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Abstract. Standard cosmological data analyses typically constrain simple phenomenological
dark-energy parameters, for example the present-day value of the equation of state param-
eter, wp, and its variation with scale factor, w,. However, results from such an analysis
cannot easily indicate the presence of modified gravity. Even if general relativity does not
hold, experimental data could still be fit sufficiently well by a phenomenological wow,CDM,
unmodified-gravity model. Hence, it would be very useful to know if there are generic sig-
natures of modified gravity in standard analyses. Here we present, for the first time to
our knowledge, a quantitative mapping showing how modified gravity models look when
(mis)interpreted within the standard unmodified-gravity analysis. Scanning through a broad
space of modified-gravity (Horndeski) models, and assuming a near-future survey consisting
of CMB, BAO, and SNIa observations, we report values of the best-fit set of cosmological pa-
rameters including (wo, w,) that would be inferred if modified gravity were at work. We find
that modified gravity models that can masquerade as standard gravity lead to very specific
biases in standard-parameter spaces. We also comment on implications for measurements of
the amplitude of mass fluctuations described by the parameter Sg.
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1 Introduction

Overwhelming observational evidence for the current acceleration of the universe presents
one of the most outstanding theoretical challenges in all of cosmology and physics [1, 2]. The
physical mechanism for the apparent acceleration remains fundamentally mysterious. It could
be given by the presence of the cosmological-constant term in Einstein’s equations, but the
tiny size of the constant presents an apparently insurmountable challenge [3, 4]. A number
of dark energy models beyond the cosmological constant have been proposed as well [5].
Similarly, the accelerated expansion could be that gravity is modified on large scales [6-8],
but thus far there is no direct evidence for such a modification.

The difficulty with studying modified-gravity models with data is that the space of
possibilities is enormous. There are many completely distinct classes of models to modify
gravity and, in each, a large number of possible parameterizations. Constraining any one
of those modified-gravity model parameterizations with large-scale structure also presents
a challenge, for the following reasons: i) modified-gravity-model predictions for nonlinear
clustering are, with a few exceptions, not available at all; and ii) the linear-theory predictions
generally need to be validated by (modified-gravity) N-body simulations, as e.g. galaxy bias
in these models may differ from that in standard gravity (for example [9, 10]). Tests of
modified gravity with the cosmic microwave background (CMB) are a little easier as one only
needs linear-theory predictions and there is no galaxy bias, but the large scale of possible
modified-gravity theories still presents a major obstacle.

As a consequence of these challenges, the majority of confrontations of theory with data
has not encompassed models of modified gravity. Instead, most analyses consider simple
phenomenological descriptions of the dark-energy sector, such as the model with a cosmo-
logical constant (ACDM), and that with constant dark-energy equation of state parameter
w (wCDM) [11]. Also popular is the time-varying parameterization of the dark-energy equa-
tion of state [12] that allows for the dynamics, w(a) = wp + we(l — @), where a is the



scale factor and wy and w, parameters to be constrained by the data. Modified gravity has
typically been constrained only for very specific models (e.g. X, u parameterizations of the
gravitational potentials, [13-15]). There have been attempts to constrain individual modified-
gravity models [16-39] or even reconstruct the temporal behavior of certain models [40, 41],
but canvassing the space of modified-gravity theories is challenging because that space is
extremely large and difficult to constrain with currently available cosmological surveys.

In this paper we aim to answer a fundamental question:

What happens when the data is analyzed assuming smooth dark energy and the universe is
dominated by modified gravity?

Such a scenario will clearly lead to an overall biased estimate of the inference of the cos-
mological model; see for example figure 1 in ref. [42]. Yet it would be very useful to know
if modified-gravity theories lead to generic shifts in the cosmological parameters relative to
their true values. For example, it could be that a departure of the equation of state w rel-
ative to its ACDM value of —1 indicates modified gravity. Or, that the currently observed
Hubble tension — the discrepancy between measurements of Hy from the distance ladder
and the CMB — is a signature of modified gravity (something that a number of papers in
the literature have explored, e.g. [43, 44]). It would be extremely useful to have knowledge
of whether there are any generic parameter shifts that modified gravity typically induces if
analyzed assuming the standard unmodified model.

To address the highlighted question above, we opt for a forward-modeling approach. We
wish to generate a large number of modified-gravity models, coming perhaps from different
classes of such models, and compute the cosmologically observable quantities. We then
analyze those observables using some assumed future data, consisting of the cosmic microwave
background, baryon acoustic oscillations, and type Ia supernova (these data are further
discussed in section 3). Crucially, when analyzing these data we assume unmodified-gravity,
i.e. the ACDM or the wow,CDM model. We can thus assess the bias in all cosmological
parameters, relative to their true values, due to the fact that data were analyzed using a
wrong model. We then iterate the procedure many times. This informs us about what range
of values for the standard (unmodified-gravity) cosmological parameters are inferred when
the universe is subject to modified gravity.

One important decision in this procedure is to choose a general framework of modified-
gravity theories from which to sample individual models. Here we opt to utilize a familiar
approach from particle physics (and, as of recently, cosmology) — the Effective Field Theory
(EFT). Here our approach is to utilize the EFT of Dark Energy (EFTDE) [45-48], where
(universality) classes of models are established through a grouping of terms in the funda-
mental Lagrangian. This has the advantage that instead of considering one particular model
at a time, one can consider an entire class of models with similar properties. One example
of such a universality class in the EFTDE are the Horndeski models of modified gravity. In
fact, here we will focus our investigation on the Horndeski sub-class of EFTDE models as
described in section 2.1 below.

Our procedure in this paper also includes a solution to a pesky technical problem: how
to fit the eight-dimensional wow,CDM models to each of the thousands of EFTDE models.
This is computationally expensive because traditional Boltzmann-Einstein equation solvers
used for this purpose such as CAMB are slow for what we are trying to do here. We thus employ
and adapt an existing emulator package to speed up this fitting process. This development
enables us to obtain our numerical results with relatively modest computer resources. Most
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Figure 1. A schematic describing our pipeline to interpret and fit a modified gravity data vector with
an (unmodified-gravity) dark energy model. We show the complete procedure for a single Horndeski
data vector, corresponding to one point in our final best-fit parameter values in the plots that follow.
We repeat this procedure for thousands of Horndeski models.

CHANGE VALUES OF COSMOLOGICAL PARAMETERS

readily available cosmological emulators for the CMB power spectrum (such as [49] and [50])
function for a fixed set of parameters — usually the standard six cosmological parameters —
while our methodology of setting up the emulator allows a much greater freedom in including
parameters.

The paper is organized as follows. Section 2 is divided into two parts and gives an
overview of our overall methodology. The first half explains how we select a subset of
Horndeski gravity models and compute cosmological observable quantities from them. The
second half goes over methods (including a brief introduction on the emulation technique)
used to reinterpret the data vectors generated by Horndeski models by fitting them with an
unmodified-gravity wowaCDM model. Section 3 introduces the cosmological probes and as-
sumed future experiment data used in the fitting process. Section 4 discusses and summarizes
the results. We conclude in section 5.

2 Methodology overview

As discussed in section 1, we generate the data vector assuming a modified-gravity model,
but analyze it assuming unmodified gravity in the wow,CDM model. Specifically, for each
Horndeski data vector, we generate a CMB angular power spectrum predicted by this theory
through a package EFTCAMB,! and also generate predictions for BAO and SNIa. Then, we fit to
this synthetic data with wow,CDM cosmological models. We record the best-fit parameters
of such wow,CDM model, and move on to the next iteration, selecting a new EFTDE model.
Figure 1 shows our approach schematically.

We now describe the key pieces of our approach: the modified-gravity theory to generate
fake data, and the unmodified-gravity theory to analyze it with. For both modified and
unmodified-gravity aspects of our analysis, we also discuss the numerical tools that enable
the feasibility of our analysis.

2.1 Generating data: modified gravity

Inspired by the EFT formalism for Inflation by Cheung et al. [51], the EFTDE provides a
universal description for all viable dark energy and modified gravity models [45-47]. Working

"https://eftcamb.github.io.
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in unitary gauge, the EFTDE action takes the form [47],

_ [ —[L o _ _ 00, M3() < g0z
S = | dav=g|gmeQUt) R~ A(t) = c(t)g™ + —5—(d97)
73 \ 12 \ 12
_Ml (t)5K5900 _ M2 (t)5K2 _ MS (t)(SKV'u(sK v
2 2 2 H
N? .
+2(t) SR®5g% +ma(t)9ig™ 0" g™ + L |, (2.1)

where g% = ¢% + 1 is the perturbation to the time component of the metric, R® is the
perturbation to the spatial component, and K, is the perturbation of the extrinsic curva-
ture. The background evolution depends on three functions, ¢(t), A(t), and Q(¢). Two of the
three can be constrained using the Einstein equations and are equivalent to the energy den-
sity and pressure. The third function, €(t), parameterizes the effect of modified gravity [47].
In what follows we will take Q = 1, thus explicitly fixing the background to ACDM.? The
rest of the EFT functions describe perturbations about this background and correspond to
observables that we are interested in when comparing to observations. For a summary of all
models included in this very general formalism, refer to table 1 in [52]. Again, we note that
the EFTDE includes such well-known simpler models as DGP and f(R) (see [46, 47] for a
discussion).

Here we specialize in a very broad subset of models captured by the EFTDE approach
— Horndeski models (for a general review of this class of models see [53] and references
therein). These models have been of particular interest because even if one does not take
the EFTDE approach they have stable, second order equations of motion, leading to a well
defined Cauchy problem and viable models of modified gravity. However, within the EFTDE
approach, this is guaranteed from the outset. This universality class of models is obtained
when the following relations are imposed on EFTDE functions

OM? = M3 =—-M2;  my=0. (2.2)

We will be interested in the linear-theory predictions of Horndeski models as given by the
EFTCAMB code [54]. There, the EFTDE is described in terms of dimensionless parameters
v; defined as

My M M3

71:ﬁ5 72:277 73:725
M2 N> m3

V4= —=» V5= —5» Y6 = —5-
my my my

In terms of these new variables, the Horndeski models are obtained from the full EFTDE
with these conditions

275 =73 =—Y4; 76 =0. (2.4)

Our approach is therefore to canvass through the possible Horndeski models by varying ~;(t)
fori=1,2,3.

There is an important caveat to our assumptions about the Horndeski parameter space.
It has been argued that there exists a strong additional constraint on the parameter 3, based
on the comparison of the speed of light and gravitational-wave speed of propagation from

2my is the mass scale of the theory and is equivalent to mp when Q(t) = 1.



the event GW170817 discovered by LIGO (see e.g. [55]). Because 73 is related to the speed
of the gravitational wave cr (see e.g. [52] and references therein), such a constraint would
impose a strong prior that 3 is very close to zero. However, there are various theoretically
motivated possible exceptions to this constraint [56-58]. With that in mind, and to make our
analysis broadly applicable and not tied to specific theoretical models, we opt to keep 73 as
a free parameter without any gravitational-wave-inspired prior. [To reinsert this prior, one
could simply inspect and analyze our results evaluated for the small range of «3 around zero,
although of course such an analysis will necessarily have a lower statistics than one where
the 3 prior has been assumed from the beginning, ]

In our approach, we require Horndeski models to successfully reproduce an approxi-
mate ACDM background and then focus on the connection between the perturbations and
observations. That is, we take the equation of state to be near that of a pure cosmological
constant (always with w > —1), which in terms of the EFTDE parameters corresponds to
a nearly vanishing value of the parameter ¢, A nearly constant and ) close to unity in the
EFTDE. This is a subset of Horndeski models, but corresponds to those consistent with a
viable alternative to ACDM as required by data. Our approach is similar to that of the
EFT of inflation where one assumes an inflationary background and then focuses on the
perturbations (observables) [51].

With the background constrained to a ACDM universe, we now consider allowed vari-
ations in the perturbations of our Horndeski models. Recall that there are three free time-
dependent EFTDE functions in Horndeski gravity, +;(t) for ¢ = 1,2,3. The first task is to
parametrize the time-dependence of these functions, which we take as

yi(a) = 7i0a, (2.5)

reproducing the CMB power spectra that are closest to current observations.

Next, we determine the range of the coefficients v; 0. In section 2.2, we describe how
we set a 5o requirement for each unmodified-gravity model as to be a good fit for the Horn-
deski model. By phenomenologically studying sample fits to various Horndeski models, we
determine that the Horndeski parameter space restricted to the range

Y10 <1; 720 <0.1; 730 <0.06, (2.6)

encompasses models that are sufficiently in correspondence to unmodified-gravity models,
using criteria that we now describe. In figure 2, we display how different values of the
Horndeski parameter v3 o, which is of particular interest to our analysis in the later sections,
impact the peak height of CMB temperature power spectrum.

2.2 Analyzing data: unmodified gravity

Our main goal is to fit simulated modified-gravity data using standard dark energy
(unmodified-gravity) models. To be as general as possible, we fit wow,CDM cosmological
models to the data, with parameters

{pl} == {wbawC7H07ln(1010A8)7n577—reiO7w07wa} 9 (27)

where wp, = Qh? is the physical baryon density, w. = Q.h? is the physical cold dark matter
density, Hy is the Hubble constant, As is the amplitude of the primordial power spectrum
at pivot wave number kpi, = 0.05 Mpcfl, ng is the scalar spectral index, Tyejo is the optical
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Figure 2. CMB temperature power spectrum generated from EFTCAMB with varied values of the
Horndeski parameter 73 ¢ in eq. (2.6) while fixing 71,0 = 72,0 = 0. Increasing the value of v3 o makes
the peaks higher and troughs lower.

depth to reionization, and (wp,w,) are the parameters describing the dark energy equation
of state.

For each Horndeski data vector generated using EFTCAMB with assumptions as described
in section 2.1, we need to find the best-fit wow,CDM model. We thus need to be able to
produce the supernova and BAO observables (distances and the Hubble parameters) and
the CMB angular power spectrum in wow,CDM models many times for a single Horndeski
model. Calculating distances is straightforward, while the CMB temperature and polarization
angular power spectra are typically obtained using the standard Boltzmann-Einstein solver
CAMB. Here we employ an emulator due to computational cost reasons explained above.

Given a single Horndeski data vector and predictions from unmodified-gravity models,
we minimize the total y2, defined as a sum of chi-squareds for each cosmological probe in
section 3 and thus find the best-fitting parameters. To carry out chi-squared minimization in
our eight-dimensional parameter space given in eq. (2.7), we adopt iminuit.> This optimizer
allows us to restart the minimization process from the ending point of the last minimization,
re-doing the minimization five times for each EFTDE model to improve the result. The
allowed ranges for each parameter to explore is set to be 5% smaller than the parameter
range specified in table 1.

As alluded to in section 2.1, we wish to only use reasonably good fits to our Horndeski
data vectors, as an analysis resulting in a bad fit to the data would simply not be allowed
to proceed in a realistic situation. To that end, we only accept best-fit wyw,CDM models
that have a minimized x? within 50 of the expectation for a chi-square distribution of Ngof
degrees of freedom. Our simulated cosmological data, described below in section 3, have

Shttps://iminuit.readthedocs.io/en/stable.
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Parameter | Fiducial value Parameter range
Qph? 0.02222 (0.02147, 0.02297)
Q.h? 0.1197 (0.1137, 0.1257)

A, 2.196 <1072 | (1.132 x107?, 2.703 x1079)
Hy 67.5 (64.8, 70.2)

N 0.9655 (0.9445, 0.9865)

T 0.06 (0.0235, 0.0965)

wo -1 (—=1.5, —0.5)

Wq 0 (—0.5, 0.5)

Table 1. Fiducial values of cosmological parameters and their ranges used in training the emulator.

Ngof = 7492.* Recall that our simulated Horndeski data vectors are noiseless, so that a
perfect fit would have x? = 0. With this information, the “5-¢” limit to a cosmological fit
corresponds to chi-square limit of

x? < 650 (acceptable fit). (2.8)

If the best fit to a given Horndeski model is worse than this, we judge that such a model
would not be interpreted as a viable cosmological model. We also exclude results for models
where one or more parameters reach the upper or lower bounds of their respective parameter
range given in table 1 as it indicates that this model cannot be fitted by a wow,CDM model
within the range of current measurements well; this affects about 21 percent of Horndeski
models that we considered.

In our model-fitting procedure, the main challenge is the significant computational cost.
Consider that CAMB® takes about 1.5 second to produce a wow,CDM CMB angular power
spectrum. For a single Horndeski model, the minimizer requires of order 1,000 wow,CDM
model evaluations, and our overall goal is to produce results for 10,000 or more Horndeski
models. To addrress this challenge we constructed an emulator to generate model predictions
for wow,CDM cosmologies. An emulator is essentially an interpolator. Given a set of grid
points in an N-dimensional parameter space and corresponding outcomes evaluated at these
points, the emulator interpolates to produce an expected outcome on arbitrary points off the
grid (but still within its boundaries). In our case, the grid is the eight-dimensional parameter
space listed in eq. (2.7). Since the spectrum is obtained through interpolation, and not from
solving the Boltzmann-Einstein equation, this method generates spectra much faster. The
emulator we developed builds on the EGGY package.

o Parameter ranges: the prior range for each of the first six parameters in eq. (2.7) is
set to £50 around their fiducial values, where o is the 68% marginalized error on each
corresponding parameter from the Planck 2018 analysis using the P1ik likelihood [59].
For the two dark energy parameters wg and w,, we adopt ranges —1.5 < wy < —0.5
and —0.5 < w, < 0.5. A summary of all parameter ranges are in table 1.

4We used 3 x 2500 multipoles from temperature and polarization spectra respectively as our data, and it
was constrained by 8 parameters as listed in table 1.

®https://camb.info.

Shttps://github.com/lanl/EGG.
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e Parameter grid values: a uniform grid is not ideal as, for a reasonable number of values
in each parameter, it leads to a large number of grid points and slow emulator training.
Therefore, we employ the Latin Hypercube sampling (L.h.s.) which is known to be
very efficient for emulators [60]. The points in Lh.s. are stratified along the direction
of each axis in a multi-dimensional space. This design is mathematically equivalent to
forming a n X m matrix such that every column of this matrix is a unique permutation
of {1,...,n}. There are a number of strategies to design an LHS,” and the one we use
is provided by a python package pyDOE.® This package allows us to specify the number
of parameters and the number of grid points with much greater flexibility.

e Training: to “train” an emulator is to assign the corresponding outcomes to the grid
points. Here, we use CAMB to calculate the CMB temperature and polarization angular
power spectra (TT, EE, and TE) and assign them to the corresponding grid points.
During training, the emulator uses a Markov chain Monte Carlo type process to find
and optimize an interpolative function that describes the nonlinear relationship between
the grid points and their corresponding CMB power spectra.

o Testing emulator’s performance: the performance of an interpolation under a given LHS
setup can be determined quantitatively by comparing the interpolated power spectrum
at an arbitrary point in parameter space with the one generated directly by CAMB.
Adopting a test similar to the one used in [49], we randomly selected 100 points from
the allowed parameter space in table 1 and calculated the fractional difference between
the angular power spectrum interpolated by the emulator and the power spectrum gen-
erated by CAMB. For the temperature power spectrum, the emulator’s fractional errors
within the first and third quartile are 0.3% for multipoles ¢ > 8. For the polarization
power spectra EE and TE, the fractional errors are 0.5% for £ > 25 and 3.5% for £ > 55
respectively.

The performance of the interpolation is mostly determined by the number of grid points
in the LHS design and the number of MCMC iterations when training the emulator. A
larger number of grid points and a higher number of steps in the MCMC-type process
during training would both improve the performance of interpolation, but at the cost of
a slower evaluation per model. In this work, we use 570 grid points and 1000 iterations.
With the current setup, each interpolation takes about 0.3 seconds to finish, which is
five times faster than using CAMB.

Under this setup, we further validate the emulator’s accuracy by testing its ability to
recover the input values used to generate the data. Further details are explained in
appendix A.

"We did not opt for the commonly used orthogonal-array Latin hypercube (OALH) design. This is because
using OALH, one relies on the existing library of orthogonal arrays, and the latter does not offer much flexibility
to change the number of parameters and the number of samples (i.e. grid points). Specifically, there exist
only a few available orthogonal arrays for an eight-dimensional parameter space, and the allowed sample
numbers for these arrays are too low for our purposes. The strategy we adopt, as discussed in the text, is
not as optimal as the OALH design in its coverage of the parameter space, but its performance can be easily
improved through increasing the number of grid points.

8Designs of Experiments for Python, https://pythonhosted.org/pyDOE /randomized.html#latin-
hypercube.
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Probes| Experiment Measurements Details Data error
from [ = 2 to [ = 2500
CMB Stage-4 angular power spectrum C)p in temperature (TT) and eq. (3.4)

polarization (EE and TE) spectra

16 effective supernovae in redshift bins of size 0.1

WFIRST apparent magnitude m(z eq. (3.9

SNIa pp 8 (2) from z =0.1to 2 = 1.6 4 (39)

Pan-STARRS1| apparent magnitude m(z) |870 supernovae from z = 0.00508 to z = 1.06039 | ref. [61]

BAO DESI angular diameter distance Da(z) 13 redshift bins of size 0.1 ref. [62]
Hubble parameter H(z) from z = 0.65 to z = 1.85

Table 2. A summary table of the probes and data sets used to determine the best-fit parameters for
a certain EFTDE model.

3 Simulated data

In this section, we will discuss the probes and experiment specifics we used to determine the
best-fit values of dark energy parameters wy and w.

We use cosmic microwave background, baryon acoustic oscillations (BAO), and type
Ia supernovae (SN Ia) as our data. In this first paper on the topic, we opt not to use
weak gravitational lensing or galaxy clustering. As mentioned in the introduction, this is
due to the significant additional complexity in modeling clustering, which for starters one
typically needs to restrict to linear scales only in modified-gravity models as obtaining reliable
nonlinear predictions is very challenging. It is our goal to set up a robust proof-of-principle
analysis pipeline with the CMB, BAO and SN Ia alone. In a future publication, we will add
the galaxy clustering and weak lensing (and, ideally, the full “3x2” pipeline that also includes
galaxy-galaxy lensing).

A summary of the probes used can be seen in table 2. We now describe them in more
detail.

3.1 CMB

We assume a CMB survey modeled on expectations from CMB-S4 [63]. The survey covering
40% of the sky, with other specifications given below. We utilize scales out to maximum
multipole lp,ax = 2500, consistent with the cutoff in Planck 2018 results [59]. Assuming a
Gaussian likelihood £, the chi squared, x?2 = —21n £, is given by

£=2500

XeMB = Y (C?m - CEh)T Cov, ! (C?ata - CEh) ; (3.1)
=2

where Czh is the data-vector corresponding to theory (wow,CDM) prediction, and C?ata are
the data which, recall, are produced assuming the EF'T model. Both the theory and the data
C; are composed of parts corresponding to temperature-temperature (TT), temperature-
polarization (TE), and polarization-polarization (EE) correlations:

crr
CFE|. (3.2)

TE
CZ

C,



The overall covariance matrix Covy is diagonal between the different multipoles. At each
multipole, the covariance for the data vector Ci2* is given by (e.g. [63])

2
(20 + 1) fory

ety e orer
<[ @ree e crRer

CITCE* CEPCE® JI(CFP) + T PP

Covy = (3.3)

The elements of this covariance matrix are explicitly
CFT = OFT 4 NFT
GEE — OFF 4 NFF (3.4)
crr =i,

and the noise terms are

Ni't = Afexp 81n2

00 + 1) 03w
(3.5)
NP =2x NJT,

where Ap = 1 K, Opwam = 8.7 x 1074 radians, and assume fsky = 0.4, using the specifics
of the Stage-4 experiment [63].

We generate the data vector C?ata (for each ¢) using EFTCAMB, for a given cosmological
model as discussed in section 2.1. This is an important step, as CMB is the only part of our
simulated data that is directly affected by modified gravity.

We generate noiseless data vectors — that is, the final C?ata used in the likelihood are
precisely centered on theory, with no stochastic noise. This assumption is justified because
we are not interested in statistical errors on the infered parameters, but rather only at the
best-fit parameters (for a given simulated Horndeski model). Had we included stochastic
noise, we could have still obtained the results that we are after, but it would have required
running a number of statistical realizations of data vectors for a given Horndeski model in
order to account for stochasticity in the data.

3.2 SNIa

Type Ia supernovae (SNIa) are sensitive to distances alone. Because in our generated data
we fix the background cosmology to ACDM and only vary the perturbations according to
modified gravity, SNIa data vector is not directly sensitive to modified gravity. Nevertheless,
SNIa are very useful in pinning down the cosmological parameters and breaking degeneracies
between them, and thus helping isolate the effects of modified gravity on data analyzed
assuming wow, CDM.

Assuming again a gaussian likelihood, the chi squared for SNIa measurements is deter-
mined by

X%N({piL M) — (mdata . mth)TCOVfl(mdata _ mth),

where m is the apparent magnitude of simulated data which is calculated based on the
cosmology in each fit to the Horndeski model. The theoretical magnitude m*™ is, conversely,
calculated based on the fiducial wyw,CDM cosmological model:

m'™(2) = 5log;[Hody (2, {pi})] + M (3.6)

data
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where dy, is the luminosity distance, and M = M — 5log;o(Ho x 1Mpc) + 25 is a nuisance
parameter that always needs to be marginalized over in a SNIa analysis. We can analytically
marginalize over M and obtain a marginalized effective y?

b2

X%N7 marg — a— ?7 (37)

where

a=(m—m"™7Covl(m — m")

b=1"Cov}(m — m™") (3.8)

c=1TCov'1,

where 1 is a unit vector.

We employed the SNIa redshift bins and the covariance matrix as forecasted for the
WFIRST satellite [64]. The covariance matrix is diagonal between different bins, and is
calculated as a combination of systematic and statistical errors. In a given redshift bin,

Otot = (Uszys + Gsztat)l/Qa (39)
where
0.01(1 + =)
e T
(3.10)

(UrQneas + Ui2nt + 0126115)1/2 )
N3

Here, omeas = 0.08, ojnt = 0.09, 0lens = 0.07z, and Ngy is the number of supernovae in that

redshift bin.

We have also incorporated redshift bins and the corresponding covariance matrix from
measurements at low redshift by Pantheon dataset [61], which includes 870 supernovae. The
covariance matrix for this data set is diagonal, and the error at each redshift is given by
Pantheon as well.

Ostat —

3.3 BAO

Baryon acoustic oscillations (BAO) — wiggles in the matter power spectrum due to photon-
baryon oscillations prior to recombination — are a powerful cosmological probe. Much like
SNIa, they probe geometry, and are sensitive to the angular-diameter distance D(z) and
Hubble parameter H(z) evaluated at the redshift of tracer galaxies in question. Often, the
general analysis of the BAO provides precisely these “compressed quantities” for one or more
effective redshifts, which in turn can be used to constrain a cosmological model.

Here we assume the D(z) and H(z) measurements that are forecasted to be measured
DESI experiment [62]. The measurements of both the distances and the Hubble parameters
are each reported separately in 13 redshift bins; we thus organize these measurements in data
vectors D and H that each have 13 elements. As before, we generate synthetic noiseless data
(DYt2 and HY?) assuming Horndeski models, and analyze it using theoretically computed
quantities (D' and H'") that assume the wow,CDM model.

The goodness-of-fit for BAO is written down in a similar way as for the CMB and SNIa

X%AO({pi}) — (Ddata N Dth)TCovz)l (Ddata . Dth)
+ (Hdata _ ch)TCOVﬁl (Hdata _ ch)’ (3.11)
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where Covp and Covp are respectively the 13 x 13 covariance matrices for the distance and
Hubble parameter measurements, which are diagonal. We adopt these matrices also from
DESI forecasts [62].

4 Results and discussions

Our results are summarized in figure 3. Here we show the eight-dimensional space of
wow, CDM models that were fit to Horndeski data vectors. Each point corresponds to values
of the best-fit wow,CDM model for a given Horndeski model. We show results for a total
of 15186 Horndeski data vectors which passed our criteria laid out in section 2.2. We show
all possible 2D planes of cosmological parameters, as well as histograms of the distributions
in each parameter on the diagonal. The axis limits are chosen so that they indicate the
range within which each parameter is allowed to vary during the minimization. The grey
crosshair in each panel indicates our fiducial cosmology (see table 1), which corresponds to
the background cosmology we set in all our Horndeski models.

Note specifically that figure 3 does not show any kind of parameter constraint — that
is, no “error bars” are represented here. Rather, in each parameter panel of the figure, the
distribution of points relative to the crosshair demonstrates how values of the respective
parameters shift relative to their true values when modified gravity (Horndeski) theories
are incorrectly interpreted as dark energy (wow,CDM). Recall also that these fits are only
performed for wow,CDM models that are decent fits to Horndeski data vectors, judged by
the criterion in eq. (2.8), mimicking the decision point that would be applied in an analysis
of real data. Finally, the density of points in figure 3 is not particularly important, as it
merely reflects the metric on our prior in the space of models (e.g. the fact that we used a
flat prior in the parameters ~; rather than, say, a log prior). What we are interested instead
is the overall extents and shapes of the clouds of points.

The most apparent observation from figure 3 is that the biases in wow,CDM parame-
ters, relative to their true values, carve out very specific directions in the parameter space.
Table 3 summarizes the directions in which the parameters are shifted. The specific shifts
are generally unsurprising, as we would guess that there exist specific degeneracies between
Horndeski models and wow,CDM parameters where the former can be interpreted as the
latter. Nevertheless, the precision to which the wyw,CDM biases are carved out in their
respective parameter spaces is remarkable.

The next most noticeable feature of our results are the branchings in the wow,CDM
parameter biases. In other words, biases in the parameters trace out multiple (two or three)
directions in several 2D parameter planes. This indicates multiple degeneracy directions
between shifts in the wyw,CDM space and Horndeski models. A very general quantitative
expectation for this multi-modality is difficult to establish, but we have nevertheless explored
this in some detail. We found that the value of the parameter wg — dark energy equation
of state value today — is a good predictor for the branchings. Specifically, we found that
modified-gravity models that are best fit with, respectively, wy < —1.05 and wg > 0.97, lead
to two prominent branches that are evident in a number of 2D planes, and that are labeled
with green and red points respectively in figure 3. Conversely, models fit with —1.05 < wy <
—0.975, labeled with black points, form the “core” of the distribution, at the nexus of the
two branches.

Closing the analysis of figure 3, note that the overall biases in the standard-model
parameters are, very roughly, comparable to the current statistical uncertainties in these
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Figure 3. Best-fit values and histograms of cosmological parameters and dark energy sector param-
eters obtained from fitting to 15186 Horndeski models with a wow,CDM cosmology. Branches shown
in the panels along the rows of Hy, wg and w, can be separated by values of wp, as indicated by red
and green points.

parameters. For example, the range of the scalar spectral index, roughly [0.96,0.98], is
somewhat larger than its present statistical uncertainty, while that in the Hubble constant,
[66.86,68.43], is also somewhat larger than the constraints from Planck 2018 analysis [59].
This is not particularly surprising as we have only shown models whose fit to Horndeski data
vectors is “good” as quantified in terms of near-future experimental errors. Nevertheless, this
tells us that future constraints on these parameters will likely favor a subset of models shown
in figure 3. Future data may thus indicate whether a specific sub-class of modified-gravity
models lurks in the data.

Of particular interest to cosmologists is the measured value of the equation-of-state
parameters (wg,w,). Can these measured values indicate the presence of modified gravity?
To help answer this question, we enlarge and display figure 3’s wg-w, plane in the top
panels of figure 4. First, note that the wy and w, values of best-fit unmodified-gravity
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Figure 4. Top left panel: the wy-w, plane from figure 3, where each point is colored by the ~3
function of the corresponding Horndeski data vector that was fitted with a wow,CDM cosmology.
Top right panel: the same as the left panel but each point is colored by the x? value that quantifies
the difference between the best-fit power spectrum and the Horndeski data vector. Bottom panel:
equation of state w(z) for 1000 randomly selected models (corresponding to a subset of points in the
purple-pink region in the left panel). Notice that the equation-of-state curves intersect around an
effective redshift z.¢ = 0.28, at the value of the effective equation of state typically slightly larger
than weg = —1.

models are mutually highly correlated. This is entirely expected, as the physically relevant
quantity is w(z) at the redshift where best constrained by the data — the effective, or “pivot”
redshift [65, 66]. In fact, it turns out that our range of Horndeski models given by eq. (2.6),
the largely one-dimensional direction of best-fit models in wg-w, plane is

Weft = Wo + We (1 — o) ~ —1 (4.1)

with the effective scale factor aeg = 0.78 or redshift z.g = 0.28.

Therefore, the best-fit models do allow variation in wg and w,, but constrained so
that the two parameters combine to produce a constant w(z) at some effective redshift. To
illustrate this, the black line in both of the top panels of figure 4 follows combinations of
wo and w, that give weg = w(zeg) = —1 at effective redshift z.s = 0.28 based on eq. (4.1).
[Note that most best-fit models are actually slightly above the black dashed line, indicating
that weg is slightly larger than —1.] The linear relation in eq. (4.1) is not unexpected, as it
is really the “physical” value of the equation of state weg at some redshift zeg to which the
theory is most sensitive. In our scenario, dark-energy parameters preferentially follow the
relation in eq. (4.1) so as to fit our SNIa and BAO data which are generated using w = —1,
even while individually departing from the cosmological-constant values of (wp, w,) = (—1,0)
in order to fit the CMB data which are generated using Horndeski. Specifically, wg and w,
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obey a definite one-parameter family of curves for a fixed value of the distance to the last-
scattering surface, which the CMB data constrain particularly well [67]. The value of the
pivot value that the analysis reports to us, zeg = 0.28, merely reflects the typical redshift to
which cosmological SNIa, BAO and CMB data are most sensitive [65].

We shed more light on what best-fit (wg,w,) values are favored as fits to Horndeski
models in the bottom panel of figure 4. Here, each curve represents the function w(z) (in
the wg, w, model) for each corresponding (purple or pink-colored) point in figure 4. Notably,
most best-fit w(z) curves intersect around the effective redshift z.g = 0.28, the value that is
indicated with a vertical black dashed line.

It is instructive to look at the overall extent of the distribution of models in the top
panels of figure 4. The coverage of the wp-w, “island” is highly non-uniform, with more mod-
els with a positive w, than negative. In the top left panel, we obtain additional information
by plotting the 3 parameter from eq. (2.3) for each model, which dominates how far that
Horndeski data vector’s departure from our background ACDM cosmology is. As expected,
lower values of 3 (i.e. models that resemble the ACDM background most) forms the core of
the distribution, while models with higher values of v3 have larger deviations in (wg, w,) and
tend to either aggregate in the branch favoring a higher value of wy and w, around zero, or
at the upper left tip which favors the lowest values of wy but the highest ones of wj,.

In the top right panel, we also color the points in the wgp-w, plane with their associated
values of x? that quantify the difference between the input Horndeski data vector and the
data vector corresponding to the best-fit wow,CDM model. The core of the distribution in
wo-w, is made up of models with a low value of y?; these are the models that can be fit well
with a wow,CDM cosmology. As in the left panel, models aggregating in the branch on the
right, or at the tip on the upper left, are fit less well with a wow,CDM cosmology.

The top panels of figure 4 also show a branching in the distribution of models in the wg-
w, plane, though weaker than the more prominent ones in the full 8D parameter space seen
in figure 3. We did not pursue understanding this feature, given hat it is not extended, and
probably encodes subtle correlations between dark energy parameters (wg, w,) and Horndeski
model parameters when the former are enforced to fit the latter.

Finally, we ask what implications are on two of the most readily measured parameters by
lensing surveys — §2j; and Sg = 0g(€2,7/0.3)%5. Note that the values of these two parameters
measured in lensing surveys and the CMB are typically interpreted within the context of the
flat ACDM cosmological model. Therefore, to infer og from our set of simulated Horndeski
data vectors, we now enforce a fit of modified gravity with a ACDM cosmology rather than
wowe,CDM. We thus fix wg = —1 and w, = 0, and vary the six other parameters listed in
eq. (2.7) to find the best-fit ACDM model. Then, we use CAMB to calculate the value of og
and the corresponding Sg for each best-fit ACDM model.

We plot ACDM’s best-fit (257, .Ss) pair for each Horndeski model in figure 5. Each
point is colored by the «y3 parameter (as defined in eq. (2.3)) for each Horndeski model we
fitted to. As before, the cross-hairs denote the fiducial, input values of these parameters.
In this case, we do not observe a particularly narrow region, or multiple branches, in the
best-fit 237 — Sg plane. Rather, we see a near-universal shift to lower values of the best-fit
Qur, and also a preferential shift toward lower Sg. As the Horndeski model deviates more
from general relativity when ~s is larger, we observe a shift in {2, towards lower values.
It is known that Horndeski models can generally accommodate both a larger and a smaller
amplitude of structure formation relative to the standard model with the same background
parameters. However, we need to remember that the CMB measurements at large scales,
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wow,CDM ACDM
Compared to % Larger | % Smaller | % Larger | % Smaller
fiducial value
Qph? 99.7 0.3 99.9 0.1
Q.h? 2.8 97.2 1.1 93.9
As 62.3 37.7 35.2 64.8
Hy 78.6 21.4 99.2 0.8
Ng 99.2 0.8 99.97 0.03
T 67.5 32.5 41.2 58.8
wo 73.0 27.0 N/A N/A
Wq 8.7 21.3
Qm N/A N/A 0.9 99.1
Ss 0.7 99.3
Age™?T 6.1 93.9 12.2 87.8

Table 3. Summary of the trends in the inferred cosmological parameters when modified-gravity
(Horndeski) models are interpreted within the context of unmodified gravity — either in wyw,CDM
or ACDM cosmology. For each parameter, we show the percentage of best-fit values larger/smaller
than the true (input) value. Parameters whose best-fit values are overwhelmingly shifted in the same
direction are highlighted in red.

which fit the Integrated Sachs-Wolfe plateau, lie below the ACDM prediction. With the
newfound parametric freedom in Horndeski models, it appears that the spectral index ng
increases to lower the large-scale power, and in turn lowers €, and og (with which ng is
negatively correlated) to preserve the good fit at intermediate and smaller scales. This
explains why we find the preferentially low €2, and og values in Horndeski models.

We also investigated the biases that one would observe on all six base cosmological
parameters when interpreting modified gravity with a ACDM cosmology. The results are
displayed in figure 6, which contains all possible 2D planes and histograms of cosmological
parameters. The grey crosshair again indicates the unbiased, fiducial value of a parameter.
In every panel, each point represents a parameter’s relative shift or bias resulting from mis-
interpreting one of the 16769 modified gravity models with dark energy. Here, we observe a
shift towards a uniform direction among four of the six parameters, Qyh2, Q.h?, Hy and ng,
which are listed in table 3. The degenerate combination of A e~2" also mostly shifts towards
a value smaller than the fiducial one.

5 Conclusion

In this work we address the question of how analyses that fit standard cosmological models
(say ACDM or wow,CDM) to data may show hints of modified gravity. Assume for the
moment that modified gravity is at work. In a realistic situation, it is entirely plausible that
a standard, unmodified-gravity model is a good fit to the data, so that we cannot immediately
rule it out and claim evidence for modified gravity. This scenario, however, will generally
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Figure 5. Best-fit values of 2, and Sg derived from fitting 16769 Horndeski data vectors with a
ACDM cosmological model. Each point is colored by the 73 parameter for each Horndeski model as
defined in eq. (2.3).

lead to shifts in the (standard-model, unmodified-gravity) parameter values relative to their
true values. And such shifts, interpreted together and in relation to other measurements
in cosmology that depend on different kinds of data, may reveal the presence of modified
gravity.

In this paper, we quantitatively investigate these parameter biases in scenarios when
modified gravity is misinterpreted as a standard model. Specifically, we establish the link
between modified-gravity models and shifts in the standard cosmological parameters. To
scan through a broad range of modified-gravity model, we focus on the Horndeski universality
class of models, whose phenomenological predictions (on linear scales) are produced by the
code EFTCAMB [54]. Horndeski models allow a separate specification of the cosmological
theory background and perturbations. For simplicity, we assume a cosmological-constant
background for the Horndeski models (in agreement with the most recent cosmological data
to date), and vary the perturbations, allowing the full freedom of Horndeski models. We fit
these models with simulated future data consisting of CMB temperature and the polarization
power spectra, BAO data, and type la supernova data. We restrict the analysis to only those
Horndeski models whose simulated data vectors are well fit by the wow,CDM model. In doing
this we mimic a realistic situation where one would only proceed with the interpretation of
model fits in scenarios where the goodness of fit passes some threshold.

We report the best-fit values of the standard cosmological parameters for each Horndeski
model that passes the aforementioned cuts. We find that the distribution of the best-fit values
cover remarkably tight regions in the standard eight-dimensional parameter space (figure 3).
These regions are largely linear, though on occasion carve out multi-pronged directions in
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Figure 6. Best-fit values and histograms of cosmological parameters obtained from fitting to 16769
Horndeski models with a ACDM cosmology.

the 2D parameter spaces. These tight correlations in standard parameter best-fits imply
that even general classes of modified-gravity models register as specific deviations (from true
values) in the unmodified-gravity parameters. This is good news; for example, a deviation in
standard parameters that does not lie in one of these directions would indicate that systematic
errors, rather than modified gravity, may be the cause of such unexpected shifts. Hence it
should be possible to spot such signatures of systematic errors in future data.

Focusing now on the equation-of-state parameter values that are best fits to Horndeski
models, we find that, even though significant deviations in both wy and w, are allowed, they
obey a tight mutual relation (figure 4). Specifically, most Horndeski models are fit with an
effective equation of state of w(zerr) ~ —1, evaluated at the effective redshift of ze.g = 0.28.
This can be taken as a very generic prediction of the perturbations provided by the large class
of modified-gravity models that we study, given a ACDM background as stipulated above.
This prediction, along with those on all other parameters specified in figure 3, will be sharply
tested using upcoming cosmological data.

We finally study the implications of our result to the currently much debated tension
between constraints on the Sg parameter obtained from lensing probes and CMB measure-
ments. Assuming now the ACDM model (in which the Sg tension is usually framed), we find
that Horndeski models typically predict a lower Sg, and near-universally a lower s, than
the truth when the latter two are inferred assuming the ACDM model. Because the only
direct probe of Sg that we assumed was the CMB, this implies that CMB’s Sg value is pref-
erentially low when Horndeski data are analyzed assuming the ACDM model. This should
be compared to the prediction from applying the same pipeline to lensing data, something
we plan to do in a future work.
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A Fitting error

Here, we illustrate the extent of uncertainty in our process of finding best-fits. In each panel
of figure 7, there are 93 blue points, each generated from fitting the 8 standard cosmological
parameters to the fiducial cosmology listed in table 1. The dim light grey, green and red
points in the background are the same as the corresponding points in figure 3, and in both
figures they denote the best-fit parameter values to Horndeski data vectors. For a perfect
fitting process, the blue points should all coincide with the grey cross-hair, which indicates
the fiducial values of each parameter. Our fitting error, as indicated by level of scatter among
the blue points and the historgrams, is small compared to both the best-fits to Horndeski
data vectors and the parameters’ allowed ranges of variation.
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Figure 7. A test of the performance of the emulator and our minimization tool, iminuit. The test
consists of 93 separate fits of cosmological parameters to the same CMB power spectrum generated
by CAMB (with input parameter values as in table 1); each fit starts from a different, randomly chosen,
starting point in parameter space. The best-fits parameter values are plotted as the blue points in each
panel (superimposed to results from figure 3). The histograms on the diagonal show the distribution of
the recovered values for the corresponding parameter on the vertical axis. These results demonstrate
that the emulator and iminuit successfully and accurately recover the input cosmological parameter
values, which are shown by the cross-hair in each panel.
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