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1 Introduction

There has recently been a surge in interest to study departures in the distribution of primor-
dial density fluctuations from the random Gaussian case predicted by standard inflationary
models. The reason for this renewed interest lies in the fact that any observable departures
from Gaussianity would essentially rule out the standard single-field, slow-roll inflationary
picture, pointing to a more complicated dynamics during the epoch of inflation (see e.g. [1–5]
for reviews).

It is therefore important to consider how one could parametrize primordial non-
Gaussianity. A much-studied model of primordial non-Gaussianity is the local (or squeezed)
model, which characterizes non-Gaussianity through a single parameter fNL [6–8]

Φ(x) = φG(x) + fNL(φG(x)
2 − �φG(x)

2�). (1.1)

Here, Φ denotes the primordial curvature perturbations (Bardeen’s gauge-invariant poten-
tial), φG(x) is a Gaussian random field, and the constant fNL is the parameter describing
deviations from Gaussianity. The local model has been much studied for its simplicity — it
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contains the first two terms of the most general local form of non-Gaussianity (e.g. [9, 10]).
In a recent paper ([11]; hereafter BHK11), we introduced a generalization of this model to
one where, in Fourier space, fNL = fNL(k) is a function of scale

Φ(k) = φG(k) + fNL(k)

�
d
3
k
�

(2π)3
φG(k

�)φG(k − k
�). (1.2)

This is a natural extension of the popular ‘local’ model1 fNL = const, and it is physically
well-motivated; it can describe inflationary scenarios with multiple light fields, one of which
is responsible for the generation of curvature perturbations [13–15]. The bispectrum in this
generalized local model is

Bφ(k1, k2, k3) = 2[fNL(k1)Pφ(k2)Pφ(k3) + perm.], (1.3)

where Pφ is the power spectrum of potential fluctuations. This reduces to the familiar
expression B(k1, k2, k3) = 2fNL(Pφ(k1)Pφ(k2) + perm.) when fNL is a constant.

To parametrize this model while retaining its full generality, it is convenient to consider
a parametrization in piecewise-constant bins in wavenumber:

f
i
NL ≡ fNL(ki) (1.4)

where each f
i
NL

is the value of fNL(k) in the i-th wavenumber bin. In BHK11, we used this
parametrization to project errors on fNL(k) from a hypothetical Stage III galaxy survey. As
in BHK11, we adopt 20 bins in wavenumber distributed uniformly in log(k), which is easily
sufficient to obtain the best-measured principal components accurately.

In this work, we perform an analysis that is similar in spirit to that in BHK11, but
extended in several respects. First of all, we develop formalism and work out forecasts for
how well the CMB, in particular Planck [16], can measure fNL(k). We combine this with the
LSS forecasts updated to reflect three specific galaxy surveys. Having done that, we obtain
a clearer picture of where we can expect good constraints on non-Gaussianity in k-space.
Finally, we project our forecasts to the specific, power-law model in wavenumber, and thus
clarify at which wavenumber the CMB, LSS and the combined surveys best determine non-
Gaussianity. Therefore, this work complements not only BHK11 and studies that forecasted
errors for (occasionally slightly different) models of scale-dependent non-Gaussianity [14, 17,
18], but also many previous forecasts for future constraints on constant fNL [18–32].

The structure of this paper is as follows: in section 2, we briefly review the main result
from BHK11 — the signature of the generalized local model on large-scale structure through
halo bias — and explore the effects of an additional term in the modeling of non-Gaussian
bias first pointed out by Desjacques et al. [33]. In section 3, we find the signature of the
generalized local model on the CMB bispectrum, with particular emphasis on Planck.
Finally, in section 4 we combine the results for a set of joint constraints; we also perform a
principal-component analysis, and project constraints on a power-law model of fNL(k). We
conclude in section 5. Details of the computational work can be found in the appendices.

1This is not the most general scale-dependent model possible, as it is certainly possible to promote fNL

to a function of (k1, k2, k3), among other possibilities. Scale-depenent non-gaussianity is also a generic
feature of models with modified gravity. One can also introduce scale-dependence to a different model
of non-Gaussianity altogether; for example, the Dirac-Born-Infeld braneworld theory typically leads to
scale-dependent equilateral fNL, which has been constrained in ref. [12].
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2 Generalized local model: signatures in large-scale structure

In this section we first briefly review how the general local model of non-Gaussianity affects
the bias of dark matter halos. We then present details of the LSS surveys that we will consider.

2.1 Effect on the bias

For the local non-Gaussian model from eq. (1.1), the dark matter halo bias acquires scale
dependence [34]:

b(k) = b0 +∆b(k) = b0 + fNL(b0 − 1)δc
3ΩmH

2
0

a g(a)T (k)c2k2
, (2.1)

where b0 is the usual Gaussian bias (on large scales, where it is constant), δc ≈ 1.686 is
the collapse threshold, a is the scale factor, Ωm is the matter density relative to the critical
density, H0 is the Hubble constant, k is the wavenumber, T (k) is the transfer function, and
g(a) is the growth suppression factor.2 See also [22, 28, 35–48] who explored the effects of
primordial non-Gaussianity on the bias of dark matter halos in great detail.

In BHK11, we worked out the signature of the generalized local model, using the MLB
formalism [35, 49, 50], and made forecasts for future galaxy surveys. It is not our intention
to fully repeat all of our analysis from that paper, and we just quote essential results. The
change in the bias ∆b is given, in the generalized local model, by eq. (3.16) from BHK11

∆b

b
(k) =

δc

D(z)

2

8π2σ
2
RMR(k)

�
dk1k

2
1MR(k1)Pφ(k1)

×
�

dµMR(k2)

�
fNL(k)

Pφ(k2)

Pφ(k)
+ 2fNL(k2)

�
. (2.2)

where MR(k) ≡ [k2T (k)W̃R(k)]/(H2
0
Ωm) and W̃R(k) is the Fourier transform of the top-hat

filter with radius R. The derivatives with respect to piecewise constant parameters f i
NL

are
straightforward and given by eq. (3.19) of our previous paper.

However eq. (2.2) is not entirely correct in describing the scale-dependent bias from a
general NG model. Desjacques et al. ([33]; see also [45]) pointed out that the expression (2.1)
is only correct in the high-peak, small-k limit. An additional term is required for the exact
expression:

∆b(k) =
2F (k)

MR(k)D(z)

�
(b0 − 1)δc +

d lnF (k)

d lnσR

�
(2.3)

where

F (k) =
1

8π2σ
2
R

�
dk1k

2
1MR(k1)Pφ(k1)

�
1

−1

dµMR(k2)

�
fNL(k)

Pφ(k2)

Pφ(k)
+ 2fNL(k2)

�
. (2.4)

The new term (second term in square parentheses in eq. (2.3)) vanishes when the
fiducial model for non-Gaussianity is fNL(k) = const, but it becomes relevant for truly
scale-dependent models, including the piecewise-constant parametrization of fNL(k) from
equation (1.4). Because we are expanding (taking Fisher derivatives) around the constant
value of fNL(k) (30 or zero), we find very small though nonzero effect of this new term
describing halo bias. See appendix C for details.

2The usual linear growth D(a), normalized to be equal to a in the matter-dominated epoch, is related to
the suppression factor g(a) via D(a) = ag(a)/g(1), where g(a) is normalized to be equal to unity deep in the
matter-dominated epoch.
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2.2 Fisher matrix analysis: assumptions and survey specifications

We are interested in making forecasts for constraints on non-Gaussianity from future galaxy
surveys, and for this we employ the standard Fisher matrix formalism.

For measurements of the power spectrum of dark matter halos, the Fisher matrix F

is [51]

F
LSS
ij =

�

m

Vm

� kmax

kmin

∂Ph(k, zm)

∂pi

∂Ph(k, zm)

∂pj

1
�
Ph(k, zm) +

1

n

�2
k
2
dk

(2π)2
, (2.5)

where Vm is the comoving volume of the m-th redshift bin, each redshift bin is centered
on zm, and we have summed over all redshift bins. We adopt3 kmin = 10−4

h
−1Mpc,

and we choose kmax as a function of z so that σ(π/(2kmax), z) = 0.5 [52], which leads to
kmax(z = 0) ≈ 0.1hMpc−1. Ph is the dark matter halo power spectrum, related to the true
dark matter power spectrum P through

Ph(k) = b(k)2P (k), (2.6)

where each quantity implicitly also depends on redshift. Finally, pi are the parameters
of interest; in our case, these are the f

i
NL

, cosmological parameters, and the bias-related
nuisance parameters listed below in (2.7). The minimal error in the i-th cosmological
parameter is, by the Cramér-Rao inequality, σ(pi) �

�
(F−1)ii.

All of the results cited in this section, as well as LSS survey projections elsewhere in this
paper, assume the following survey properties, modeled on BigBOSS [53], unless explicitly
stated otherwise. We adopt the fiducial value fNL = 30, chosen to roughly correspond to
the maximum-likelihood value favored by current CMB data [54]. The fiducial cosmological
model is the standard ΛCDM model with Hubble’s constant H0; physical dark matter and
baryon densities Ωcdmh

2 and Ωbh
2; equation of state of dark energy w; the log of the scalar

amplitude of the matter power spectrum, logAs; and the spectral index of the matter power
spectrum, ns . Fiducial values of these parameters correspond to their best-fit WMAP7
values [54]. We also added the forecasted cosmological parameter constraints from the CMB
experiment Planck by adding its Fisher matrix as a prior (W. Hu, private communication).
Note that the CMB prior does not include CMB constraints on non-Gaussianity, so that we
are not double-counting the latter constraints. Next, we include twenty piecewise-constant
non-Gaussianity parameters fNL(ki) ≡ f

i
NL

with i = 0, 1, . . . , 19. Finally, we include a
Gaussian bias parameter in our Fisher matrix, b0(z), for each of the 44 redshift bins over
the range 0.1 < z < 4.5 (which is discussed further below). The full list of parameters that
we have in the BigBOSS Fisher matrix is

{pi} = {H0,Ωcdmh
2
,Ωbh

2
, w, logAs, ns, b

1
0, . . . , b

44
0 , f

0
NL, . . . , f

19
NL} (2.7)

BigBOSS will utilize three different tracers: LRGs, ELGs, and QSOs. The fiducial values for
b0(z = 0) are different for each of the three tracers, as are the number densities. To account
for this, we calculated the Fisher matrix for each tracer, then added all three together for

3We found that the constraints are insensitive to the precise value of kmin for the fiducial fNL(k) = 30 (or
any sufficiently nonzero value), since the most constraining scales are intermediate between kmin and kmax,
reflecting the competition between larger noise and larger signal as one goes to lower k. However, for the
fiducial value fNL(k) = 0 the constraints indeed come from the largest available scales, and in that case we

adopt kmin = V −1/3
survey.
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the final BigBOSS Fisher matrix. The fiducial values for b0(z = 0) were 1.7 for the LRGs,
0.84 for the ELGs, and 1.2 for the QSOs [55]. In each case, we assume the simple scaling of
b0 with redshift, b0(z) = b0(z = 0)/D(z).

In order to simplify the analysis, and in light of the uncertainties of the distribution of
observed LSS tracers’ masses, we assume a fixed halo mass of 1013M⊙/h. Since we marginalize
over b0 in each redshift bin, we effectively delete much information about the mass of the
tracers. Essentially, we utilize information about the redshift- and wavenumber-dependence
of bias, but avoid — at least for now — using information about the masses, since accurate
masses of LSS tracers are typically very difficult to obtain, except for galaxy clusters.

We assume that BigBOSS will cover 14,000 square degrees. The redshift ranges for the
LRGs, ELGs and QSOs are z

LRG
max = 1.2, zELGmax = 1.8 and z

QSO
max = 4.5; the forecasted number

density in each redshift bin of course widely vary, and in particular the QSOs have much
lower typical number densities per redshift bin than the other tracers [55]. We split the
survey into the aforementioned 44 redshift bins out to zmax = 4.5; the total volume of the
survey is therefore Vtot = 230 (h−1Gpc)3. The errors in the cosmological parameters vary, in

the cosmic variance limit, as V −1/2
tot .

In addition to presenting our results with the fiducial BigBOSS survey (14,000 sq. deg.,
zmax = 4.5), we also forecast constraints for the Dark Energy Survey (DES [56]), which will
cover 5,000 sq. deg. with zmax = 1.0, split into 5 redshift bins. For simplicity’s sake, we
assume that this survey will only see one tracer, with a fiducial Gaussian bias b0(z = 0) = 2.0
and a number density n = 2 × 10−4 (hMpc−1)3 (independent of redshift). Note that the
actual redshift distribution and number density of the DES tracers will depend on the
spectroscopic followup to the main survey and the objects that it targets, details of which
are somewhat uncertain at this time and hence our approximate assumptions. The rest of
the Fisher matrix formalism for this survey (cosmological parameters, etc.) is the same as
what we used for the BigBOSS Fisher matrix.

2.3 The effect of the fiducial value on constraints

Looking back at Equation (2.5), we see that the fiducial fNL enters through the bias, by
way of Ph. Assuming Ph(k) � 1/n (a reasonable assumption at large angular scales where
non-Gaussianity constraints largely come from and where shot noise is negligible), we find
that the Fisher matrix element corresponding to fNL = const is

F
LSS ∝

� �
∂b(k)

∂fNL

�2

b
−2(k)dk =

� �
∆b(k)

fNL (b0 +∆b(k))

�2

dk (2.8)

Thus, the expression on the right-hand side will, in general, be dependent on the choice of
fiducial fNL. Since |∆b(k)| blows up at small k, in that regime we have:

�
∆b(k)

fNL (b0 +∆b(k))

�2

≈ 1

f
2
NL

(2.9)

At large k, ∆b(k) goes to 0, taking the entire expression with it. Thus, the integral is
dominated by the contribution at low k, meaning we should expect a maximal Fisher matrix
element around a fiducial fNL = 0. And indeed, that is what we see in figure 1: the projected
constraints on fNL from a given sky survey depend strongly on the fiducial value chosen,
with the tightest constraints at fNL = 0.

We note that, as shown in the following section, the Fisher matrix is independent of the
fiducial fNL value for the CMB constraints for our piecewise-constant parameterization.
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Figure 1. A more detailed look at how the choice of fiducial fNL affects the projected constraints on
constant fNL from a future galaxy survey. See text for analytic explanation for why results are the
best at fiducial value of fNL = 0.

3 Generalized local model: signatures in the CMB

Traditionally, the best constraints on non-Gaussianity have come from the CMB. This is
done almost exclusively through estimators involving the N-point correlation functions for
N > 2 and their Fourier transforms, the polyspectra. Most emphasis has been on the
N = 3 case, or the bispectrum of temperature fluctuations in the CMB, if only because
of its relative computational simplicity. The well-known general expression for the CMB
bispectrum, re-derived in appendix A, is

B
pqr
�1�2�3

=

�
2

π

�3
�

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

�
�1 �2 �3

0 0 0

��
k
2
1dk1 k

2
2dk2 k

2
3dk3

×BΦ(k1, k2, k3)t
p
�1
(k1)t

q
�2
(k2)t

r
�3(k3)

� ∞

0

r
2
dr j�1(k1r)j�2(k2r)j�3(k3r) (3.1)

where the expression in angular parentheses is the Wigner-3j symbol, BΦ is the curvature
bispectrum, and t� are the radiation transfer functions.

In principle, we can use this to find the Fisher matrix Fij for the CMB bispec-
trum and thus forecast how well the CMB bispectrum can determine the cosmological

– 6 –
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parameters: [5, 8, 57, 58]

F
CMB
ij = fsky

�

lmn,pqr

�

2≤�1≤�2≤�3

1

∆�1�2�3

∂B
lmn
�1�2�3

∂pi
(C−1

�1�2�3
)lmn,pqr

∂B
pqr
�1�2�3

∂pj
. (3.2)

Here, C is the covariance of the bispectra and pi,j are the parameters of interest. ∆�1�2�3

is a combinatoric term — equal to 6 when �1 = �2 = �3, 1 when �1 �= �2 �= �3, and
2 otherwise [58]. The indices i, j, k and p, q, r run independently over all eight possible
ordered triplets of temperature and polarization fields (TTT, TTE. . . EEE). The details of
calculating B

pqr
�1�2�3

and its derivatives are in appendix A, while the details of calculating the
bispectrum covariance C are in appendix B.

Equation (3.1) is a totally general result for the bispectrum of the CMB in terms of the
Bardeen curvature bispectrum; we have not picked any model of non-Gaussianity. But (3.1)
is not useful without picking a form for BΦ(k1, k2, k3). For the constant fNL case, we have
the following Bardeen curvature bispectrum:

BΦ(k1, k2, k3) = 2∆2

φfNL

�
1

k
3−(ns−1)

1
k
3−(ns−1)

2

+ perm.

�
(3.3)

where ∆φ is the amplitude of the curvature power spectrum. Using eqs. (3.2), (B.4),
and (A.24), we have the following expression for the CMB bispectrum Fisher information in
the constant fNL case:

F
CMB

fNL
= 4∆4

φ

�

lmn,pqr

�

2≤�1≤�2≤�3

1

∆�1�2�3

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

�
�1 �2 �3

0 0 0

�2 1

∆�1�2�3

×(C−1

�1
)lp(C

−1

�2
)mq(C

−1

�3
)nr

�� ∞

0

r
2
dr

�
α
l
�1(r)β

m
�2 (r)β

n
�3(r) + perm.

��
(3.4)

×
�� ∞

0

r
2
dr

�
α
p
�1
(r)βq

�2
(r)βr

�3(r) + perm.
��

where α� and β� are defined in equations (A.21) and (A.22).
For the scale-dependent fNL(k) case from our generalized ansatz, things are somewhat

more complicated. The Bardeen curvature bispectrum is:

BΦ(k1, k2, k3) = 2∆2

φ

�
fNL(k3)

k
3−(ns−1)

1
k
3−(ns−1)

2

+ perm.

�
. (3.5)

Using the piecewise-constant parametrization of fNL(k), eqs. (3.2), (B.4), and (A.25) yield
the following expression for the Fisher matrix of all the f

i
NL

in the scale-dependent case,
similar to eq. (3.4):

F
CMB
ij = 4∆4

φ

�

lmn,pqr

�max�

2≤�1≤�2≤�3

1

∆�1�2�3

(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

�
�1 �2 �3

0 0 0

�2

× 1

∆�1�2�3
(C−1

�1
)ip(C

−1

�2
)jq(C

−1

�3
)kr

�� ∞

0

r
2
dr

�
α
l,i
�1
(r)βm

�2 (r)β
n
�3(r) + perm.

��
(3.6)

×
�� ∞

0

r
2
dr

�
α
p,j
�1

(r)βq
�2
(r)βr

�3(r) + perm.
��

.
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Despite appearances, this is a relatively straightforward calculation to perform, and it takes
roughly an hour (on four processors) for twenty f

i
NL

parameters with �max ≈ 2000.
We did not include other cosmological parameters in the CMB bispectrum Fisher matrix,

since the bispectrum does not constrain them terribly well, while on the other hand the CMB
power spectrum places very good constraints on the other cosmological parameters. In other
words, non-Gaussianity estimates obtained using the CMB bispectrum would not be signifi-
cantly affected by marginalizing over the other cosmological parameters within their allowed
ranges, as explicitly shown by ref. [59]. Therefore, it is a fair (and certainly very helpful) ap-
proximation to think the CMB power spectrum and the bispectrum complementing each other
by constraining the standard cosmological parameters, and the non-Gaussian parameters, re-
spectively and separately. This has indeed been the approach in the literature (e.g. [8, 57]).

4 Results and joint constraints

4.1 Forecasted constraints on the f
i
NL

Figure 2 shows the (unmarginalized) constraints on the piecewise constant parameters f
i
NL

in the generalized local model from BigBOSS and Planck individually, as well as combined.
Note that the two types of surveys have comparable constraints at the pivot wavenumber,
but the pivot is at a larger wavenumber for BigBOSS. Away from the pivot, the Planck
constraints are expected to be better than those from BigBOSS, but both rapidly deteriorate
away from their respective pivots. Finally, the combined constraints are significantly helped
by the lever arm in wavenumber when the two probes are combined, and this leads to better
constraints across a wider range of scales. We will make these statements more quantitative
below when we study the specific case where fNL(k) is a pure power law in k.

The horizontal green curves in all panels in figure 2 show the accuracy in the constant
fNL, projected down from the principal components f

i
NL

as described in BHK11. The
accuracy achieved in fNL is 4.4 for Planck, 2.6 for BigBOSS, and 2.2 for the combined
case. Recall also that our Fisher matrices for Planck — but not for BigBOSS — assume all
cosmological parameters other than the f

i
NL

are fixed (known).

4.2 Principal component analysis

Following BHK11, we now represent a general function fNL(k) in terms of principal
components (PCs). In this approach, the data determine which particular modes of fNL(k)
are best or worst measured. The PCs also constitute a useful form of data compression,
so that one can keep only a few of the best-measured modes to make inferences about the
function fNL(k). The PCs are weights in wavenumber with amplitudes that are uncorrelated
by construction, and they are ordered from the best-measured (i = 0) to the worst-measured
(i = 19) for the assumed fiducial survey. We follow the construction of the PCs following the
formalism outlined in appendix B of BHK11. We assume a total of 20 principal components
distributed uniformly in log(10−4

hMpc−1) ≤ log(k) ≤ log(1hMpc−1), which is easily
sufficient to make model-independent statements about fNL(k).

Figure 3 shows the forecasted PCs of LSS and Planck separately and combined. Heuris-
tically, the lowest principal component (PC0) serves to see how well we can find the deviation
of fNL(k) at its pivot (i.e. best-determined wavenumber) from the fiducial value. The higher
PCs (PC1, PC2, etc) serve to probe the k-dependence of fNL.

Figure 4 shows the 1-σ errors on the PCs for BigBOSS, Planck, and the two combined.
Note that the BigBOSS errors are slightly smaller than those from Planck (the DES errors,
not shown here, are bigger than Planck’s). Combining BigBOSS and Planck sharply decreases
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(a) BigBOSS (b) Planck

(c) Combined

Figure 2. Constraints on the piecewise constant parameters f i
NL in the generalized local model with

the LSS (top left), CMB (top right), and LSS+CMB (bottom). The fiducial model around which we
perturbed was a level of non-Gaussianity consistent with the preferred value from WMAP, f i

NL = 30.
All constraints are unmarginalized, in order to more clearly show the wavenumber-dependent sensitiv-
ity of the probes to primordial non-Gaussianity. The LSS constraints come from the power spectrum
of galaxies, while the CMB constraints come from the bispectrum of temperature fluctuations. See
text for details. For reference, the green line is the constraint found for a constant fNL using the same
assumptions. There are bins “missing” on the rightmost end of the Planck plot; those bins correspond
to k-values too large to be probed when �max = 2000, as it is here.

the errors. Note too that for fiducial fNL(k) = 0, BigBOSS only constraints fNL(k) at the
pivot point well (as shown below in figure 7), and hence the error in the best-determined
principal component is noticeably smaller than errors in the other PCs.

The relative strength of the LSS and CMB constraints at their respective pivot points
strongly depend on two factors: volume of the LSS survey and, to a slightly lesser extent,
fiducial (i.e. true) value of fNL(k) (the CMB is not as sensitive to the fiducial value of
fNL(k)). For example, for fNL(k) = 30 and DES we find that Planck constraints at the
CMB pivot are stronger, while assuming BigBOSS survey we find that the LSS is slightly
stronger at its own pivot. In addition, the CMB typically constrains fNL(k) over a wider
range of scales than the LSS.
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(a) BigBOSS PCs (b) Planck PCs

(c) Combined PCs

Figure 3. The first four forecasted principal components of fNL(k) from BigBOSS, Planck, and
BigBOSS+Planck, assuming the fiducial model fNL(k) = 30. The PCs eigenvectors e

(j)(k) are
ordered from the best-measured one (j = 0) to the worst-measured one (j = 19; not shown here) for
the assumed fiducial survey.

(a) Fiducial fNL(k) = 30, BigBOSS and Planck (b) Fiducial fNL(k) = 0, BigBOSS and Planck

Figure 4. RMS error on each principal component for BigBOSS, Planck, and the two combined.
Note that the BigBOSS errors are slightly smaller than those from Planck; in all cases combining the
CMB and LSS decreases errors. Note too that for fiducial fNL(k) = 0 (right panel) BigBOSS only
constraints fNL(k) at the pivot point well (see figure 7), and hence the error in the best-determined
principal component is noticeably smaller than errors in the other PCs.
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4.3 Projecting constraints on the power-law model of fNL(k)

Once the Fisher matrix F has been obtained for the set of parameters f i
NL

, it is quite simple
to find the best possible constraints on the f

i
NL

that could be obtained from a future galaxy
redshift survey. By projecting this Fisher matrix into another basis, it is also possible to find
the constraints on any arbitrary fNL(k) without calculating a new Fisher matrix from scratch.

Here we will study the popular simple form of non-Gaussianity analogous to the
conventional parameterization of the power spectrum [17, 60–64]

fNL(k) = f
∗
NL

�
k

k∗

�nfNL

, (4.1)

where k∗ is an arbitrary fixed parameter, leaving f
∗
NL

and nfNL as the parameters of interest
in this model. The partial derivatives of our basis of f i

NL
with respect to these parameters are:

∂f
i
NL

∂f
∗
NL

=

�
ki

k∗

�nfNL

; (4.2)

∂f
i
NL

∂nfNL

= f
∗
NL

�
ki

k∗

�nfNL

log

�
ki

k∗

�
, (4.3)

where ki is the k at the center of the ith k-bin. Starting in a basis of 20 f
i
NL

evenly spaced
in log k, we project down to a basis of f∗

NL
and nfNL in order to forecast constraints on

the two new parameters. [Note that k∗ is an arbitrarily chosen parameter which differs in
general from the true pivot kpiv where constraints on fNL(k) are the best. The choice of k∗
affects neither the constraints on fNL(k) nor the value of kpiv.]

We can use the constraints on f
∗
NL

and nfNL to find constraints on fNL(k) as a whole,
through the usual methods of error propagation:

σ(fNL(k)) =

��
∂fNL

∂f
∗
NL

σ(f∗
NL

)

�2

+

�
∂fNL

∂nfNL

σ(nfNL)

�2

+ 2
∂fNL

∂f
∗
NL

∂fNL

∂nfNL

Cf∗
NL,nfNL

, (4.4)

where Cf∗
NL,nfNL

is the covariance between f
∗
NL

and nfNL , and σ(f∗
NL

)2 and σ(nfNL)
2 are

their respective variances. Using this relation, and given some fiducial model of fNL(k), we
can plot the forecasted constraints on fNL(k) as a function of k. This is what we have done
in figure 5 for the Planck bispectrum, DES power spectrum, and the two combined (along
with priors on cosmological parameters from the Planck power spectrum).

Figure 6 is analogous to figure 5, but shows BigBOSS and Planck constraints (rather
than DES and Planck) for the fiducial value of fNL(k) = 30. Note that the forecasted
BigBOSS constraints are, very roughly, comparable to those from Planck (see also table 1),
but are also very complementary to Planck since their best constraints are at a higher k.
Our forecasted constraints on the accuracy of measuring the running with BigBOSS are in
good agreement with forecasts for the Euclid survey in ref. [18].

We also introduce the figure of Merit (FoM(NG)) of non-Gaussianity. We defined it
analogously to the figure of Merit for dark energy ([65]; see also [66]) as

FoM(NG) ≡ (detF2×2)
1/2 ≈ 6.17π

A95

(4.5)

where F2×2 is the Fisher matrix projected down to the 2× 2 space of f∗
NL

and nfNL , and A95

is the area of the 95.4% confidence level ellipse in this space. Constraints on the FoM(NG) are
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Figure 5. Forecasted constraints on fNL(k) from several different data sets, assuming the power-
law model of scale-dependent non-Gaussianity: fNL(k) = f

∗
NL(k/kpiv)

nfNL , projecting down from the
piecewise-constant f i

NL basis. The red dashed line is the maximum k for which information was kept
in the LSS Fisher matrix at z = 0. The LSS survey used for this forecast is based on DES.

Projected errors σ(f∗
NL

) and σ(nfNL), and the corresponding pivots

Variable BigBOSS BigBOSS+Planck C�s Planck bispec BigBOSS+all Planck

σ(f∗
NL

) 3.0 2.6 4.4 2.2

σ(nfNL) 0.12 0.11 0.29 0.078

FoM(NG) 2.7 3.4 0.78 5.8

kpiv 0.33 0.35 0.080 0.24

Table 1. Forecasted constraints on f
∗
NL and nfNL from BigBOSS, Planck, and combined data sets

for two fiducial values of fNL(k). Each column’s numbers are for the pivot in that column; thus the
errors in the two parameters are uncorrelated in each column. See text for survey specifications.

presented in table 1, and show that combining of BigBOSS and Planck improves constraints
by a factor of between two and five relative to these experiments alone. What is particularly
encouraging is that future constraints will improve the recently obtained current constraints
on the running of non-Gaussianity [67] by more than an order of magnitude.
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Figure 6. The same as figure 5, but with survey parameters for large-scale structure based on
BigBOSS.

Projected errors (σf∗
NL
, σnfNL

) for different fiducial fNL(k)

DES BigBOSS Planck

Fiducial fNL(k) = 30 (13, 1.0) (2.6, 0.11) (4.4, 0.29)

Fiducial fNL(k) = 0 (13, ∞) (2.5, ∞) (4.4, ∞)

Table 2. Forecasted constraints σf∗
NL

from different LSS surveys, assuming different fiducial models.
Forecasted constraints from Planck are also shown for comparison. (All values of nfNL are equally
likely in the second fiducial model, where f

∗
NL = 0.)

The constraints on fNL(k) from a large-scale structure survey are quite sensitive to
the survey parameters. Unlike the constraints on fNL(k) from the CMB bispectrum, the
forecasted constraints from LSS are also sensitive to the choice made for the fiducial model
of fNL(k), as shown in section 2.3. Forecasted constraints on f

∗
NL

and nfNL for the DES and
BigBOSS surveys, with two different fiducial models, are compared to forecasted constraints
from Planck in table 2 (note that all values of nfNL are equally likely for the fiducial model
where f∗

NL
= 0, and hence an infinite error on nfNL). The scale at which the LSS gives the best

constraint (the ‘sweet spot’) turns out to be slightly smaller than the maximum wavenumber
assumed to be used by the survey, kmax. This is because the halo-bias integration over all the
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Figure 7. The same as figure 6, but with a fiducial model fNL(k) = 0. In the limit f∗
NL → 0 there

is no information on the running of non-Gaussianity nfNL , and hence the LSS/BigBOSS constraints
are sharply peaked and essentially constrain fNL(k) at only one wavenumber.

possible momentum space configurations in eq. (2.2) has dominant contributions from small
scales,4 as we noted previously in [11]. Figure 7 shows the same case as figure 6, except for
the fiducial value of fNL(k) = 0. Because nfNL is arbitrary for this fiducial value, constraints
on fNL(k) are only good at a single, pivot wavenumber; this can also be seen by inspection
of eqs. (4.3) and (4.4). Even in this case (which, note, has measure zero in parameter space),
we see that combination of BigBOSS and Planck is extremely beneficial.5

5 Conclusions

This paper focused on the ability of upcoming LSS and CMB surveys to probe more general
models of primordial non-Gaussianity. We concentrated in particular on the generalized local
model where the parameter fNL is promoted to an arbitrary function of scale fNL(k). Our
starting point were the piecewise constant parameters in k, constraints on which are shown
in figure 2, and their principal components which are shown in figure 3 and constrained in
figure 4.

4We performed our bias calculations in the Lagrangian picture where the primordial fluctuations are linearly
extrapolated to z = 0 as usually done in the literature. For an alternative approach including the higher order
corrections in the framework of the integrated perturbation theory, see ref. [68].

5While it may seem surprising that constraints away from the pivot wavenumber are finite given that
σ(nfNL) = ∞, we remind the reader that the infinite running of fNL(k) is essentially multiplied with zero
amplitude f∗

NL when calculating the constraints at the fiducial value fNL(k) = 0. Closer inspection of eqs. (4.3)
and (4.4) confirms this argument.
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Comparison with theory is easiest, however, by using a simpler parametrization in
terms of “running” of the spectral index, nfNL ≡ d ln fNL(k)/d ln k. Using the two-parameter
description of non-Gaussianity in terms of amplitude f

∗
NL

and running nfNL , we studied the
extent to which a combination of LSS and CMB observations can constrain the running
(table 1) and fNL(k) as a whole (figures 5, 6, and 7).

For the power-law fNL(k), we found that both the bispectrum measurement from the
CMB Planck survey and power spectrum measurement from an LSS survey can constrain
fNL(k) tightly in a relatively narrow range of wavenumbers around k � 0.1hMpc−1. The scale
best constrained by the CMB is larger (i.e. at a smaller k) than the scale best constrained by
LSS: we get complementary information about fNL(k) from the two data sets. The ability of
LSS to constrain fNL(k) effectively at a wide range of scales depends on the survey parameters
and the fiducial model of fNL(k) chosen, as is clear from figures 5–7 and table 2. Nonetheless,
large galaxy redshift surveys planned for the future may well be competitive with, or even
better than, the constraints on the magnitude and running of fNL(k) expected from Planck.

Beyond the simple power-law model, we find that the combination of CMB and LSS
helps pin down the best-constrained few principal components of fNL(k) better than either
probe alone. Figure 4 shows that the degree of complementarity significantly depends on
the details of (and systematics in) the LSS survey.

The constraints from the DES and BigBOSS, and other upcoming LSS surveys can turn
out to be worse or better than those illustrated here, depending on how well the systematics
can be controlled. While (for example) the photometric redshift errors [28], calibration
errors [69], and assembly bias of galaxies [70] can all introduce parameter biases and degrade
constraints, accurate calibration of these effects from simulations and observations, as well as
selection of the “golden” class of objects with well understood properties whose clustering to
use to measure non-Gaussianity, can cancel out these degradations. Moreover, we have not
considered information from the LSS bispectrum which, while somewhat notoriously difficult
to theoretically estimate due to non-Gaussian contributions from the gravitational collapse
at late times (though see [71, 72] for recent progress on the matter), is nevertheless a very
potent probe of primordial non-Gaussianity (e.g. [48, 73–75]).

Overall, a full exploration of the LSS and CMB systematics is a herculean task beyond
the scope of this paper; nevertheless, we think we captured a few key systematics with our
choice of survey specifications and nuisance parameters.

Finally, we introduced the figure of merit for measurements of non-Gaussianity, defined
as the inverse area of the constraint region in the plane of non-Gaussian amplitude and
running (see eq. (4.5)). We are very encouraged by the fact that future constraints of non-
Gaussianity will improve current-data figure of merit [67] by more than an order of magnitude,
and thus shed interesting constraints on the physics of inflation.
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A Calculating the CMB bispectrum

Calculating the CMB bispectrum is a problem that has been well-studied elsewhere in
the literature, both for the general case and primordial local non-Gaussianity (e.g. [3]).
Here, we briefly review the technique for calculating the bispectrum in the case of local
non-Gaussianity, as well as the extension to the generalized local model that we discuss in
this paper.

The bispectrum is defined as:

B�1�2�3,m1m2m3 ≡ �a�1m1a�2m2a�3m3� (A.1)

where the a�ms are the coefficients on the spherical harmonic decomposition of the CMB sky.
The a�ms can be related to the Bardeen curvature perturbations Φ(k) by:

a�m =

�
d
2
k̂
∆T (k̂)

T
Y

∗
�m(k̂) = 4π(−i)�

�
d
3
k

(2π)3
Φ(k)g�(k)Y

∗
�m(k̂) (A.2)

Here, g�(k) is the CMB temperature radiation transfer function. There are several conven-
tions used for this transfer function; g�(k) is related to the transfer function T�(k) found
in [77] by:

g�(k) =
(−i)��
2�(�+ 1)

T�(k) (A.3)

Throughout this paper, we denote the radiation transfer functions as t�(k), defined as:

t�(k) =
1

(−i)�
g�(k) =

1�
2�(�+ 1)

T�(k) (A.4)

With these transfer functions, (A.2) becomes:

a�m =
4π�

2�(�+ 1)
(−1)�

�
d
3
k

(2π)3
Φ(k)t�(k)Y

∗
�m(k̂). (A.5)

The angular-averaged bispectrum B�1�2�3 is related to the raw bispectrum B�1�2�3,m1m2m3

of (A.1) by the relation:

B�1�2�3 =
�

m1,m2,m3

�
�1 �2 �3

m1 m2 m3

�
B�1�2�3,m1m2m3 . (A.6)

Here,
� �1 �2 �3
m1 m2 m3

�
is the Wigner 3j-symbol.6 Substituting (A.1) and (A.5) into (A.6), we

obtain the following expression for the angular-averaged bispectrum:

B�1�2�3 = (4π)3(−1)�1+�2+�3
�

m1,m2,m3

�
�1 �2 �3

m1 m2 m3

��
d
3
k1

(2π)3
d
3
k2

(2π)3
d
3
k3

(2π)3

× Y
∗
�1m1

(k̂1)Y
∗
�2m2

(k̂2)Y
∗
�3m3

(k̂3)t�1(k1)t�2(k2)t�3(k3)�Φ(k1)Φ(k2)Φ(k3)�. (A.7)

Using the definition of the Bardeen curvature bispectrum, BΦ,

�Φ(k1)Φ(k2)Φ(k3)� = (2π)3δ(k1 + k2 + k3)BΦ(k1, k2, k3), (A.8)

6There are some computational difficulties that arise when evaluating the 3j-symbol for high l1,2,3; see
appendix D.2 for more on this.
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we find

B�1�2�3 =
1

π3

�

m1,m2,m3

�
�1 �2 �3

m1 m2 m3

��
d
3
k1 d

3
k2 d

3
k3Y

∗
�1m1

(k̂1)Y
∗
�2m2

(k̂2)Y
∗
�3m3

(k̂3)

× t�1(k1)t�2(k2)t�3(k3)δ(k1 + k2 + k3)BΦ(k1, k2, k3). (A.9)

(The prefactor of (−1)�1+�2+�3 vanished because the Wigner 3j-symbol ensures �1+ �2+ �3 is
even.) Taking advantage of several identities in [78] (their (12) and (13)), the orthogonality
of the spherical harmonics, and the Gaunt integral identity ([8]), this becomes:

B�1�2�3 =

�
2

π

�3

I�1�2�3

�
k
2
1dk1 k

2
2dk2 k

2
3dk3BΦ(k1, k2, k3)t�1(k1)t�2(k2)t�3(k3)

×
� ∞

0

r
2
dr j�1(k1r)j�2(k2r)j�3(k3r), (A.10)

where I�1�2�3 is the Gaunt integral

I�1�2�3 =

�
(2�1 + 1)(2�2 + 1)(2�3 + 1)

4π

�
�1 �2 �3

0 0 0

�
. (A.11)

The real-space integral is now a one-dimensional integral in the spherical coordinate r, start-
ing at our location and ending at infinity. This real-space coordinate is the difference in the
conformal time ∆η =

� t0
te

dt
a = c(τ0 − τe) between the time when the CMB was emitted and

the present. Nearly all of the contribution to the integral in r comes from a short period of
time around the surface of last scattering, and there are no physical contributions beyond
r > rmax = η0 = cτ0 ≈ 14.6 Gpc. To perform this integral, we sampled it 150 times between
rmax and rmax−2r∗, where rmax−r∗ is the comoving distance to the surface of last scattering.
We also sampled 50 times between rmax − 2r∗ and 0 to capture any impact that late-time
effects might have had. Increasing the sampling rate did not significantly improve our results.

A.1 Derivatives with respect to fNL and fNL(k)

Using (A.10) along with (3.3), we get the following expression for the angular-averaged CMB
bispectrum in the constant fNL case:

B�1�2�3 = 2∆2

φfNL

�
2

π

�3

I�1�2�3

�
k
2
1dk1 k

2
2dk2 k

2
3dk3

�
1

k
3−(ns−1)

1
k
3−(ns−1)

2

+ perm.

�

× t�1(k1)t�2(k2)t�3(k3)

� ∞

0

r
2
dr j�1(k1r)j�2(k2r)j�3(k3r).

(A.12)

Following [5, 8] we define functions α�(r) and β�(r) to help us rewrite (A.12) as

α�(r) ≡
2

π

�
k
2
t�(k)j�(kr)dk (A.13)

β�(r) ≡
2

π

�
k
−(2−ns)t�(k)j�(kr)dk. (A.14)

Now eq. (A.12) reads

B�1�2�3 = 2∆2

φfNLI�1�2�3

� ∞

0

r
2
dr (α�1(r)β�2(r)β�3(r) + perm.) (A.15)
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and hence
∂B�1�2�3

∂fNL

=
1

fNL

B�1�2�3 . (A.16)

For the scale-dependent fNL(k) case, we use (3.5) to find that the angular-averaged
CMB bispectrum is:

∂B�1�2�3

∂f
i
NL

= 2∆2

φI�1�2�3

� ∞

0

r
2
dr

�
α
i
�1(r)β�2(r)β�3(r) + perm.

�
(A.17)

where

α
i
�(r) ≡

2

π

� kupperi

klower
i

k
2
t�(k)j�(kr)dk. (A.18)

A.2 Polarization and cross-terms

The bispectrum for multiple fields is a simple extension of the single field case. By analogy
with eqs. (A.1) and (A.2), the multiple-field bispectrum is

B
pqr
�1�2�3,m1m2m3

= �ap�1m1
a
q
�2m2

a
r
�3m3

�, (A.19)

where

a
p
�m =

4π�
2�(�+ 1)

(−1)�
�

d
3
k

(2π)3
Φ(k)tp� (k)Y

∗
�m(k̂) (A.20)

and t
i
�(k) is either the temperature or polarization radiation transfer function. Using these

definitions and running through eqs. (A.7) through (A.17) again, we can rewrite the bispec-
trum for multiple fields if we just modify eqs. (A.13), (A.14), and (A.18) slightly:

α
p
� (r) ≡

2

π

�
k
2
t
p
� (k)j�(kr)dk; (A.21)

β
p
� (r) ≡

2

π

�
k
−(2−ns)t

p
� (k)j�(kr)dk; (A.22)

α
p,i
� (r) ≡ 2

π

� kupperi

klower
i

k
2
t
p
� (k)j�(kr)dk. (A.23)

So for the constant fNL case, we have

∂B
pqr
�1�2�3

∂fNL

= 2∆2

φI�1�2�3

� ∞

0

r
2
dr

�
α
p
�1
(r)βq

�2
(r)βr

�3(r) + perm.
�
, (A.24)

while for the piecewise-constant fNL(k) case, we have:

∂B
pqr
�1�2�3

∂f
i
NL

= 2∆2

φI�1�2�3

� ∞

0

r
2
dr

�
α
p,i
�1
(r)βq

�2
(r)βr

�3(r) + perm.
�
. (A.25)

B The covariance of the bispectrum

It is usually a good assumption to consider only the Gaussian contribution to the covariance
of the bispectrum, C. Using Wick’s theorem, one can straightforwardly show ([4, 57, 58]):

C�1�2�3 = C�1C�2C�3 (B.1)
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where
C� = C

CV
� + σ

2

�W� = C
CV
� + C

N
� , (B.2)

where C
CV
� is cosmic variance, while C

N
� is the variance due to the noise and beam width

in the survey; moreover, σ
2

� is the variance of the noise in the survey per pixel, and
W� is a “window” term relating to the survey beam type and width ([79, 80]).7 For an
experiment with multiple frequency channels (such as Planck or WMAP), the basic form of
equation (B.2) still holds, but finding C

N
� is slightly trickier ([79]):

1

C
N
�

=
�

ν

1

C
N
� (ν)

=
�

ν

1

σ
2

� (ν)W�(ν)
. (B.3)

For uncorrelated Gaussian noise, σ2

� (ν) = σ
2(ν) is constant, and we can find its value for

a particular experiment — for example, the Planck beam width and noise parameters are
found in the Planck mission “blue book.”

We have only been dealing with temperature (TT), but it is not significantly harder to
add in polarization (EE) and cross (TE) terms. The covariance matrix here is ([21, 57])

(C−1

�1�2�3
)lmn,pqr = (C−1

�1
)lp(C

−1

�2
)mq(C

−1

�3
)nr, (B.4)

where

C� =

�
C

TT
� C

TE
�

C
TE
� C

EE
�

�
. (B.5)

Noise is dealt with in the same way as in (B.2) for C
TT
� and C

EE
� in (B.5). Assuming

that the noise for T and E are uncorrelated, σ2
TE = �∆T∆E� = �∆T ��∆E� = 0, and thus

C
N,TE
� = 0 for all �.

C The high-peak limit

Desjacques et al. [33] have identified a new term that contributes to the scale-dependent
bias due to non-Gaussianity, which becomes important when the high-peak limit assumption
is relaxed. This new term successfully explains previously mysterious discrepancies [14]
between the theoretical expectation for the scale-dependent bias and the results of numerical
simulations. Physically, the new term accounts for the scale-dependent mapping between
the interval in the peak height dν (which is featured in the peak-background split derivation
of the bias) and mass interval dM .

Moreover, this term is only non-zero for cases when fNL �= const, and therefore it
affects constraints on fNL(k) that we study in this paper, but not the numerous forecasts
for constant fNL studied previously in the literature.

The new term corresponds to the second term of eq. (2.3)

N(k) ≡ d lnF (k)

d lnσR
. (C.1)

We can make the evaluation of this term more tractable by using the chain rule

N(k) =
σR

F (k)

dF

dM

�
dσR

dM

�−1

. (C.2)

7Note that [79] uses w−1 for what we are calling σ2.
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Now we will need to take the derivative of N(k) with respect to the f
i
NL

, for our Fisher
matrix.

∂N

∂f
i
NL

= σR

�
dσR

dM

�−1
∂

∂f
i
NL

�
1

F (k)

dF

dM

�

=
σR

F

�
dσR

dM

�−1
∂

∂f
i
NL

�
d

dM

�
∂F

∂f
i
NL

�
− 1

F

dF

dM

∂F

∂f
i
NL

�
. (C.3)

Equations (C.2) and (C.3) are everything we need to properly account for the new term
in our Fisher matrix. Note that σR and dσR/dM are the only redshift-dependent quantities
in N(k); since their redshift dependence is linear and exactly the same, it cancels entirely,
leaving N(k) independent of z.

The effect of this new term on the projected constraints for the f
i
NL

, with a fiducial
value of f i

NL
= 30, are seen in figure 8. The figure illustrates that this new term removes

much of the correlation between errors in neighboring f
i
NL

and slightly broadens the range of
scales at which the survey is sensitive to fNL(k). Nevertheless, given that we are expanding
our general fNL(k) model around a constant value (30 or zero), the effects of this new term
on the constraints on the amplitude and running of fNL — f

∗
NL

and nfNL — are small.

D Calculational details

D.1 � sampling and binning

In evaluating equation (3.7), we do not actually use every � ≤ �max; that would be incredibly
computationally expensive. Instead, we sample and bin in �. We keep every � up through
� = 40, at which point sampling drops off gradually until, at � � 100, only every tenth � is
sampled. The “width” of the bins in � are given by the equation

∆�i =
1

2
[(�i − �i−1) + (�i+1 − �i)] =

1

2
(�i+1 − �i−1). (D.1)

D.2 Calculating the Wigner 3j-symbol

We need to be able to calculate the Wigner 3j-symbol for large (> 1000) values of �1,2,3 in
order to evaluate many of the expressions we’re interested in. Unfortunately, the 3j function
built in to the GNU Scientific Library can’t properly evaluate the symbol for �1,2,3 � 70.
Thus, we were forced to create our own special-purpose 3j-evaluator. Thankfully, we’re only
interested in the special case m1,2,3 = 0; as it turns out, in this case, the 3j-symbol reduces
to (see Wolfram Mathworld: http://mathworld.wolfram.com/Wigner3j-Symbol.html):

�
�1 �2 �3

0 0 0

�
=

�
(−1)g

�
(2g−2�1)!(2g−2�2)!(2g−2�3)!

(2g+1)!

g!
(g−�1)!(g−�2)!(g−�3)!

if L = 2g;

0 if L = 2g + 1,
(D.2)

where L = �1+�2+�3. Since (D.2) involves evaluating the factorials of relatively large numbers
when any of l1,2,3 are large, we used Stirling’s approximation to perform the factorials — but
we needed the factorials to remain accurate even when the arguments were small, so we used
six terms in the approximation.
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(a) Unmarginalized without the new term (b) Marginalized without the new term

(c) Unmarginalized with the new term (d) Marginalized with the new term

Figure 8. Illustration of how the inclusion of the correction to the scale-dependent bias from [33]
affects the forecasted constraints on the f i

NL from DES. For comparison, the green line is the constraint
found for a constant fNL using the same assumptions.
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[34] N. Dalal, O. Doré, D. Huterer and A. Shirokov, The imprints of primordial non-Gaussianities
on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D
77 (2008) 123514 [arXiv:0710.4560] [INSPIRE].

[35] S. Matarrese and L. Verde, The effect of primordial non-Gaussianity on halo bias, Astrophys.
J. 677 (2008) L77 [arXiv:0801.4826] [INSPIRE].

[36] M. Grossi, K. Dolag, E. Branchini, S. Matarrese and L. Moscardini, Evolution of massive
haloes in non-Gaussian scenarios, Mon. Not. Roy. Astron. Soc. 382 (2007) 1261
[arXiv:0707.2516] [INSPIRE].

[37] A. Slosar, C. Hirata, U. Seljak, S. Ho and N. Padmanabhan, Constraints on local primordial
non-Gaussianity from large scale structure, JCAP 08 (2008) 031 [arXiv:0805.3580] [INSPIRE].

[38] N. Afshordi and A.J. Tolley, Primordial non-Gaussianity, statistics of collapsed objects and the
Integrated Sachs-Wolfe effect, Phys. Rev. D 78 (2008) 123507 [arXiv:0806.1046] [INSPIRE].

[39] A. Taruya, K. Koyama and T. Matsubara, Signature of primordial non-Gaussianity on matter
power spectrum, Phys. Rev. D 78 (2008) 123534 [arXiv:0808.4085] [INSPIRE].

[40] V. Desjacques, U. Seljak and I. Iliev, Scale-dependent bias induced by local non-Gaussianity: a
comparison to N -body simulations, Mon. Not. Roy. Astron. Soc. 396 (2009) 85
[arXiv:0811.2748] [INSPIRE].

[41] A. Pillepich, C. Porciani and O. Hahn, Universal halo mass function and scale-dependent bias
from N -body simulations with non-Gaussian initial conditions, Mon. Not. Roy. Astron. Soc.
402 (2010) 191 [arXiv:0811.4176] [INSPIRE].

[42] P. Valageas, Mass function and bias of dark matter halos for non-Gaussian initial conditions,
Astron. Astrophys. 514 (2010) A46 [arXiv:0906.1042] [INSPIRE].

[43] T. Giannantonio and C. Porciani, Structure formation from non-Gaussian initial conditions:
multivariate biasing, statistics and comparison with N -body simulations, Phys. Rev. D 81

(2010) 063530 [arXiv:0911.0017] [INSPIRE].

[44] F. Schmidt and M. Kamionkowski, Halo clustering with non-local non-Gaussianity, Phys. Rev.
D 82 (2010) 103002 [arXiv:1008.0638] [INSPIRE].

– 23 –



J
C
A
P
1
2
(
2
0
1
2
)
0
3
4

[45] V. Desjacques, D. Jeong and F. Schmidt, Non-Gaussian halo bias re-examined: mass-dependent
amplitude from the peak-background split and thresholding, Phys. Rev. D 84 (2011) 063512
[arXiv:1105.3628] [INSPIRE].

[46] C. Wagner, L. Verde and L. Boubekeur, N -body simulations with generic non-Gaussian initial
conditions I: power spectrum and halo mass function, JCAP 10 (2010) 022 [arXiv:1006.5793]
[INSPIRE].

[47] C. Wagner and L. Verde, N -body simulations with generic non-Gaussian initial conditions II:
halo bias, JCAP 03 (2012) 002 [arXiv:1102.3229] [INSPIRE].

[48] E. Sefusatti, M. Crocce and V. Desjacques, The halo bispectrum in N -body simulations with
non-Gaussian initial conditions, arXiv:1111.6966 [INSPIRE].

[49] B. Grinstein and M.B. Wise, Non-Gaussian fluctuations and the correlations of galaxies or rich
clusters of galaxies, Astrophys. J. 310 (1986) 19 [INSPIRE].

[50] S. Matarrese, F. Lucchin and S.A. Bonometto, A path integral approach to large scale matter
distribution originated by non-Gaussian fluctuations, Astrophys. J. 310 (1986) L21 [INSPIRE].

[51] M. Tegmark, Measuring cosmological parameters with galaxy surveys, Phys. Rev. Lett. 79
(1997) 3806 [astro-ph/9706198] [INSPIRE].

[52] H.-J. Seo and D.J. Eisenstein, Probing dark energy with baryonic acoustic oscillations from
future large galaxy redshift surveys, Astrophys. J. 598 (2003) 720 [astro-ph/0307460]
[INSPIRE].

[53] D. Schlegel et al., The BigBOSS experiment, arXiv:1106.1706 [INSPIRE].

[54] WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18
[arXiv:1001.4538] [INSPIRE].

[55] Bigboss, technical report, (2012).

[56] Dark Energy Survey collaboration, T. Abbott et al., The dark energy survey,
astro-ph/0510346 [INSPIRE].

[57] D. Babich and M. Zaldarriaga, Primordial bispectrum information from CMB polarization,
Phys. Rev. D 70 (2004) 083005 [astro-ph/0408455] [INSPIRE].

[58] D.N. Spergel and D.M. Goldberg, Microwave background bispectrum. 1. Basic formalism, Phys.
Rev. D 59 (1999) 103001 [astro-ph/9811252] [INSPIRE].

[59] M. Liguori and A. Riotto, Impact of uncertainties in the cosmological parameters on the
measurement of primordial non-Gaussianity, Phys. Rev. D 78 (2008) 123004
[arXiv:0808.3255] [INSPIRE].

[60] X. Chen, Running non-Gaussianities in DBI inflation, Phys. Rev. D 72 (2005) 123518
[astro-ph/0507053] [INSPIRE].

[61] M. LoVerde, A. Miller, S. Shandera and L. Verde, Effects of scale-dependent non-Gaussianity
on cosmological structures, JCAP 04 (2008) 014 [arXiv:0711.4126] [INSPIRE].

[62] X. Chen, M.-X. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities
of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [INSPIRE].

[63] J. Khoury and F. Piazza, Rapidly-varying speed of sound, scale invariance and non-Gaussian
signatures, JCAP 07 (2009) 026 [arXiv:0811.3633] [INSPIRE].

[64] C.T. Byrnes, K.-Y. Choi and L.M. Hall, Large non-Gaussianity from two-component hybrid
inflation, JCAP 02 (2009) 017 [arXiv:0812.0807] [INSPIRE].

[65] A. Albrecht et al., Report of the dark energy task force, astro-ph/0609591 [INSPIRE].

– 24 –



J
C
A
P
1
2
(
2
0
1
2
)
0
3
4

[66] M.J. Mortonson, D. Huterer and W. Hu, Figures of merit for present and future dark energy
probes, Phys. Rev. D 82 (2010) 063004 [arXiv:1004.0236] [INSPIRE].

[67] A. Becker and D. Huterer, First constraints on the running of non-Gaussianity, Phys. Rev.
Lett. 109 (2012) 121302 [arXiv:1207.5788] [INSPIRE].

[68] T. Matsubara, Deriving an accurate formula of scale-dependent bias with primordial
non-Gaussianity: an application of the integrated perturbation theory, Phys. Rev. D 86 (2012)
063518 [arXiv:1206.0562] [INSPIRE].

[69] D. Huterer, C.E. Cunha and W. Fang, Calibration errors unleashed: effects on cosmological
parameters and requirements for large-scale structure surveys, arXiv:1211.1015 [INSPIRE].

[70] B.A. Reid, L. Verde, K. Dolag, S. Matarrese and L. Moscardini, Non-Gaussian halo assembly
bias, JCAP 07 (2010) 013 [arXiv:1004.1637] [INSPIRE].

[71] K.C. Chan, R. Scoccimarro and R.K. Sheth, Gravity and large-scale non-local bias, Phys. Rev.
D 85 (2012) 083509 [arXiv:1201.3614] [INSPIRE].

[72] T. Baldauf, U. Seljak, V. Desjacques and P. McDonald, Evidence for quadratic tidal tensor bias
from the halo bispectrum, Phys. Rev. D 86 (2012) 083540 [arXiv:1201.4827] [INSPIRE].

[73] E. Sefusatti and E. Komatsu, The bispectrum of galaxies from high-redshift galaxy surveys:
primordial non-Gaussianity and non-linear galaxy bias, Phys. Rev. D 76 (2007) 083004
[arXiv:0705.0343] [INSPIRE].

[74] D. Jeong and E. Komatsu, Primordial non-Gaussianity, scale-dependent bias and the
bispectrum of galaxies, Astrophys. J. 703 (2009) 1230 [arXiv:0904.0497] [INSPIRE].

[75] D. Figueroa, E. Sefusatti, A. Riotto and F. Vernizzi, The effect of local non-Gaussianity on the
matter bispectrum at small scales, JCAP 08 (2012) 036 [arXiv:1205.2015] [INSPIRE].

[76] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed
FRW models, Astrophys. J. 538 (2000) 473 [astro-ph/9911177] [INSPIRE].

[77] C. Gibelyou, D. Huterer and W. Fang, Detectability of large-scale power suppression in the
galaxy distribution, Phys. Rev. D 82 (2010) 123009 [arXiv:1007.0757] [INSPIRE].

[78] L.-M. Wang and M. Kamionkowski, The cosmic microwave background bispectrum and
inflation, Phys. Rev. D 61 (2000) 063504 [astro-ph/9907431] [INSPIRE].

[79] A.R. Cooray and W. Hu, Imprint of reionization on the cosmic microwave background
bispectrum, Astrophys. J. 534 (2000) 533 [astro-ph/9910397] [INSPIRE].

[80] L. Knox, Determination of inflationary observables by cosmic microwave background anisotropy
experiments, Phys. Rev. D 52 (1995) 4307 [astro-ph/9504054] [INSPIRE].

– 25 –


