bars
quoted there as our priors because we would like all parameters to
be self-calibrated consistently.

Under these assumptions, we have five nuisance parameters
(log10 Mmin, σlog10 M, log10 M0, log10 M1, αsat) for each of the
five redshift bins, i.e. 25 parameters in total. We assume that each
of the five distinct nuisance parameters varies coherently across the
five redshift bins, and is therefore described by a single parame-
ter. Under this assumption, instead of 25 nuisance parameters, we
only use 5 nuisance parameters to describe the uncertainties of all
HOD parameters. We parametrize the variations around the fiducial
values:

θHOD
i (z) = hiθ

HOD,fid
i (z) (i = 1, . . . , 5) , (29)

where hi are the dimensionless parameters describing the uncertain-
ties of the aforementioned five HOD parameters. We note that this
choice of five HOD parameters only represents one possible model;
depending on the data available and the astrophysical motivation, in
principle one can use a more general model to describe the evolution
of HOD. Increasing the number of degrees of freedom describing
the evolution of HOD will inevitably lead to degradation in the dark
energy constraints, and it will be very important to establish the
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Figure 3. Self-calibration of HOD parameters. We show the dark energy
constraints as a function of the highest k used in the survey. The red curve
corresponds to no nuisance parameters. The dark blue curve corresponds to
five nuisance parameters based on the parametrization in Zheng et al. (2005),
while the cyan curve corresponds to a piecewise continuous parametriza-
tion for satellite galaxies, with one parameter in each of the five mass bins.
Including nuisance parameters in either parametrization systematically in-
creases the dark energy uncertainties by one or two orders of magnitude.
The dashed curves include the Planck prior and assume the same nuisance
parameters as their solid-curve counterparts.

total number of degrees of freedom necessary to model the HOD
and its uncertainties.

We explore how well these parameters can be self-calibrated
by P(k) without the aid of priors. Fig. 3 shows the dark energy
constraints as a function of kmax, with fixed nuisance parameters
(red) and with these five marginalized nuisance parameters (dark
blue). The RSD and the full covariances of P(k) are included in
this calculation. Clearly, the dark energy constraints are weakened
by approximately about one or two orders of magnitude when we
marginalize over HOD parameters.

4.2 Piecewise continuous parametrization of HOD parameters

One potential worry with the parametrization in equation (27) is
whether 〈Nsat|M〉 is accurately described by a power law. To ad-
dress this, we propose a less model-dependent, piecewise contin-
uous parametrization for 〈Nsat|M〉. We divide the halo mass range
into nbins bins and assign a parameter describing the uncertainties
of HOD in each bin. That is,

〈Nsat|M〉 =
nbins∑
i=1

�i(M)fi 〈Nsat|M〉fid , (30)

where �i(M) defines the binning and equals 1 in [Mi, Mi+1] and 0
elsewhere, while fi is the free parameter in bin i and describes the
uncertainty of 〈Nsat|M〉 in this bin.

We still assume P(Nsat|M) to be a Poisson distribution, which
now implies

〈Nsat(Nsat − 1)|M〉 = 〈Nsat|M〉2

=
nbins∑
i=1

�i(M)f 2
i 〈Nsat|M〉2

fid . (31)

We start with one parameter per decade in mass, using nbins = 5 pa-
rameters between 1011 and 1016 h−1 M	, equally spaced in log10M.
We assume these parameters to be independent of redshift. The
cyan curve in Fig. 3 corresponds to marginalizing over these five
piecewise continuous parameters for 〈Nsat|M〉 and two parameters
(log10Mmin, σlog10 M ) for 〈Ncen|M〉, with no prior on them.

Fig. 4 shows the dependence of dark energy constraints on the
number of parameters describing 〈Nsat|M〉 per decade of mass,
Nper decade. The three panels correspond to kmax = 0.1, 0.4 and
1 h Mpc−1. The Planck prior is included in this calculation. The
black curve corresponds to no prior on fi and shows strong degra-
dation with increasing Nper decade as one would expect. When kmax is
small, the prior knowledge of HOD is important to improve the dark
energy constraints. On the other hand, when kmax is large, HOD can
be well self-calibrated, and the prior is not as important.

To enable a fair comparison of priors, however, we would like
to increase the freedom in the HOD model while fixing the overall
uncertainty per decade. To do this, we impose a fixed prior per
decade of mass:

σfi
= σ0

√
Nper decade (32)

so that the total prior per unit log10M, when we add the Fisher
information from all fi, is σ 0 regardless of the value of Nper decade.

The red/green/blue curves in Fig. 4 correspond to imposing
σ 0 = 1/0.1/0.01. For kmax = 0.1 h Mpc−1, the dark energy con-
straints converge when we use one parameter per decade of mass
regardless of the prior on nuisance parameters. When kmax >

0.1 h Mpc−1, a few more parameters per decade in mass are re-
quired for the results to converge. For example, for kmax = 0.4
(1.0) h Mpc−1, we need two (three) parameters per decade to ensure
convergence. The required number of parameters also somewhat
depends on the prior.

We note that the HOD parameters are progressively better self-
calibrated when we go to higher kmax; when kmax = 1 h Mpc−1,
self-calibrating the five HOD parameters only moderately degrades
the dark energy constraints. This finding encourages future surveys
to further push towards high kmax for rich cosmological and astro-
physical information.

5 SY S T E M AT I C E R RO R S D U E TO T H E
U N C E RTA I N T I E S IN T H E H A L O M A S S
F U N C T I O N

In this section, we focus on the effect of the uncertainties in the
halo mass function on the cosmological constraints from galaxy
clustering. The mass function has been widely explored analytically
(e.g. Press & Schechter 1974) as well as numerically using dark
matter N-body simulations (e.g. Sheth & Tormen 1999; Jenkins
et al. 2001; Sheth, Mo & Tormen 2001; Evrard et al. 2002; Reed
et al. 2003, 2013; Warren et al. 2006; Lukić et al. 2007, 2009; Cohn
& White 2008; Tinker et al. 2008; Crocce et al. 2010; Watson et al.
2013; Bhattacharya et al. 2013) and hydrodynamical simulations
(e.g. Rudd, Zentner & Kravtsov 2008; Stanek et al. 2010; Cui et al.
2012). The different fitting formulae for the mass function are often
based on different halo identification methods and mass definitions;
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Figure 4. Dark energy constraints with self-calibrated piecewise continuous HODs. The three panels correspond to kmax = 0.1, 0.4 and 1 h Mpc−1. The
x-axis corresponds to the number of parameters used to describe 〈Nsat|M〉 per decade of mass, and the y-axis corresponds to the dark energy constraints. The
black curve corresponds to no prior, and the constraints are degraded with larger number of parameters. The other curves correspond to consistently adding
a fixed total prior per decade of mass; that is, σfi

= σ0
√

Nper decade , where σ 0 = 1, 0.1 or 0.01. We note that one parameter per decade is sufficient for
kmax = 0.1 h Mpc−1, while two or three parameters are needed for higher kmax. Note that for higher kmax, the HOD parameters are better self-calibrated, and
the dark energy constraints are less dependent on the prior on HOD nuisance parameters.

therefore, instead of drawing a direct comparison between different
fitting formulae, we choose one specific fiducial model and explore
the uncertainties relative to this model.4

We use the fitting function from Tinker et al. (2008, described
in Section 3.1), which has been calibrated based on a large suite of
simulations implementing several different N-body algorithms and
different versions of �CDM cosmology; therefore, it is likely to
fairly represent the uncertainties in the mass function calibration.
Tinker et al. (2008) quoted a statistical uncertainty of �5 per cent
at z = 0 (∼1 per cent around M∗). However, the uncertainties are
presumably larger at higher redshift and can further increase if the
effects of baryons are taken into account.

We explore the effect of a small constant shift of the halo mass
function, parametrized as(

dn

dM

)
= (1 + ε)

(
dn

dM

)
fid

. (33)

The main panel of Fig. 5 shows the impact of ε = 0.05 on P(k). For
the two-halo term (small k), P(k) changes by less than 1 per cent,
because a constant shift in the mass function only affects Fv de-
scribing the large-scale RSD (see equation 9). For the one-halo
term (large k), P(k) changes by −5 per cent, which can be easily
seen from equation (6); the numerator includes one integration of
dn/dM (galaxy pairs in one halo) while the denominator includes
the square of such an integration.

We next see how this systematic shift in P(k) impacts cosmologi-
cal parameters. We use 	χ2

tot = 13.7 [1σ errors in a 12-dimensional
parameter space; see equation (25)] as our criterion of significant
impact from the systematic error. We calculate 	χ2

tot using the
Fisher matrix for seven cosmological parameters (Section 3.1) and
five HOD parameters (Section 4.1). Throughout this and the next
section, we use the Planck prior but no priors on HOD parameters.
We believe that these two assumptions reflect reality in the next

4 It has been shown that for surveys of cluster abundance such as the Dark
Energy Survey, ∼1 per cent accuracy in the mass function is required to avoid
significant degradation in dark energy constraints (see Cunha & Evrard 2010;
Wu, Zentner & Wechsler 2010). Here we would like to explore whether the
same accuracy is sufficient for surveys of galaxy clustering.

Figure 5. Impact of the uncertainty in the halo mass function on P(k). The
main panel shows the systematic shifts of P(k) when the mass function is
shifted by a constant 5 per cent (independent of mass and redshift). The
inset shows 	χ2

tot as a function of kmax when the mass function is shifted
by 1 or 5 per cent. The horizontal dashed line marks 	χ2

tot = 13.7, the 1σ

deviation in the 12-dimensional parameter space. As can be seen, 5 per cent
(1 per cent) allows kmax up to 0.15 (0.25) h Mpc−1.

5–10 years, when Planck data will firmly pin down certain com-
binations of cosmological parameters, while the determination of
the nuisance HOD quantities will keep improving. We note that
unbiased priors always decrease the resulting systematic bias (for
a proof, see appendix of Bernstein & Huterer 2010) and make the
theoretical requirements less stringent. Thus, any prior on HOD pa-
rameters will alleviate the systematic biases and make the required
accuracy of theory less stringent.
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The inset of Fig. 5 shows how 	χ2 depends on kmax, for 5 per cent
(blue) and 1 per cent (green) systematic shifts in the mass function.
As can be seen, a 5 per cent (1 per cent) shift in the mass function can
cause a significant systematic error at kmax = 0.15 (0.25) h Mpc−1.
We note that at these scales, P(k) is still dominated by the two-halo
term; therefore, the systematic shifts caused by the mass function
are mainly related to the large-scale redshift distortion (the Kaiser
effect). However, this large-scale effect can be mitigated by prior
knowledge of σ 8 (e.g. σ 8 constraints from galaxy cluster counts;
Rozo et al. 2010), with which the large-scale galaxy bias can be
calibrated. Therefore, by calibrating the large-scale clustering am-
plitude, one can in principle reduce the impact of the uncertainties
in the mass function.

Finally, we note that the halo bias b(M) is also currently being
actively studied (e.g. Tinker et al. 2010; Ma et al. 2011; Manera
& Gaztañaga 2011; Paranjape, Sheth & Desjacques 2013). The
uncertainty in the halo bias is related to the uncertainty in the
mass function; for example, Tinker et al. (2010) have indicated that
their fitting function for the halo bias has an ∼6 per cent uncertainty,
which is related to the uncertainty of their mass function. In addition,
the uncertainties and systematics in b(M) will lead to a constant
shift in the two-halo term (see equation 9). In this case, holding the
galaxy bias fixed will cause a huge systematic shift in cosmological
parameters (for example, σ 8); therefore, it is necessary to fit the
overall galaxy bias to the large-scale clustering data. In this work,
we do not specifically explore the impact of uncertainties of the
halo bias because the halo bias determines the large-scale clustering
amplitude, which can be observationally calibrated when combined
with independent knowledge of σ 8. On the other hand, we note that a
scale-dependent bias can arise from the primordial non-Gaussianity
(e.g. Dalal et al. 2008) or small-scale non-linearity (e.g. Smith,
Scoccimarro & Sheth 2007). In this case, one could resort to multiple
tracers of large-scale structure (e.g. Seljak 2009; Cacciato et al.
2013), knowledge of primordial non-Gaussianity from the cosmic
microwave background (e.g. Planck Collaboration 2013) or higher
order statistics (e.g. Marı́n et al. 2013) to better calibrate the scale
dependence of the galaxy bias.

6 SY S T E M AT I C ER RO R S D U E TO T H E
UNC ERTA INTIES IN H ALO PRO PERTIES

In this section, we explore the impact of four sources of theoretical
uncertainties related to the properties of dark matter haloes coming
from N-body simulations on the constraining power of P(k). These
sources of systematics are as follows:

(i) concentration–mass relation,
(ii) deviation of ũ from the NFW profile,
(iii) deviation of Nsat from the Poisson distribution and
(iv) velocity bias.

In particular, we address the following points.

(i) With the current level of uncertainties, what are the systematic
errors in the prediction of P(k)? What are the biases in the parameter
inference caused by these systematics?

(ii) What is the smallest scale (largest kmax) allowed by the current
level of uncertainties?

(iii) What is the required reduction of these uncertainties if we
would like to push to higher kmax?

We again use 	χ2
tot to assess the impact of systematic errors on the

cosmological parameters, as described in the previous section. The

summary of the impact of these systematics is presented in Fig. 6
and Table 2.

6.1 Concentration–mass relation

In the halo model, the one-halo term depends on the number density
profile of galaxies, ũ(k|M). We assume that the galaxy distribution
follows the dark matter distribution, which is well described by an
NFW profile. We then use the concentration–mass relation of dark
matter haloes from the literature to compute ũ(k|M).

The concentration–mass relation has been calibrated with dark
matter N-body simulations (e.g. Bullock et al. 2001; Neto et al. 2007;
Duffy et al. 2008; Macciò, Dutton & van den Bosch 2008; Prada
et al. 2012; Bhattacharya et al. 2013; Kwan et al. 2013) and hydro-
dynamical simulations (e.g. Lau, Kravtsov & Nagai 2009; Duffy
et al. 2010; Rasia et al. 2013). Several observational programmes
are also working towards pinning down this relation (e.g. Coe et al.
2012; Oguri et al. 2012). However, 10–20 per cent of uncertainties
in the concentration–mass relation remain, and the concentration–
mass relation also varies with cosmology and the implementation of
baryonic physics (see, e.g., the review in Bhattacharya et al. 2013).

We investigate the impact of uncertainties in the concentration–
mass relation by comparing the models from Bullock et al. (2001,
B01 hereafter) and the recent calibration from Bhattacharya et al.
(2013, B13 hereafter). These two models represent two extreme
cases of the concentration–mass relation; therefore, using these two
extreme cases sets the upper limit of the systematic bias caused by
the c–M relation. We assume a scatter of 0.33 for the c–M relation
in both cases. Ignoring this scatter will lead to an approximately
0.5 per cent difference in P(k) at k ≈ 1 h Mpc−1.

Our baseline model is from the recent formula given by B13
(based on virial overdensity):

c(ν) = D(z)0.787.9ν−0.28

ν = 1

D(z)

[
1.12

(
Mvir

5 × 1013 h−1 M	

)0.3

+ 0.53

]
. (34)

We compare it with the model from B01:

c(Mvir) = 9

1 + z

(
Mvir

M∗(z)

)−0.13

. (35)

These two calibrations agree near M∗ at z = 0.
The top-left panel of Fig. 6 shows the relative change in the

power spectrum P(k), evaluated at five redshifts, due to the differ-
ence between B01 and B13. We find that P(k) based on B01 is in
general lower than that based on B13, because B01 predict lower
concentrations at the high-mass end. Although B01 predict higher
concentrations at the low-mass end, these haloes rarely contribute
to the one-halo term and thus do not significantly boost clustering.

The inset in this panel shows the systematic shifts in the parameter
space caused by different models, which are characterized by 	χ2

tot.
It can be seen that the systematic error starts to be comparable to
the statistical error (	χ2

tot = 13.7, marked by a horizontal dashed
line) at kmax = 1.2 h Mpc−1, which makes it a relatively unimportant
source of systematic error.

We would now like to study the effects of improved calibration
in the c–M relation. A natural way to do this is to assume that the
difference between the two extreme predictions has been reduced
by some constant factor, and that the new value interpolates between
the two original extremes. We define the interpolated value as

cinterp(M) = cfid(M) + fsys (calt(M) − cfid(M)) , (36)
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Figure 6. Systematic differences in P(k) caused by the four sources of errors discussed in Section 6. In each panel, the main figure shows the fractional
difference in P(k) in the five redshift bins, while the inset shows the systematic error 	χ2

tot as a function of kmax. The 1σ deviation in the 12-dimensional
parameter space, 	χ2

tot = 13.7, is marked by the horizontal dashed line in each inset.

Table 2. Summary of the effects of the four sources of systematic error considered in Section 6. Note that 〈	P/P〉 is calculated at
k = kmax and averaged over the five redshift bins, and ‘fsys req.’ is the required reduction factor in the amplitude of the systematic
difference so that it becomes a 1σ effect in the full parameter space.

Systematic kmax kmax = 0.3 h Mpc−1 kmax = 1 h Mpc−1

difference allowed 〈	P/P〉 Deviation (σ ) fsys req. 〈	P/P〉 Deviation (σ ) fsys req.

c–M relation B13 versus B01 1.3 0.000 19 0 None 0.0039 0.014 None
Profile NFW versus cored 1 0.0004 0 None 0.0074 0.56 None
P(Nsat) α = 1 versus 1.02 0.29 0.0037 1.3 0.93 0.016 15 0.23

Velocity bias bv = 1 versus 1.1−z/15 0.14 0.026 32 0.11 0.052 108 0.034

where cfid(M) and calt(M) are, respectively, the fiducial (say, B13)
and the alternate (say, B01) models for the concentration–mass
relation. Here fsys is a tunable parameter that allows us to as-
sess the effect of a fraction of the full systematics. The limiting

cases are

fsys = 0 ⇐⇒ no systematics

fsys = 1 ⇐⇒ fiducial systematics.
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Figure 7. Required reduction of systematic errors, shown as the fraction of
the current errors, for the four sources of systematic errors discussed in this
paper, as a function of the maximum wavenumber considered in the survey.
Note that the velocity bias requires the greatest improvement relative to the
current knowledge.

For a higher kmax, the tolerance of systematics is smaller, and fsys

provides a measure for required reduction of systematics. For a
given kmax, we search for the appropriate fsys value that makes the
systematic negligible.5

The blue curve in Fig. 7 shows the requirement on fsys from the
c–M relation as a function of kmax. For all practical kmax values, c–M
does not require more precise calibrations from N-body simulations.
The results are summarized in the ‘c–M relation’ row of Table 2.

6.2 Galaxy number density profile: deviation from NFW

Our fiducial model assumes that the galaxy distribution inside a halo
is described by the NFW profile. However, N-body simulations have
shown that the distribution of subhaloes in cluster-size haloes tends
to be shallower than the NFW profile and also shallower than the
observed galaxy number density profile (e.g. Diemand, Moore &
Stadel 2004; Nagai & Kravtsov 2005). These deviations could be
related to insufficient resolution or the absence of baryons in N-body
simulations – the so-called overmerging issue. Several authors have
proposed models for ‘orphan galaxies’ to compensate the over-
merging issue; however, these models do not always recover the
observed galaxy clustering (e.g. Guo et al. 2011). The exact cause
for these issues is still uncertain; nevertheless, the uncertainties as-
sociated with the distribution of subhaloes will likely impact the
modelling of galaxy clustering. Based on the comparisons between
dark matter and hydrodynamical simulations (e.g. Macciò et al.
2006; Weinberg et al. 2008), the observed galaxy density profile is
likely to be bracketed by the density profiles of the subhalo number
and dark matter.

5 Note that some fraction fsys of the systematics does not trivially lead to
the same fractional shift in P(k) because the c–M relation (and most other
systematics) enters non-linearly into P(k). We therefore need to perform a
separate calculation of P(k) for each fsys.

In this section, we investigate whether the uncertainties in the
galaxy number density profile lead to a significant systematic bias.
To model the possibility that the galaxy distribution is shallower
than dark matter in the inner region of clusters, we adopt the sub-
halo number density profile measured from Wu et al. (in prepa-
ration), which is also illustrated in Appendix A. Fig. A1 presents
one example of the galaxy number density profile measured from
an N-body simulation. Based on this result, we model the subhalo
number density profile as

u(r|M) = fsurv(M, r) × uNFW(r|M) , (37)

where uNFW(r|M) is the NFW profile and fsurv is the ‘surviving
fraction’ of galaxies given by

fsurv = 1 − 0.99e−a(r/Rvir)

a ≡ 0.005

(
ln

Mvir

1000 h−1 M	

)2

. (38)

We note that fsurv is smaller for higher host halo mass and smaller
radius, where the effect of overmerging is stronger.

The top-right panel of Fig. 6 shows the difference in P(k) caused
by this cored profile. As expected, the deficit of the galaxy number at
small scales leads to lower power at high k. In addition, the suppres-
sion is stronger at low redshift because massive clusters are more
abundant at low z. The inset shows the corresponding 	χ2

tot as a
function of kmax; the systematic shifts dominate at kmax = 1 h Mpc−1.

We model the interpolated systematic error in the density profile
as

ũinterp(k|M) = ũfid(k|M) + fsys [ũalt(k|M) − ũfid(k|M)] . (39)

Here our fiducial model is the NFW profile, and the alternative
profile is given by equation (37). We again search for the required
fsys as a function of kmax. The result is shown by the green curve in
Fig. 7. Like the c–M relation, the density profile of galaxies does not
require more precise calibrations for all practical kmax. The results
are summarized in the ‘Profile’ row of Table 2.

6.3 Deviation from the Poisson distribution

In our fiducial model, P(Nsat|M) is assumed to be Poisson dis-
tributed; that is, the second moment is given by 〈Nsat(Nsat −
1)〉 = 〈Nsat〉2, or α ≡ √〈Nsat(Nsat − 1)〉/〈Nsat〉 = 1. However,
Boylan-Kolchin et al. (2010) have shown that the number of sub-
haloes for a given halo mass deviates from the Poisson distribution
(their fig. 8). In addition, Wu et al. (2013a) have shown that the extra-
Poisson scatter depends on how subhaloes are chosen and depends
on the resolution. Therefore, it is still unclear whether P(Nsat|M)
follows a Poisson distribution. To assess the impact of the possi-
ble extra-Poisson scatter, we adopt α = 1.02 in our one-halo term
(following Boylan-Kolchin et al. 2010), noting that this choice of
α brackets the various possibilities explored in Wu et al. (2013a,
fig. 3 therein).

The bottom-left panel in Fig. 6 shows the impact of α = 1.02
on P(k), relative to the fiducial Poisson case with α = 1. The
extra-Poisson scatter only impacts the one-halo term; therefore,
the large-scale P(k) is unaffected. At small scales, P(k) is boosted
by less than 3 per cent. For different redshifts, 	P/P takes off
at different k, reflecting the varying scale where one-halo and
one-halo terms cross. We also note that at high k, 	P/P bends
downwards, reflecting the fact that the one-halo term includes
〈Nsat|M〉ũ + 1

2 〈Nsat(Nsat − 1)|M〉ũ2. When P(Nsat|M) is super-
Poisson, more galaxy pairs are expected, and the one-halo term
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gets more weighting of ũ2 (ũ < 1); thus, P(k) becomes lower at
high k.

The inset in the bottom-left panel of Fig. 6 shows that the sys-
tematic shifts dominate statistical errors at kmax = 0.3 h Mpc−1. We
model the partial uncertainties in α as

αinterp = αfid + fsys(αalt − αfid) . (40)

The red curve in Fig. 7 shows the required fsys as a function of
kmax; for kmax = 1 h Mpc−1, the required fsys = 0.2. The results are
summarized in the P(Nsat) row of Table 2.

6.4 Velocity bias

The small-scale RSD (also known as the ‘Fingers-of-God’ effect)
are usually modelled as an exponential suppression of power with
the term e−(kσvμ)2

. Here σ v is the velocity dispersion of galaxies
inside a cluster σ gal

v (Mvir). Assuming that the motions of galaxies
trace those of dark matter particles, we use the velocity dispersion
of dark matter particles inside a halo, σ DM

v (Mvir), which has been
well established using simulations (Evrard et al. 2008). However, the
velocity dispersion of galaxies inside a cluster σ gal

v is not necessarily
the same as σ DM

v . The ratio between the two is defined as the velocity
bias,

bv = σ gal
v

σ DM
v

. (41)

The exact value of bv and its redshift dependence are still under de-
bate. Subhaloes from N-body simulations have shown bv > 1 (e.g.
Colı́n, Klypin & Kravtsov 2000). In addition, Wu et al. (2013b) have
shown that the exact value of bv depends on the selection criteria
applied to subhaloes, on the resolution of simulations and on the
location of subhaloes. On the other hand, a simulated galaxy pop-
ulation based on assigning subhaloes to dark matter particles (e.g.
Faltenbacher & Diemand 2006) or based on hydrodynamical simu-
lations with cooling and star formation (e.g. Lau, Nagai & Kravtsov
2010; Munari et al. 2013) tends to have unbiased velocities.

Since this paper focuses on the possible systematics from N-
body simulations, we adopt bv > 1 observed in N-body simulations.
Based on the recent calibration from Munari et al. (2013), we adopt
the value of the velocity bias to be

bv(z) = 1.1 − z

15
(42)

(estimated from the dotted curve in their fig. 7A, which corresponds
to subhaloes in their N-body simulations.) The bottom-right panel of
Fig. 6 shows the systematic error in P(k) caused by this velocity bias.
Introducing higher velocity dispersion of galaxies clearly leads to
larger suppression on small scales. Note that each curve showcases
a dip near k ≈ 1 h Mpc−1, which roughly corresponds to the scale
where one-halo and two-halo terms cross. As shown in Section 2.2,
the exponential suppression of RSD enters the one-halo and two-
halo terms differently; modifying the RSD will therefore slightly
change the scale of one-halo to two-halo transition. Also note that
the shift in P(k) does not vanish even for very small k, because the
exponential suppression enters the two-halo term as well.

The inset in the bottom-right panel of Fig. 6 shows that the
systematic shifts associated with velocity bias (difference between
no velocity bias and positive velocity bias) dominate the statistical
error even for kmax = 0.14 h Mpc−1. Because the deviation of P(k)
starts at large scales and increases towards small scales, the velocity
bias is dominant among the four sources of systematic errors studied
in this paper.

As before, we consider values of the velocity bias that interpolate
between the two extreme values considered:

bv, interp = bv, fid + fsys (bv, alt − bv, fid) , (43)

where fsys = 0 corresponds to bv = bfid = 1.0 while fsys = 1.0
corresponds to bv = bv, alt = 1.1 − z/15. The cyan curve in Fig. 7
shows the required reduction of fsys for a given kmax. For example, to
extend the survey just out to the usually conservative wavenumber
kmax = 0.3 h Mpc−1, better-than-current knowledge of the velocity
bias (fsys = 0.11 < 1) is required.6

Given that a biased bv value can lead to a significant systematic
error, it is necessary to marginalize over bv to mitigate the systematic
bias. We find that marginalizing over an additional parameter bv in
the Fisher matrix calculation does not significantly degrade the dark
energy constraints; the statistical error

√
σ (wa)σ (wp) is increased

by a factor of 2 at most. Since P(k) is sensitive to the change in bv

(as shown in the last panel of Fig. 6), it is not surprising that bv can
be well constrained by data when set free. In addition, the effect of
bv does not seem to be degenerate with the effects of other nuisance
parameters and is likely to be well constrained.

While the preparation of this paper was near completion, we
learned about the related work from Linder & Samsing (2013).
These authors have focused on a particular RSD model from Kwan,
Lewis & Linder (2012) and assess the impact of uncertainties in
this model on cosmological constraints. These authors have found
that, if the model parameters are fixed, they often require sub-per
cent accuracy; on the other hand, if these model parameters are
self-calibrated using the data, they do not significantly degrade the
cosmological constraints. This trend is consistent with our findings
regarding fixing versus marginalizing over the velocity bias.

We emphasize that the main goal of this paper is to see to what ex-
tent the theoretical uncertainties associated with calibrating galaxy
clustering using N-body simulations lead to errors in the cosmolog-
ical parameters. Given the difficulty of predicting clustering beyond
k � 0.5 h Mpc−1 using purely theoretical methods (e.g. the pertur-
bation theory), resorting to calibration with N-body simulations is
required, and this will remain to be the case for years to come. Our
findings suggest that the velocity information of galaxies predicted
from N-body simulations is likely to generate biases.

7 SU M M A RY

As the interpretation of the galaxy clustering measurements from
deep, wide redshift surveys often relies on synthetic galaxy cat-
alogues from N-body simulations, the systematic uncertainties in
N-body simulations are likely to lead to systematic errors in the cos-
mological results. In this paper, we have studied several theoretical
uncertainties in the predictions of N-body simulations, including
the statistics, the spatial distribution and the velocity dispersion of
subhaloes. In particular, we have applied the halo model to calculate
the galaxy power spectrum P(k), with inputs from recent N-body
simulations. We have investigated how the uncertainties from these
inputs impact the cosmological interpretation of P(k), and how well
these systematics need to be controlled for future surveys. Our main
findings can be summarized as follows.

6 Note that Colı́n et al. (2000) have shown that bv is scale dependent. Since
our scale-independent assumption has already introduced significant sys-
tematic shifts, we do not further consider the possible scale dependence of
velocity bias in this work but note that the possible scale dependence will
further complicate the systematic error.
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(i) We have found that the inclusion of the RSD and the covari-
ances between different k modes (the trispectrum contribution to the
covariance matrix) is essential to accurately model the information
content at small scale.

(ii) Uncertainties in the halo mass function and bias tend to affect
P(k) on large scales and can lead to significant systematic errors.
However, these effects can be mitigated by measurements of galaxy
bias at large scales combined with an independent measurement of
σ 8.

(iii) Uncertainties in predicting the halo concentration–mass re-
lation, as well as the deviation from an NFW profile, are unlikely
to be a dominant source of systematic error for kmax < 1 h Mpc−1.

(iv) Possible deviation of P(Nsat) from the Poisson distribution,
at its current uncertainty level (2 per cent), could be significant for
kmax > 0.3 h Mpc−1.

(v) Velocity bias is likely to be the most important source of
systematic error for upcoming surveys. The current uncertainty of
10 per cent at z = 0 is likely to introduce 3 (5) per cent difference
in P(k) for kmax = 0.3 (1) h Mpc−1, thus leading to a significant
bias in cosmological parameters. Given its predominant role in the
systematics, the velocity bias will need to be calibrated internally
from the survey or externally with follow-up campaigns.

The sensitivity of P(k) to velocity bias leads to the question of
what can be done to alleviate the potential systematic bias. Cali-
bration through both observations and simulations is certainly one
obvious solution. Another trick that is increasingly being used for
large-scale structure surveys is to self-calibrate the systematic er-
ror(s); in the velocity bias case, this would mean marginalizing
over bv. With this marginalization, we expect to be left with vastly
diminished biases and only a modest degradation in the cosmolog-
ical parameters. We do not expect the bias to vanish completely,
however, since second-order effects (e.g. redshift and scale depen-
dence of bv) will remain and will cause systematic shifts. Given
that we currently do not have a good model of bv(z, k), we have
not attempted the full self-calibration exercise, but we definitely
expect this to be modus operandi of galaxy clustering analyses in
the future.
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Macciò A. V., Dutton A. A., van den Bosch F. C., 2008, MNRAS, 391, 1940
Maddox S. J., Efstathiou G., Sutherland W. J., Loveday J., 1990, MNRAS,

242, 43P

Ma C.-P., Maggiore M., Riotto A., Zhang J., 2011, MNRAS, 411, 2644
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A P P E N D I X A : G A L A X Y N U M B E R D E N S I T Y
PROFI LE

Fig. A1 presents the galaxy number density profile based on which
we model its theoretical uncertainties. The coloured curves are
based on the Consuelo simulation – an N-body simulation with
14003 particles in a volume of side length 420 h−1 M	. The
mass resolution is 1.9 × 109 h−1 M	 and the force resolution is
8 h−1 kpc. We assign each subhalo a luminosity value using the
vpk

max–luminosity relation based on a subhalo abundance matching
model (Behroozi, private communication), where vpk

max is the sub-
halo’s peak maximum circular velocity in its history.

We compare the simulated galaxy density profiles with the results
from the SDSS maxBCG cluster catalogue as presented in Tinker
et al. (2012). The grey dashed curves correspond to three of the
richness bins of maxBCG. From the Consuelo simulation, we se-
lect clusters in a way that they have approximately the same mass
distribution as the maxBCG cluster sample (Johnston et al. 2007).
Each maxBCG cluster is assigned a richness value N200, which is
the number of red-sequence galaxies brighter than 0.25Mi = −19.2
within r200. Here r200 is defined as the radius within which the
density of galaxies is 200 times the mean density of galaxies. At
large radii (>0.5 h−1 Mpc), the simulation and observation agree
well. This agreement naturally comes from our mass selection and
abundance matching without tuning the normalization.

However, discrepancy between simulation and observation oc-
curs at small radius. As can be seen, the subhalo number density

Figure A1. Galaxy number density profile from the Consuelo simulation.
The coloured curves show galaxies in the simulation, while the grey dashed
curves correspond to the observations of SDSS from Tinker et al. (2012).
As can be seen, the simulated galaxy population near the centre of clusters
tends to have a shallower distribution than the real galaxy population. The
difference is larger for more massive clusters. This figure is adapted from
Wu et al. (in preparation).

http://arxiv.org/abs/1303.5084
http://arxiv.org/abs/1301.7476
http://arxiv.org/abs/0902.4680
http://arxiv.org/abs/1307.0011


2570 H.-Y. Wu and D. Huterer

profile measured from the simulation is shallower than the galaxy
density profile measured from SDSS and is also shallower than
the NFW profile. This discrepancy is stronger for more massive
host haloes. Wu et al. (in preparation) further demonstrate that (1)
the discrepancy is also stronger for dimmer galaxies, (2) the trend
exists in several state-of-the-art N-body simulations using different
algorithms and resolutions, and (3) the incompleteness of subhaloes
depends on the radius, the mass of the host halo and the mass of the
subhalo. It has been shown that the deficit of simulated galaxies near
the centre of massive haloes can be alleviated in hydrodynamical
simulations that include cooling and star formation (e.g. Weinberg
et al. 2008; Dolag et al. 2009). Therefore, it is highly likely that this
deficit presents a fundamental limitation of N-body simulations and
needs to be taken into account when we use N-body simulations to
model the galaxy population in massive clusters.

A P P E N D I X B: D E R I VATI O N O F TH E G A L A X Y
POWER SPEC TRU M

In this appendix, we provide the detailed derivation of the galaxy
power spectrum, mainly following the derivations in Scherrer &
Bertschinger (1991), Seljak (2000) and Cooray & Sheth (2002),
in order to clarify possible confusions originated from different
conventions. Let us assume that dark matter halo i with mass Mi

is located at xi . It has Ni galaxies, whose spatial distribution is
described by u(x − xi |Mi) [normalized so that

∫
d3x u(x|M) = 1].

The galaxy number density field can be described by summing over
all haloes in the universe:

ngal(x) =
∑

i

Ni u(x − xi |Mi)

=
∑

i

∫
dMδD(M − Mi)

×
∫

d3x′δD(x′ − xi)Niu
(

x − x′|M)
, (B1)

where we insert Dirac delta functions for M and x′. If we define〈∑
i

δD(M − Mi)δD(x′ − xi) Ni

〉
≡ n(M) 〈N |M〉 , (B2)

then the mean galaxy number density is given by

n̄gal = 〈
ngal

〉 =
∫

dMn(M) 〈N |M〉 , (B3)

where we write n(M) = dn/dM for the halo mass function.
The number density fluctuation of galaxies is defined as

δgal(x) = ngal(x)

n̄gal
− 1 . (B4)

The two-point statistics follows the definition:〈∑
i

δD(M1−Mi)δD(x1−xi)Ni

∑
j

δD(M2−Mj )δD(x2−xj )Nj

〉

≡ n(M1) 〈N |M1〉 n(M2) 〈N |M2〉
× [1 + ξhh(M1,M2, |x2 − x1|)] (i �= j )

+ n(M1)

〈(
N

2

)
|M1

〉
δD(M1 − M2)δD(x1 − x2) (i = j ) ,

(B5)

where ξhh is the two-point correlation function of dark matter con-
tributed by two different haloes. The two-point correlation function

for galaxies reads

ξgg(r) = 〈
δgal(x)δgal(x + r)

〉
= 1

n̄2
gal

∫
dM1

∫
dM2

∫
d3x1

∫
d3x2 u(x − x1|M1)u

× (x + r − x2|M2)

〈∑
i

δD(M1 − Mi)δD(x1 − xi)Ni

×
∑

j

δD(M2 − Mj )δD(x2 − xj )Nj

〉

= ξ 1h
gg (r) + ξ 2h

gg (r) , (B6)

where

ξ 1h
gg (r) = 1

n̄2
gal

∫
dMn(M)

〈(
N

2

)
|M

〉 ∫
d3x u(x|M)u(x + r|M) ,

ξ 2h
gg (r) = 1

n̄2
gal

∫
dM1n(M1) 〈N |M1〉

∫
dM2n(M2) 〈N |M2〉

×
∫

d3x1

∫
d3x2 u(x1|M1)u(x2 − r|M2)

× (1 + ξhh(M1, M2; |x2 − x1 − r|)) . (B7)

We now turn to the Fourier space. We follow this convention of the
Fourier transform

δ̃(k) = 1√
V

∫
d3x δ(x) e−ik·x . (B8)

The Dirac delta function in k space is defined as

δD(k) = 1

V

∫
d3x

(2π)3
e−ik·x (dimensionless) . (B9)

From this convention, the relation between the correlation function
and the power spectrum follows:

ξ (r) = 1

(2π)3

∫
d3kP (k)e−ik·r . (B10)

The Fourier transform of the density perturbation reads

δ̃gal(k) = 1√
V

∫
d3x δgal(x) e−ik·x

= 1

n̄gal

√
V

∑
i

Ni ũ(k|Mi)e
−ik·xi − (2π)3

√
V δD(k) , (B11)

where

ũ(k|M) =
∫

d3xu(x|M)e−ik·x . (B12)

Based on this definition, ũ → 1 when k → 0 and is dimensionless.
Applying the Fourier transform to equation (B5), we obtain〈∑

i

δD(M1 − Mi)e
−ik1·xi Ni

∑
j

δD(M2 − Mj )e+ik2·xj Nj

〉

≡ n(M1) 〈N |M1〉 n(M2) 〈N |M2〉 (2π)6 V 2δD(k1)δD(k2)

+ (2π)3 V n(M1) 〈N |M1〉 n(M2) 〈N |M2〉 Phh(M1, M2; k)δD (k1

− k2) + (2π)3 V n(M1)
〈(

N

2

)|M1

〉
δD(M1 − M2)δD(k1 − k2).

(B13)

We note that under our convention of the Fourier transform,∫
d3kδD(k) = 1/V and δD(k)δD(k) = δD(k)/(2π)3.
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We are now ready to compute the galaxy power spectrum. Ap-
plying the trick of inserting Dirac delta functions and then using
equation (B13), we obtain

Pgg(k) = 1

(2π)3

〈
δ̃gal(k)δ̃∗

gal(k)
〉

= 1

(2π)3 V n̄2
gal

〈∑
i

ũ(k|Mi)e
−ik·xi Ni

∑
j

ũ∗(k|Mj )eik·xj Nj

〉

= P 1h
gg (k) + P 2h

gg (k) , (B14)

where the two-halo term reads

P 2h
gg (k) =

[
1

n̄gal

∫
dM

dn

dM
〈N |M〉 b(M)

]2

Plin(k) , (B15)

and the one-halo term reads

P 1h
gg (k) = 1

n̄2
gal

∫
dM

dn

dM

〈(
N

2

)∣∣∣∣M
〉

f (k|M) . (B16)

Here 〈(N

2

)|M〉f (k|M) is the galaxy pair-weighted profile, includ-
ing the contribution from central and satellite galaxies (Berlind &
Weinberg 2002),〈(

N

2

)∣∣∣∣M
〉

f (k|M)

=
[
〈Nsat|M〉 ũ(k|M) + 1

2
〈Nsat(Nsat − 1)|M〉 |ũ(k|M)|2

]
.

(B17)

A P P E N D I X C : D E R I VATI O N O F TH E
C OVA R I A N C E M AT R I X

We now derive the covariance of power spectra at different
wavenumbers in equation (17). First, recall the definitions for the
power spectrum and trispectrum:

〈δ(k1)δ(k2)〉 = (2π)3δD(k12)P (k1)

〈δ(k1)δ(k2)δ(k3)δ(k4)〉c = (2π)3δD(k1234)T (k1, k2, k3, k4) , (C1)

where the subscript c indicates the ‘connected’ term. Under our
convention, [P] = L3 and [T] = L6. For a given realization of the
density field δ(k), the estimator of the binned power spectrum is

P̂ (ki) =
∫

ki

d3k
Vs(ki)

δ(k)δ(−k) , (C2)

where Vs(ki) = 4πk3
i δ ln k. Its covariance is

Cij = 〈
P̂ (ki)P̂ (kj )

〉 − 〈
P̂ (ki)

〉 〈
P̂ (kj )

〉
= (2π)3

V

2P (ki)2

Vs(ki)
δij + T̄ (ki, kj ) , (C3)

where

T̄ (ki, kj ) ≡
∫

ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj )
T (k1, −k1, k2, −k2) . (C4)

Below we provide the derivation. The first term in equation (C3)
can be calculated as

〈
P̂ (ki)P̂ (kj )

〉=
∫

ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj )
〈δ(k1)δ(−k1)δ(k2)δ(−k2)〉 ,

(C5)

where the integrand reads

〈δ(k1)δ(−k1)δ(k2)δ(−k2)〉
= 〈

δ1δ
∗
1δ2δ

∗
2

〉
c
+ 〈

δ1δ
∗
1

〉 〈
δ2δ

∗
2

〉 + 〈δ1δ2〉
〈
δ∗

1δ
∗
2

〉 + 〈
δ1δ

∗
2

〉 〈
δ2δ

∗
1

〉
= (2π)3δD(0)T (k1, −k1, k2, −k2) (C6)

+ (2π)6δD(0)P (k1)δ(0)P (k2) (C7)

+ (2π)6δD(k1 + k2)P (k1)δ(k1 + k2)P (k1) (C8)

+ (2π)6δD(k1 − k2)P (k1)δ(k1 − k2)P (k1) . (C9)

We note that δD(0) = 1
(2π)3 . Then the contribution from each term

reads

(C6) ⇒
∫

ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj )
T (k1, −k1, k2, −k2) ≡ T̄ (ki, kj )

(C7) ⇒ 〈
P̂ (ki)

〉
〈
P̂ (kj )

〉
[cancels the second term of equation (C3)]

(C8) = (C9) ⇒
∫

ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj )
(2π)3δD(k1 − k2)P (k1)P (k1)

=
∫

ki

d3k1

Vs(ki)
P (k1)2(2π)3

×
∫

kj

d3k2

Vs(kj )
δD(k1 − k2) (only non-zero if ki = kj )

= (2π)3

Vz

〈
P̂ (ki)2

〉
Vs(ki)

δij ≈ (2π)3

Vz

P (ki)2

Vs(ki)
δij . (C10)

The expression of T̄ (ki, kj ) (equation 19) can be obtained using
equation (B11) and is similar to the derivation of P(k).
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