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Two of the most commonly used tools to constrain the primordial non-Gaussianity are the bispectrum

and the Minkowski functionals of cosmic microwave background temperature anisotropies. These two

measures of non-Gaussianity in principle provide distinct (though correlated) information, but in the past

constraints from them have only been loosely compared and not statistically combined. In this work we

evaluate, for the first time, the covariance matrix between the local non-Gaussianity coefficient fNL
estimated through the bispectrum and Minkowski functionals. We find that the estimators are positively

correlated, with correlation coefficient r ’ 0:3. Using the WMAP7 data to combine the two measures and

accounting for the point-source systematics, we find the combined constraint fNL ¼ 37� 28, which has a

�20% smaller error than either of the individual constraints.
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I. INTRODUCTION

Detection of any departures from Gaussianity in the
distribution of primordial fluctuations would give
important information about inflation. Primordial non-
Gaussianity (henceforth NG) imprints signatures on the
cosmic microwave background (CMB) and large-scale
structure, and these cosmological probes can in turn
provide excellent constraints on primordial NG and thus
inflationary models; for reviews, see Refs. [1–4].

Two of the principal statistics on the CMB used to
constrain NG are the bispectrum (harmonic transform of
the three-point correlation function) of the CMB
temperature fluctuations and Minkowski functionals
(henceforth MFs) which roughly measure the connected-
ness or morphology of the CMB field. In the ‘‘local’’
model of NG, the primordial curvature perturbation �ðxÞ
has a quadratic term correction, � ¼ �G þ fNLð�2

G �
h�2

GiÞ, where �G is an auxiliary Gaussian field [5].

Recent constraints obtained on the nonlinear coupling
constant fNL using the WMAP data are fNL ¼ 37� 20
from the bispectrum analysis [6] (see also Refs. [7,8]) and
fNL ¼ 20� 42 from the MF analysis [9].

Since MFs are morphological statistics, they probe NG
both in configuration space and to all orders of the statistics
of the temperature anisotropy field. This means that they
sample the anisotropy map differently from the usual
bispectrum (and higher order polyspectra) measurements,
albeit in a suboptimal way—this fact is crucial as joint
constraints will in principle yield different constraints.
Furthermore, unlike the bispectrum estimators which
require a template (i.e. k-space configuration with a free
amplitude) such as the local, equilateral, or orthogonal
type, MFs are in principle template-free, although in
practice one can construct a template-based MF estimator
as we have done in this paper.
In principle, the MFs are sensitive to the weighted sum

of the bispectrum coefficients (out to the smallest scale
measured) [10], so the MFs would naively be expected to
contain only a subset of the same information as the
bispectrum. In reality, however, this idealized expectation
is not borne out: the bispectrum and the MFs partially
complement each other, and their information is not
100% correlated. One reason for this is the fact that the
optimal bispectrum estimators [11,12] are computationally
challenging to implement for current high-precision CMB
experiments [8,13], and they are anyway only optimal for
the case of vanishing non-Gaussianity [14,15]. Moreover,
the bispectrum and MFs are sensitive to different astro-
physical and analysis-related systematics, given that they
are defined in the harmonic and real space, respectively.
Hence, combining the constraints obtained by current fast
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though suboptimal bispectrum estimators with those from
the MF, as we do in this paper, provides an alternative to
improving the ‘‘optimality’’ of these estimators and makes
the combined constraints both stronger and more robust.

Hence, an obvious question is how correlated the MF
and the bispectrum estimators are, and consequently what
the combined constraint on NG from them is. This is the
question that we address in this paper—we will show that
the correlation between the two estimators, while nonzero,
is far from maximal. Having calculated that, we compute
the joint estimate of NG from both statistics.

II. MINKOWSKI FUNCTIONALSMETHODOLOGY

The three Minkowski functionals Vi (i ¼ 0, 1, 2)
describe morphological properties of the hot and cold spots
in the CMB temperature map. The morphology of the map,
and thus the MFs, are studied by specifying a temperature
threshold � � ð�T=TÞ=�0 in the map, where �0 is the rms
of the fractional temperature fluctuation �T=T, hereafter
simply denoted as f. Specifically, V0 is the area fraction of
the regions above the temperature threshold, V1 is their
boundary length, and V2 is the geodesic curvature inte-
grated along their boundary, which in a compact S2 space is
related to the Euler characteristic � by � ¼ V2 þ V0=2�
[16]. The MFs can be expressed as integrals of functions of
the anisotropy field and its derivatives over the compact
space of the CMB sky. For explicit expressions, see,
e.g., Refs. [10,16]; we shall adopt these operationally
convenient forms to calculate the MFs for a given map.

If the temperature fluctuations are Gaussian, the
ensemble averages of the Minkowski functionals have
analytic expressions that are completely specified by the
two-point statistics (variance) of the fluctuations, �2

0 and

�2
1ð� hjrfj2iÞ [17]. On the other hand, when the fluctua-

tions are weakly non-Gaussian and the cumulants hfnic
(where ‘‘c’’ stands for the connected part) satisfy the
hierarchical ordering hfnic � �2n�2

0 , one can obtain an

order-by-order expansion in powers of �0 for the average
of the Minkowski functionals [18,19]. In this paper, we
consider the first order in the hierarchical non-Gaussian
expansion, which in addition to �0 and �1 depends on the
three-point statistics (skewness) of the field: S � hf3i,
SI � hf2r2fi, SII � 2hjrfj2r2fi. The two variance
and the three skewness parameters can be calculated
from theory by integrating over the power spectrum and
bispectrum of the CMB field, respectively; for explicit
expressions, see Refs. [9,10]. In the special case of the
local-type primordial non-Gaussianity, S, SI, SII are all
linearly proportional to fNL.

In this paper, we use the coaddedVþW band data from
the WMAP seven-year results [20] to obtain our con-
straints on fNL. The V and W bands are chosen for they
are the most foreground-free. For this purpose, we generate
1000 simulations of the WMAP data following the proce-
dure given in Appendix A of Ref. [21]. The only difference

(aside from using the WMAP7 cosmological model) is that
we used a uniform weighting for the maps, rather than the
slightly more complicated weighting given there, since it
only gives a marginal improvement in estimating fNL.
Each of our simulated maps is the sum of three compo-
nents: 1) the Gaussian CMB realizations (the ‘‘signal’’)
based on the CMB power spectrum calculated assuming
the best-fit WMAP seven-year cosmology including the
effect of beam smearing; 2) instrumental noise modeled as
the Poisson process with the rms noise per pixel �=

ffiffiffiffiffiffiffiffiffi
Nobs

p
,

where � is the rms noise per observation and Nobs is the
number of observations per pixel; and 3) unresolved point
sources modeled as the Poisson realizations from assuming
a single population of sources with a fixed frequency-
independent flux whose flux strength and number density
roughly reproduce the source power spectrum and bispec-
trum measured from the WMAP Q band. The latter two
components are modeled to closely match the systematics
expected in the VþW coadded map. We then mask both
the WMAP data and our simulated maps by using the
KQ75 mask.
To make predictions for the ensemble average of the

Minkowski functionals when various observational effects
are present, we should also include these effects in the
calculations of the two variance parameters and three skew-
ness parameters. Each of these parameters has contributions
from the noise part—instrumental noise and point sources,
in addition to the beam-smeared CMB signal part. The noise
and signal contributions add up directly since the CMB
signal and noise are uncorrelated. We estimate these noise
contributions from our simulations: we calculate the vari-
ance and skewness parameters for each simulated map and
take their average over the 1000 samples; we then subtract
off the signal contributions which are known to us for these
Gaussian CMB simulations.
Before we proceed to the fitting procedure and obtain

our Minkowski functional constraints on fNL, we address
the ‘‘residual problem’’ in our numerical evaluation of the
Minkowski functionals. Previous work [22] found that,
even for a set of Gaussian CMB simulations without noise,
the averages of the MFs calculated for each map are differ-
ent from their values expected from theory. As shown in
Ref. [23], these residuals are generated by the discrete
binning of the MFs in the threshold � and for weakly
non-Gaussian maps can be calculated analytically and
then subtracted order by order in �0. In this work, we
instead follow Ref. [22] and calculate the residuals from
our simulations as the difference of the sample-averaged
means of the MFs and their theoretically expected means.
These residuals are then subtracted from the measured
Minkowski functionals. We use the same residuals to
account for those for the non-Gaussian case: for a weakly
non-Gaussian field, the differences are at the order of �0.
Before we calculate the Minkowski functionals for each

map, we smooth the map at several different angular scales.
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This allows us to extract additional information from the
map and tighten the constraints on fNL. Specifically, we
use a Gaussian window function and smooth each map at
five different scales with the full width half maximum
(FWHM) � set at � ¼ 100, 200, 400, 800, 1000. Pixels within
a distance of � away from the boundary of the KQ75 mask
are removed to avoid contamination from the masked
regions that may be introduced due to the smoothing.
Ideally, one may want to smooth the maps at infinitely
many scales and extract the constraint on fNL by integrat-
ing over them. Clearly, this cannot be done in reality. The
five smoothing scales we choose range from roughly the
resolution of the WMAP VþW band data to the scale
at which only �40% of the map remains for analysis.
(Note the larger the smoothing scale, the bigger the area
to be removed to avoid contamination.) Combining the
results at the five smoothing scales allows us to recover
most of the available information. For each smoothed
map, we calculate its three Minkowski functionals at 15
temperature thresholds from � ¼ �3:5 to 3.5 with equal
bin size of �� ¼ 0:5.

To obtain the constraints on fNL, we perform a �2

analysis, which compares theoretical predictions at a given
fNL to the measurements and is calculated as

�2 ¼ X
i;j

½Vobs
i � Vth

i ðfNLÞ�C�1
ij ½Vobs

j � Vth
j ðfNLÞ�; (1)

where i and j run over all combinations of the 15 thresh-
olds, three orders, and five smoothing scales for the
measured Minkowski functionals. Here Vobs

i are the
‘‘observed’’ numerically evaluated Minkowski functionals,
V th
i are the theoretically expected averages for the MFs

(which are functions of fNL), and C is the covariance
matrix for ðVi; VjÞ, which we calculate from our

simulations as

Cij ¼ hðVi � hViiÞðVj � hVjiÞisim; (2)

where the angular brackets denote averaging over the 1000
simulated maps. We then obtain our best-fit value of fNL,
henceforth fMF

NL , by minimizing the �2.
To check that our estimator for fMF

NL is unbiased, we first
apply it to the 1000 simulated maps either for the MF
measurements at each smoothing scale or their combined
results. We find that the average of the best-fit values
accurately reproduces the theoretical input in our simula-
tion, i.e., fNL ¼ 0. Next, we test our estimator on publicly
available non-Gaussian CMB maps generated with the
local-type NG [24], and we again find negligible bias
(1% or less of the true fNL) in our estimator.

Finally, we apply our estimator on the coadded VþW
band data from the WMAP. In Table I, we show the
constraints on fMF

NL from smoothing the map at each of
the five angular scales, and the joint constraint from all
scales combined, which we quote as our final MF con-
straint: fMF

NL ¼ 29� 33. This constraint is consistent with

that found by Hikage and Matsubara [9], although we
improve upon their analysis in a couple of ways: 1) we
remove the residuals in the numerically evaluated MFs
using the method from Ref. [22], as opposed to the residual
removal based on the work in Ref. [23], which, we found,
causes biases in the estimated fMF

NL by �10; and 2) we
carefully include point sources in our simulated WMAP
maps.

III. BISPECTRUM METHODOLOGY

With the MF estimator of fMF
NL obtained, we next develop

fbispNL —the estimator from bispectrum. The observed CMB
bispectrum is given by

B‘1‘2‘3 ¼
X

m1m2m3

‘1 ‘2 ‘3

m1 m2 m3

 !
a‘1m1

a‘2m2
a‘3m3

; (3)

where the matrix is the Wigner-3j symbol, and a‘m is
the spherical harmonic transform of the temperature
anisotropy map. In the local-type NG model, B‘1‘2‘3 is

linearly proportional to fNL.
We follow the prescription that uses the Komatsu-

Spergel-Wandelt (KSW) [25] estimator to calculate fbispNL

from CMB maps (see also Ref. [26] for the exact imple-
mentation that we use). In brief, the KSW is a cubic (in the
temperature field) estimator of non-Gaussianity; it has
nearly minimum variance, is computationally fast, and
can straightforwardly deal with partial sky coverage and
inhomogeneous noise. The first ingredient in using KSW is
to calculate the Fisher matrix F corresponding to fNL; for

this we need the theoretical bispectrum Btheory
‘1‘2‘3

, which can

be calculated with the help of transfer functions from
CAMB [27]. Furthermore, KSW requires filtered maps
Aðn̂; rÞ and Bðn̂; rÞ from which the skewness S of the field
can be calculated; these filtered maps can be computed
using HEALPix (by way of HealPy) to perform the forward
and backward spherical harmonic transforms that are

TABLE I. Constraints on fNL from the CMB Minkowski
functionals, bispectrum, and their combination. The analyses
use the WMAP 7-year VþW coadded map. � is the FWHM
of the Gaussian beam used to smooth the map for the Minkowski
functional analysis.

�ð0Þ fNL

10 71� 96
Minkowski 20 �21� 52
Functionals 40 �2� 49

80 40� 73

100 �16� 92
all 29� 33

Bispectrum 46� 35

MFþ bisp 37� 28

JOINT MINKOWSKI FUNCTIONALS AND BISPECTRUM . . . PHYSICAL REVIEW D 88, 041302(R) (2013)

RAPID COMMUNICATIONS

041302-3



necessary in their computation. Given the skewness and the
Fisher matrix, the KSW estimator for fNL is

fbispNL ¼ S

F
: (4)

To account for the masking of the CMB sky, we make the
substitution S ! Scut ¼ S=fsky þ Slinear [28]. Slinear is an

addition to skewness and is calibrated to account for
partial-sky observations,

Slinear ¼ � 1

fsky

Z
r2dr

Z
d2n̂½Aðn̂; rÞhB2

simðn̂; rÞiMC

þ 2Bðn̂; rÞhAsimðn̂; rÞBsimðn̂; rÞiMC�: (5)

The subscripted filtered maps Asim and Bsim are created
from Python-produced Gaussian Monte Carlo realizations
of the cut CMB sky; the brackets hiMC indicate an average
over 300 of the maps. The simulated maps were produced
as outlined earlier when we discussed the MF.

Applying the bispectrum/KSWestimator to the coadded
VþW band data of WMAP, we obtain the constraint on

the local NG to be fbispNL ¼ 46� 35. The error we obtained
is larger than that from Ref. [20] using the same data
because we have used a bispectrum estimator that is less
optimal but much more convenient to evaluate.

IV. COMBINED ANALYSIS

In addition to obtaining the constraints on fNL separately
from the MF and bispectrum analyses, we would like to
combine them to extract a more stringent and robust result.
To make the problem tractable, we opt to consistently
combine the estimators of fNL from these two analyses,
rather than attempting to find the covariance between the
observables, i.e., the MFs and bispectrum themselves. It is
a reasonably good assumption that the two estimators of
fNL satisfy a bivariate Gaussian distribution, especially
near the peak of the distribution (see Fig. 1 below). Let

us organize the two estimators into a row vector fNL �
½fMF

NL ; f
bisp
NL �, and let C be the 2� 2 covariance matrix for

them. Assuming the underlying true value of fNL is �fNL,
we can write down the following joint distribution for the
two fNL estimators:

L/ jCj�1=2 exp

�
�1

2
ðfNL� �fNLÞC�1ðfNL� �fNLÞT

�
; (6)

where �fNL ¼ ½ �fNL; �fNL� � �fNLI. Given a measurement of
fNL, a best estimate for �fNL can be obtained by maximizing
L. Assuming that the covariance matrix does not depend
on �fNL, we find the following expressions for the best
estimate and variance of �fNL from the combined analysis:

�fNL ¼ IC�1fTNL
IC�1IT

; �2
�fNL

¼ 1

IC�1IT
: (7)

At the same time, by evaluating both fMF
NL and f

bisp
NL for

the 1000 simulated WMAP maps, we numerically obtain
their joint distribution, as shown in Fig. 1. From this
distribution, we can deduce their correlation. We find that
the two estimators of fNL are positively correlated, with a
correlation coefficient of r ¼ 0:32� 0:03. We are using
the MF constraints from combining the five smoothing
scales, as these are the final interesting MF constraints.

However, we also find positive correlations between f
bisp
NL

and the MF constraints obtained at each individual smooth-
ing scale: specifically, r varies from 0.46 to 0.2 when �
increases from 100 to 1000. The covariances or off-diagonal
elements of C are then C12 ¼ C21 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22

p
; recall

that we already found the variances to be C11 ¼ 332 and
C22 ¼ 352. We find the bivariate Gaussian distribution
with the derived covariance matrixC gives a good descrip-

tion of the joint distribution of ðfMF
NL ; f

bisp
NL Þ for the simulated

maps: the 68%, 95% contours enclose roughly the same
percentages (� 1%) as in the simulated maps, and the
orientations of the two distributions agree; see Fig. 1.
Using the numerically derived covariance matrix C,

together with our best fits for fMF
NL and fbispNL , we find

through Eq. (7) the combined constraint to be

�f NL � f
MFþbisp
NL ¼ 37� 28; (8)

which has a �20% improvement in the error with respect
to the individual constraints.

FIG. 1 (color online). Joint distribution of fMF
NL and f

bisp
NL from

1000 simulations of the WMAP data including point sources and
instrumental noise. We find a correlation coefficient of r ¼
0:32� 0:03. The fMF

NL estimates are obtained from the combina-

tion of smoothing the maps at �ðFWHMÞ ¼ 100, 200, 400, 800,
1000. The contours show the 68% and 95% confidence regions

of the bivariate Gaussian distribution for ðfMF
NL ; f

bisp
NL Þ with its

covariance matrix derived from the simulations.
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V. CONCLUSIONS

We evaluated, for the first time, the full covariance
matrix for the Minkowski functional estimator of the
local-type primordial non-Gaussianity fMF

NL and the bispec-

trum estimator fbispNL . We found the correlation coefficient
r ¼ 0:32� 0:03 and used it to combine the constraints
from the MFs and bispectrum (and their respective varian-
ces) to obtain the constraint in Eq. (8). Combining these
two estimators hence provides an alternative to improving
their optimality and leads to combined constraints that are
both stronger and more robust. Our work can be extended
by using more optimal estimators, e.g., the bispectrum
estimator described in Ref. [12] for which the calculation
is numerically very challenging, and by applying our
analysis to the Planck data, which we leave for future work.

One convenient feature of this work is that, by combin-
ing the constraints at the level of MFs and bispectrum
estimators, we make the problem tractable: an obvious first
approach could be to calculate the covariance between the

observed bispectrum and MFs themselves, but this is
extremely complicated, given that the MFs and bispectrum
are functions of many scales and/or thresholds. Combining
the different estimators numerically, as we have done
here for the case of local NG, can in principle be rather
straightforwardly extended to other types of NG and
other cosmological probes. This type of approach is
therefore likely to become more widespread with new
and better data.
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