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We show that it is both observationally allowable and theoretically possible to have large fluctuations in

the dark energy equation of state as long as they occur at ultralow redshifts z & 0:02. These fluctuations
would masquerade as a local transition in the Hubble rate of a few percent or less and escape even future,

high precision, high redshift measurements of the expansion history and structure. Scalar field models that

exhibit this behavior have a sharp feature in the potential that the field traverses within a fraction of an e-

fold of the present. The equation of state parameter can become arbitrarily large if a sharp dip or bump in

the potential causes the kinetic and potential energy of the field to both be large and have opposite sign.

While canonical scalar field models can decrease the expansion rate at low redshift, increasing the local

expansion rate requires a noncanonical kinetic term for the scalar field.
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I. INTRODUCTION

With the ever-tightening constraints on the acceleration
of cosmic expansion (e.g. [1]), it is interesting to ask
whether the measurements are still compatible with any
substantial deviations from a cosmological constant. While
it is well known that at high redshifts (z ! 1) order unity
deviations may still exist in the dark energy equation of
state, this is during an epoch where dark energy has very
little impact on the expansion history.

Interestingly, the other place where an order unity tran-
sition in the dark energy equation of state can be hidden
from data is in the local universe, at ultralow redshifts.
Indeed there have been hints from Type Ia supernova (SN)
data that there may be a discontinuous break in the Hubble
diagram (a ‘‘Hubble bubble’’) of "5% at a redshift of z"
0:023 [2,3]. In the !CDM paradigm, a discontinuity could
be explained by a local void, but its amplitude would have
to be atypically large [4]. Moreover, these findings have
been brought into question with the advent of new SN data
and expanded studies of SN systematics, particularly color
corrections [6–9].

In this Brief Report, we consider the local measurements
as an upper limit on recent variations in the dark energy
density. In Sec. II, we show how such sudden transitions
are hidden from current and future high redshift measure-
ments, determine the implied requirements on dark energy,
and construct explicit scalar field models of the transition.
We discuss these results in Sec. III.

II. HIDING DARK ENERGY TRANSITIONS

A. Low redshift transitions

Large transitions in the dark energy density can evade
current observations if they only affect low redshifts zt #
0:1. Galaxy surveys and the growth of structure are largely

insensitive to such transitions simply because the enclosed
volume and number of e-folds of the expansion are too
small.
Distance measures are affected at all redshifts, but only

have measurable changes at very low redshifts. For ex-
ample, cosmic microwave background (CMB) and baryon
acoustic oscillation (BAO) distances out to higher redshifts
are largely unaffected since the shift is a small fraction of
the total distance, !dL "$ðzt=H0Þ!H0=H0.
Given CMB and BAO absolute distance measures, one

might expect their relationship to SN distance measures at
z ! zt to be affected by a dark energy transition. SN data
measure the relative luminosity distance dL between super-
novae in the sample, dLðzÞ=dLðzminÞ, where zmin is the
minimum SN redshift in the survey. Ordinarily, one would
assume the Hubble law

lim
zmin!0

dLðzminÞ ¼
zmin

H0
(1)

and callH0dLðzÞ the observable SN distance. This measure
would seem to be sensitive to local variations in the ex-
pansion rate when combined with dLðzÞ from the CMB and
BAO. However, if the dark energy density undergoes a
transition at zt < zmin, the expansion rate is no longer
constant in z at z < zmin, leading to departures from a
pure Hubble law.
In other words, apparent SN magnitudes

mðzÞ ¼ 5 log½H0dLðzÞ) þ ðM$ 5 logH0 þ 25Þ (2)

are unaffected by local dark energy transitions. The quan-
tity in parentheses is an unknown constant involving the
absolute SN magnitude M. Since dLðz ! ztÞ is essentially
unchanged if H0 jumps in value locally, the observable
mðzÞ remains unchanged. In fact, the most precise mea-
surement ofH0 to date uses a maser-Cepheid calibration of
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absolute SN distances andM above zmin ¼ 0:023 [9]. Only
distance measurements below zt & 0:02would be sensitive
to such a jump and current data limit its amplitude to be
& 5%.

B. Dark energy requirements

Let us determine what is required of dark energy to
achieve such a Hubble transition. Consider a scenario in
which the true Hubble constant is given by

H0 + ð1þ !Þ ~H0; (3)

while the high redshift expansion rate is left unchanged.
Here and throughout tildes denote values in a flat !CDM
reference model.

To achieve this let us take a dark energy density of the
form

"DEðzÞ ¼ ½1þ fðzÞ)~"! (4)

and demand that

fðzÞ ¼
!
0 z ! zt;
2!= ~"! z ¼ 0;

(5)

where zt is the transition redshift. Since we have not altered
the physical matter density, "mh

2 ¼ ~"m
~h2 and

"m ¼
~"m

1þ fð0Þ ¼
1$ ~"!

1þ 2!= ~"!

¼ 1$"DE: (6)

Furthermore, CMB constraints on the matter density at
recombination are automatically satisfied.

Given these requirements, three general features of a
dark energy Hubble transition remain to be specified. The
first two, the transition redshift zt and the duration of the
transition #z, stringently constrain the equation of state

1þ w ¼ 1

3

ð1þ zÞf0
1þ f

; (7)

where f0 , df=dz, given our requirements that zt # 1 and
#z < zt. The average equation of state at low redshifts is
1þ w"$!=#z. Thus a transition at zt & 0:02 with an
amplitude greater than a few percent requires an exotic
equation of state which deviates from a cosmological
constant by more than order unity. Moreover, transitions
with 0< ! # 1 require phantom equations of state with
w<$1.

The remaining freedom is somewhat more subtle.
Although the dark energy density, Hubble parameter, and
distance-redshift relation are specified by our description
so far, the dark energy equation of state after the transition
(i.e. at z # zt) is not. Given the small fraction of an e-fold
of expansion between the transition and the present, any
post-transition 1þ w that is order unity or less would give
the same cosmological observables. This freedom in
wðz # ztÞ allows one to build many models that produce
a given Hubble transition.

C. Dark energy models

Let us construct scalar field models that satisfy the
Hubble transition requirements. For a canonical kinetic
term, we can take the dark energy density and equation
of state from Eqs. (4) and (7) and reconstruct the scalar
field potential [10–13]. Since the potential energy is V ¼
ð"DE $ pDEÞ=2, we have
VðzÞ ¼ 1

2ð1$ wðzÞÞ"DEðzÞ ¼ ½ð1þ fÞ $ ð1þ zÞf0=6)~"!:

(8)

The kinetic energy of the field is _#2=2 ¼ ð"DE þ pDEÞ=2,
so

#ðzÞ ¼
Z z

0
jð1þ wðz0ÞÞ"DEðz0Þj1=2

dz0

ð1þ z0ÞHðz0Þ

¼
ffiffiffiffiffiffiffi
~"!

3

s Z z

0

# jf0j
1þ z0

$
1=2 dz0

Hðz0Þ ; (9)

where, without loss of generality, we have taken the sign of
the field to be positive and set its present value to zero.
From the two equations above one can implicitly get Vð#Þ.
During the transition, the field in units of the reduced
Planck massMPl , ð8$GÞ$1=2 rolls a distance ##=MPl "
j!#zj1=2 which for typical values gives 10$2.
Implicit in this construction is the requirement that the

kinetic energy "DE þ pDE remain a positive quantity,
which implies that f must monotonically increase with z.
Note that if "DE can switch signs, this differs from the
requirement that 1þ w> 0. A change of sign in both the
dark energy density and 1þ w can occur if f <$1 but
requires such a large change in HðzÞ that !H2

0= ~H
2
0 &

$ ~"!, i.e. almost to the point that the expansion becomes
a contraction at low redshift. For all models with canonical
kinetic terms, the requirement that f0 > 0 combined with
the restrictions of Eq. (5) implies that ! < 0.
To construct ! > 0 models we require a noncanonical

kinetic term. The simplest possibility is to just reverse the
sign of the kinetic term. The expressions in Eq. (8) and (9)
are then identical, but the scalar field now rolls up the
potential.
Even given these requirements, there are many scalar

field potentials that can reproduce a given !. Let us start
with the assumption that the scalar field on the low redshift
side of the transition becomes potential energy dominated
directly after the transition. This implies that fðzÞ strictly
approaches a constant for z # zt. For example, we can
take

fðzÞ ¼ 2!
~"!

SðzÞ
Sð0Þ ; SðzÞ ¼ 1

2

%
1$ tanh

#
z$ zt
#z

$&
:

(10)

The scalar field potentials reconstructed from this assump-
tion are shown in Fig. 1. Note that to achieve the j1þ wj>
2 equation of state for a large amplitude, rapid transition,
we require negative potentials where a large positive ki-
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netic energy and large negative potential energy cancel to
leave a small total energy (see Fig. 1). In fact, the potential
can become arbitrarily negative and j1þ wj arbitrarily
large without measurably changing the main observable
dLðzÞ. This is because no matter how sharp the transition in
the expansion rate HðzÞ, distances are always a smooth
function of redshift.

Models that leave the field with more kinetic energy
after the transition are also possible. For example, consider
the class of potentials defined by

VðzÞ=~"! $ 1 ¼ A
SðzÞ
Sð0Þ $ B

ð1þ zÞ
6

S0ðzÞ
Sð0Þ : (11)

Our potential-dominated model in Eq. (10) corresponds to

A ¼ 2!= ~"!, B ¼ A. After the transition, the A term domi-
nates and therefore sets the level of Vðz ¼ 0Þ (see Fig. 2).
The corresponding model for fðzÞ, obtained by inverting
Eq. (8), is

fðzÞ ¼ 6
Z 1

z
dz0

ð1þ zÞ6
ð1þ z0Þ7 ½Vðz

0Þ=~"! $ 1)

+ B
SðzÞ
Sð0Þ þ 3ðA$ BÞ ln½1þ e2ðzt$zÞ=#z)#z; (12)

which implicitly defines ! through fð0Þ. The approxima-
tion assumes that zt # 1.
Note that a sharp change in VðzÞ is not sufficient to

induce a sharp change in fðzÞ. For example, a step function

FIG. 2 (color online). Hubble transitions with different ratios
of potential to kinetic energy at z ¼ 0, using the generalized
model of Eqs. (11) and (12) with A=B ¼ 1 (thick, blue), 10
(medium thickness, green), and 100 (thin, red). The A=B ¼ 1
model corresponds to zero kinetic energy after the transition as
in Fig. 1, and A=B ! 1 to maximal kinetic energy. All models
have zt ¼ 0:02 of width #z ¼ zt=10 and amplitude ! ¼ $0:05.

FIG. 1 (color online). Hubble transitions with different redshift
widths corresponding to the potential-dominated model of
Eqs. (8) and (10): #z ¼ zt=2 (medium thickness, green), zt=10
(thick, blue), and zt=25 (thin, red). All models have a transition
at zt ¼ 0:02 with amplitude ! ¼ $0:05 and tildes denote the
!CDM reference model with ~"m ¼ 0:24, ~"! ¼ 0:76, and ~h ¼
0:73. The upper panels show redshift evolution of various
observables. The lower panels show scalar field model potential.
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potential is included in the class of Eq. (11) with (B ¼ 0,
#z ! 0) and has a smooth transition in f that is linear in z
out to zt (see Fig. 2).

Finally, the ! > 0 phantom models have identical be-
havior except for a change in the sign of (V $ ~"!) and so
we do not illustrate them separately.

III. DISCUSSION

We have shown that it is both observationally allowable
and theoretically possible to have arbitrarily large fluctua-
tions in the equation of state of dark energy as long as they
occur at ultralow redshifts. The possibility of such fluctua-
tions that are hidden from data creates degeneracies that
are important to understand in model-independent analyses
of the dark energy constraints [14].

These fluctuations in wðzÞ would appear as a local
transition in the Hubble rate. So long as this change is of
order a few percent or less at z & 0:02 it would escape
current observational constraints. Moreover, as long as the
transition is from a constant high redshift dark energy
density, it would be practically indistinguishable from a
cosmological constant for even future high precision dis-
tance and growth of structure measurements at high red-
shift. On the other hand, future percent-level Hubble
constant measurements could place stronger limits on
such transitions but will require accurate modeling of
peculiar velocities (e.g. [15]).

Although theoretically possible with scalar field dark
energy, a Hubble transition of this sort requires some
unusual properties. First, to make even a percent-level
change in the expansion rate over the low redshifts in
question the average equation of state must deviate by
order unity from a cosmological constant. Moreover, mod-
els with very rapid transitions require j1þ wj ! 1. This
can be achieved in scalar field models where the potential
and kinetic energy are of opposite sign and nearly cancel.
Scalar field potentials that realize these properties have a

sharp feature that must coincidentally be traversed within a
fraction of an e-fold of the present epoch.
In fact, j1þ wj can be made arbitrarily large during the

transition without a readily observable effect since the
transition in the distance-redshift relation remains smooth.
Nonetheless, the absence of order unity changes in the
expansion rate in the data rules out a transition that is large
enough to switch the sign of the dark energy density and
make wðzÞ diverge before crossing w ¼ $1. Finally, to
obtain enhancements of the low-redshift expansion rate
(such as those suggested by some recent supernova data),
the scalar field must in addition have a noncanonical
kinetic term so that 1þ w< 0.
The utility of studying the low redshift end of the Hubble

diagram for dark energy extends beyond the extreme con-
text taken here of hiding order unity transitions from
current observations. More generally, while intermediate
redshift measurements from BAO can largely take the
place of local H0 measurements for dark energy models
that evolve smoothly near the present [16,17], precision
measurements of the low redshift end of the Hubble dia-
gram not only help to constrain such smooth models (e.g.
[18]), but also offer the only empirical way to test whether
dark energy has undergone recent variations in its equation
of state.
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