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Abstract. Motivated by the properties of early universe scenarios that produce observation-
ally large local non-Gaussianity, we perform N-body simulations with non-Gaussian initial
conditions from a generalized local ansatz. The bispectra are schematically of the local shape,
but with scale-dependent amplitude. We find that in such cases the size of the non-Gaussian
correction to the bias of small and large mass objects depends on the amplitude of non-
Gaussianity roughly on the scale of the object. In addition, some forms of the generalized
bispectrum alter the scale dependence of the non-Gaussian term in the bias by a fractional
power of k. These features may allow significant observational constraints on the particle
physics origin of any observed local non-Gaussianity, distinguishing between scenarios where
a single field or multiple fields contribute to the curvature fluctuations. While analytic predic-
tions for the non-Gaussian bias agree qualitatively with the simulations, we find numerically a
stronger observational signal than expected. This suggests that a more precise understanding
of halo formation is needed to fully explain the consequences of primordial non-Gaussianity.
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1 Motivation

Non-Gaussianity that originates from the inflationary epoch leaves distinct signatures in
present-day astrophysical measurements, and therefore provides a unique link to the early
universe. Interactions of the field(s) sourcing the primordial curvature fluctuations introduce
non-Gaussian imprints in the statistics of the temperature fluctuations in the Cosmic Mi-
crowave Background (CMB) and of the density fluctuations that collapse into bound objects.
These effects give us many independent probes of the signals of inflationary physics at dif-
ferent redshifts, sensitive to a range of scales. While current measurements from the CMB
confirm that the spectrum of primordial fluctuations is Gaussian to a remarkable part in 103,
that bound is still four orders of magnitude away from testing primordial non-Gaussianity
at the level predicted by slow-roll inflation and more than one order of magnitude above
the level expected from non-linear post-inflationary processing of the fluctuations (see eg [1]
for a recent calculation). In addition, any deviation from the simplest single field slow-roll
inflationary scenario, including multiple fields, derivative interactions, features in the poten-
tial, or non-Bunch-Davies initial conditions (see [2] for a summary) can lead to observable
non-Gaussianity at levels within current constraints but well above the slow-roll prediction.
Upcoming data from the Planck satellite [3] and a variety of galaxy surveys [4–9] have the po-
tential to achieve accuracy on non-Gaussianity at the level expected from non-linear evolution
alone. For recent reviews, see [10–14].

Primordial non-Gaussianity is most effectively constrained by complementary measure-
ments from the CMB and Large Scale Structure (LSS). The galaxy power spectrum and
bispectrum and cluster number counts provide independent statistics with different system-
atics, sensitive to different qualitative features of the primordial non-Gaussianity. Combined
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with the CMB, these observations will constrain a wide range of qualitative features of any
observed non-Gaussianity (including amplitude, shape, sign and scale dependence) which can
rule out large classes of inflationary models.

Non-Gaussianity of the local type (with bispectrum maximum in the squeezed limit;
k1 ≈ k2 � k3) has recently generated a good deal of interest in part because it will be espe-
cially well-constrained by LSS observations [15]. Even in the case of Gaussian fluctuations,
the statistics of collapsed objects are different from those of the underlying density field, and
the ratio of the clustering of the two is known as the halo bias [16]. The particular coupling
of long and short wavelength modes in local non-Gaussianity introduces an additional, dis-
tinctive correction (proportional to 1/k

2) in the power spectrum of collapsed objects which
will allow strong observational constraints on local non-Gaussianity [15, 17, 18]. From a the-
oretical point of view, observably large primordial non-Gaussianity of this type requires at
least two fields to contribute to the scenario - single field inflation alone can only generate a
bispectrum of the local shape with an extremely small amplitude (of order the spectral index
of the primordial power spectrum [19]). The complete phenomenology of multi-field models
is rich but we will show here that there are qualitative differences that are observationally
distinguishable in the halo bias. We propose here a generalization of the local ansatz that is
phenomenologically useful and captures the physics of many possible multi-field models. The
generalized ansatz allows for different types of scale-dependent amplitude fNL along with the
standard local shape.

While signatures of primordial non-Gaussianity in LSS can often be predicted analyti-
cally, accurate comparisons of observables with theoretical predictions require the intermedi-
ate step of numerical simulations to validate or correct any proposed analytical relations. In
this paper we build on previous work of Dalal et al. [15] to numerically investigate the effect
of scale-dependent, local non-Gaussian initial conditions. Interestingly, we find theoretically
and numerically that the halo bias is sensitive to two different types of scale dependence that
can constrain and distinguish between inflationary models. However unlike in the constant
fNL case, the simplest theoretical prediction for the bias in models with scale-dependent
non-Gaussianity does not fully agree with our numerical results. In this paper we will mo-
tivate our new non-Gaussian ansatz, present the analytic predictions from that model and
the associated simulations. We will discuss a possible explanation for the discrepancy, which
indicates that this problem constitutes an interesting test for our understanding of structure
growth, although we postpone a detailed analysis for future work.

The paper is organized as follows. In section 2 we discuss in more detail the motivation
from inflationary theory. A self-contained and purely phenomenological discussion starts in
section 3, where we use the peak-background split method to demonstrate the qualitative
ways scale-dependent non-Gaussianity may be observable. We also present forecasts for dif-
ferentiating the bispectra based on the analytic predictions. In section 4 we show the results
of numerical simulations, which demonstrate a stronger signal than the analytic prediction,
and so are encouraging for the observational prospects. We speculate on a possible explana-
tion for the discrepancy between theory and simulation and then conclude in section 5.

2 A bigger family for the local ansatz

The original “local ansatz” to add non-Gaussianity to the primordial perturbations is [20–22]:

Φ(x) = ΦG(x) + fNL

�
Φ2

G(x)− �Φ2
G(x)�

�
+ . . . , (2.1)
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where Φ(x) is (minus) the gravitational potential, ΦG(x) is a Gaussian random field and the
degree of non-Gaussianity is parameterized by (typically constant) fNL. Here a positive fNL

leads to a positive skewness in the density perturbations, and so more very large objects, in
the same sign convention as WMAP [23].1

In many scenarios the primary effect of the non-Gaussian correction appears as a non-
zero bispectrum, defined as

�Φ(k1)Φ(k2)Φ(k3)� ≡ (2π)3 δ
3
D(k1 + k2 + k3)BΦ(k1,k2,k3) . (2.2)

For the local ansatz above the bispectrum is

BΦ(k1,k2,k3) = fNL [2 PΦ(k1)PΦ(k2) + 2 perm.] , (2.3)

where as usual we define

�Φ(k1)Φ(k2)� ≡ (2π)3 δ
3
D(k1 + k2)PΦ(k1) = (2π)3 δ

3
D(k1 + k2)

2π
2∆2

Φ
(k1)

k
3
1

. (2.4)

The subscript D distinguishes the Dirac delta function from the density perturbation. As-
suming the spectral index, ns, has no significant k-dependence, the dimensionless power
spectrum is given by ∆2

Φ
= A0(k/k0)ns−1.

CMB data (WMAP7) already constrain −10 < fNL < 74 at 95% confidence ([26]; see
also [27, 28]) and could potentially achieve ∆fNL ∼ few from the Planck satellite [23, 29–31].
The best current constraint from LSS comes from the scale-dependent bias induced in the
galaxy power spectrum, giving −29 < fNL < 69 at 95% CL ([17]; see also [18, 32]).

While the local ansatz is a useful phenomenological tool, it is only a first step toward
modeling and constraining primordial non-Gaussianity motivated by the fundamental physics
of inflation. Specifically, the local ansatz resembles the first term in a series that arises from
the transfer of isocurvature to curvature fluctuations during or at the end of inflation. Such
a transfer may be due to additional scalar fields during inflation (multi-field [33–47]), or after
(the curvaton scenario [45, 48–55]), or inhomogeneous reheating [56, 57].

There are at least four possible sources of non-Gaussianity that generate bispectra that
are largely well-captured by the local ansatz shape in the final curvature perturbations.
First, a spectator field during inflation is not constrained to have a flat potential, so there
may be intrinsic non-Gaussianity in that field that is not tightly constrained by the slow-roll
conditions and which can be transferred to non-Gaussianity in the curvature. Second, in
multi-field models non-linear evolution of curvature modes outside the horizon will generate
non-Gaussianity in the observed curvature perturbations even if the field(s) themselves have
no interactions other than gravitational [45]. Third, the conversion of curvaton isocurvature
fluctuations to curvature after inflation depends on the energy density in the curvaton field,
which is at least quadratic in the fluctuations and so introduces non-Gaussianity of the local
type [48]. Finally, loop corrections may, in special cases, generate a scale-dependent non-
Gaussianity [58].

1We use the convention that fNL is defined in terms of (minus) the gravitational potential early in the
matter era. We caution that there is another convention (used, for example, in [24, 25]) that defines fLSS

NL

in terms of the gravitational potential normalized to present day amplitude, which is related to the WMAP
convention used here by fLSS

NL = fNL(g(z = ∞)/g(z = 0)) (≈ 1.36fNL in the WMAP7 cosmology), where
g(z = 0)/g(∞) is often referred to as the growth suppression factor.
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Phenomenologically, we can write a more general ansatz for the bispectrum of (minus)
the gravitational potential that is factorizable and symmetric in momentum by introducing
two functions, ξs(k) and ξm(k):

BΦ(k1,k2,k3) = ξs(k3)ξm(k1)ξm(k2)PΦ(k1)PΦ(k2) + 5 perm . (2.5)

This ansatz captures a wide range of physically motivated and perturbatively controlled
models, where the functions ξs,m are at most weak functions of scale. The notation refers
to the physical origin of the two functions in inflationary scenarios: ξs, with s for single
field, is different from one if one of the fields has non-trivial self interactions or nonlinearly
sources curvature perturbations; ξm, with m for multi-field, is different from one when two
or more fields both contribute to the power in curvature fluctuations. We will discuss several
illustrative examples next.

2.1 Two field inflation

First, we consider a two field inflation scenario where running non-Gaussianity can be ob-
tained, following [35, 44]. In the δN formalism [59, 60], one uses the dependence on the
number of e-folds of inflation on the fields present to relate the curvature fluctuations to the
scalar field fluctuations. Even if a field does not source the inflationary Hubble parameter
H, the point where inflation ends (and so the number of e-folds, N) can still depend on
the position of the field. Then, we can express the curvature perturbation resulting from
fluctuations of two fields φ and σ (up to second order) as

ζ(k) = N,φ(k)δφ(k) + N,σ(k)δσ(k) +
1
2
N,σσ(k)[δσ � δσ](k) + . . . (2.6)

where for simplicity we have assumed one of the non-Gaussian terms (N,σσ) dominates the
other (N,φφ) and N,φσ = 0. All quantities are evaluated at horizon crossing for the mode k,
and N,φ is the derivative of the number of e-folds with respect to the field φ. To gain some
intuition about the pattern of multiplications and convolutions in this expression, recall that
in single field inflation the running of N,φ = −

H

φ̇
∼ 1/

√
� contributes the term proportional

to the second slow-roll parameter (η = �̇

H�
) in the spectral index. In addition, the form of the

quadratic term generates the standard result that the bispectrum in the squeezed limit goes
like the spectral index, ns − 1, evaluated at horizon crossing of the short wavelength (large
k) modes [61] (although one must take into account pre-horizon crossing non-Gaussianity
generated in the statistics of the field δφ to get the complete bispectrum correct). In the
single field case, the amplitude of the non-Gaussianity in the curvature perturbation is small,
but it does run if the spectral index runs and the dominant term has scale-dependent fNL

evaluated at the scale of the short modes.2

In a multi-field scenario, the modes for each individual field have fluctuations of order
H, so that

�
δφ(k)δφ(k�)

�
=

�
δσ(k)δσ(k�)

�
= (2π)3δ3

D(k + k�)
(2π

2)
k3

H
2
∗

4π2
(2.7)

≡ (2π)3δ3
D(k + k�)P (k) .

2A detailed discussion of how this is consistent with real-space formulations of the local ansatz can be
found in [62].
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where the asterisk is a reminder that H is evaluated at horizon-crossing for each wavenumber
k. Then the total curvature power spectrum can be written

�
ζ(k)ζ(k�)

�
≡ (2π)3δ3

D(k + k�)Pζ(k) (2.8)

= (2π)3δ3
D(k + k�)P (k)(N2

,φ
+ N

2
,σ)

= (2π)3δ3
D(k + k�)[Pζ(φ) + Pζ(σ)] .

The tree-level bispectrum, assuming �δφδσ� = 0, is

Bζ(k1,k2,k3) =
1
2
N,σσ(k3)

Pζ(σ)(k1)
Pζ(k1)

Pζ(σ)(k2)
Pζ(k2)

Pζ(k1)Pζ(k2) + 5 perm., (2.9)

BΦ(k1,k2,k3) ≡ ξs(k3)ξm(k1)ξm(k2) PΦ(k1)PΦ(k2) + 5 perm.,

where N,σσ depends on non-trivial self (and gravitational) interaction terms of just the field
σ, so we relabel it ξs, with s for single field. The fraction of power in the σ field is different
from one only if both fields contribute significantly to the power in fluctuations so we have
labeled this function with an m for multi-field. (Otherwise, the bispectrum would reduce
to the usual single-field expression, where fNL must be of order slow-roll - that is, the term
quadratic in δφ would be most important, giving a bispectrum with the same form as the
first line of eq. (2.9) but with the coefficient of the power spectrum terms Nφφ(k).) Assuming
that the potential Φ is defined in the matter era, the precise relationship between the first
and second lines above is

5
6
N,σσ(k) = ξs(k) (2.10)

Pζ(σ)(k)
Pζ(k)

= ξm(k) .

We note that quite generally all the coefficients N,φ, N,σ, N,σσ, etc will be scale-
dependent as the potentials for the fields are not exactly flat. In that sense, in any two-field
scenario with large local non-Gaussianity, running of the amplitude through the function
ξs(k) is as natural as running of the spectral index. It may be somewhat fine-tuned to have
two fields contribute to the amplitude of fluctuations (although this is hard to say in the
absence of compelling particle physics realizations of inflation), but if they do it is likely
natural for their potentials to be slightly different so that ξm(k2) is scale-dependent. We will
parametrize this scale dependence by writing

ξs,m(k) = ξs,m(kp)
�

k

kp

�n
(s),(m)
f

(2.11)

where kp is a (theoretically irrelevant) pivot point.

2.2 Mixed curvaton/inflaton scenario

Now suppose the curvature perturbation comes partly from a Gaussian inflaton field (φ) and
partly from a ‘curvaton’ field (σ) which was a spectator during inflation but contributes to
the curvature perturbation afterwards [48, 63–67]. The curvaton naturally has a contribution
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that is quadratic in real space since it contributes proportionally to the energy density in its
fluctuations. Assuming a purely quadratic potential for the curvaton gives

ρσ =
1
2
m

2
σ(σ + δσ)2 ⇒ δρσ =

1
2
m

2(2σδσ + δσ
2). (2.12)

The field fluctuations are still generated during inflation, with amplitude
�
�δσ2� = H/2π.

The quadratic term means that the curvaton can contribute a local-type non-Gaussianity
with fNL constant and determined by the proportion of energy in the curvaton at the time
the field decays.

Then we can write the total curvature field as a sum of contributions from the inflaton
and curvaton:

ζ(x) = ζφ(x) + ζσ(x) +
3
5
f

σ

NL(ζσ(x)2 − �ζσ(x)2�) (2.13)

where the factor of 3/5 enters since fNL is conventionally defined for the matter era potential
(eq. (2.1)) rather than the primordial curvature.

Assuming the fields don’t couple, the bispectrum takes the familiar local form, but now
in terms of Pζ(σ):

Bζ(k1,k2,k3) =
3
5
f

σ

NL[Pζ(σ)(k1)Pζ(σ)(k2) + 5 sym] . (2.14)

If we define the ratio of power contributed by the curvaton

ξ(k) =
Pζ(σ)(k)

Pζ(σ)(k) + Pζ(φ)(k)
=

Pζ(σ)(k)
Pζ(k)

(2.15)

we can write

Bζ(k1,k2,k3) =
3
5
f

σ

NL[ξ(k1)ξ(k2)Pζ(k1)Pζ(k2) + 5 perm] (2.16)

BΦ(k1,k2,k3) ≡ ξm(k1)ξm(k2)PΦ(k1)PΦ(k2) + 5 perm

where we have absorbed f
σ

NL
into ξm, that is ξm(k) =

�
f

σ

NL
ξ(k). Again, we parametrize the

function ξm(k) as a simple power law, ξm(k) ∝ k
n

(m)
f .

2.3 Curvaton alone

If non-Gaussianity comes from the curvaton alone, and a potential other than quadratic is
considered, the bispectrum can again take the form [68, 69]

BΦ(k1,k2,k3) ≡ ξs(k3)PΦ(k1)PΦ(k2) + 5 perm., (2.17)

where ξs(k) can be parametrized as a power law, at least for some potentials, and n
(s)

f

apparently can have either sign. Inhomogeneous reheating may similarly generate this bis-
pectrum [62].
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2.4 Relation to the spectral index

The running of ξm(k) is an important physical feature of either type of two-field model: it
is the evolution of the relative power in the two fields during inflation. Just as the spectral
index measures the variation of the overall amplitude of fluctuations during inflation, for
two-field models the bispectral index n

(m)

f
can provide complementary information about

how the contribution from each field evolves. For some curvaton scenarios there would be a
link between running non-Gaussianity and large scale power asymmetry in the CMB [70].

There is a precise relationship between the spectral index and the bispectral index n
(m)

f
:

d lnPζ

d ln k
≡ ns − 1 (2.18)

d lnPζ(σ)

d ln k
≡ nσ − 1

d ln ξm

d ln k
≡ n

(m)

f
= nσ − ns

Although the running of the bispectrum may have either sign, models with a red tilt for the
field σ are anecdotally more common and in that case we have

n
(m)

f
≤ −(ns − 1) . (2.19)

Notice that some of the literature (e.g. [45]) defines fNL(k) = ξm(k)2 and so quotes nf ≤

−2(ns− 1). Here however, we will see that there are two different shifts in the non-Gaussian
bias, each dependent on one factor of ξm(k), so we define n

(m)

f
as the running in that function.

Finally, notice that the spectral index of the observed curvature perturbation depends on the
running of both fields φ and σ. If the running of the fields is large enough, it will change
which field dominates the curvature statistics.

Whatever the origin of the running in either function ξm,s, it parametrizes the deviation
from exactly quadratic potentials in either field and so is expected to be generically on
the order of slow-roll parameters (and should be to avoid substantial corrections to this
parameterization). We will use somewhat large values of the running to confirm the behavior
of this type of model in our simulations, but the observational goal should be to measure
|n

(s),(m)

f
| ∼ O(ns − 1). We discuss the potential of future surveys to reach this goal in

section 5. For the standard quadratic curvaton case, n
m

f
> 0 seems more natural (that is,

non-Gaussianity increases on small scales) while Byrnes et al. [44] found 0 > n
(s)

f
� −0.1

in a survey of multi-field hybrid inflation models. The sign can be understood if the non-
Gaussianity is entirely due to non-linear evolution outside the horizon. Then large scale
modes (which exit earlier) will to be more non-Gaussian than small scale modes.3,4

3Previous authors have employed different notation for scale-dependent local models. In particular,
Byrnes et al, in an extensive discussion of possible multi-field bispectra [62] propose a definition of fNL

and its running that for our ansatz correspond to fByrnes
NL (k1, k2, k3) ≡ [ξs(k3)ξm(k1)ξm(k2)PΦ(k1)PΦ(k2) +

sym]/[PΦ(k1)PΦ(k2) + sym] and nByrnes
fNL

≡ d ln |fByrnes
NL (k1 = k2 = k3 = k)| / d ln k = n(s)

f + 2n(m)
f .

4In a discussion of the ability of observations to constrain two-field models of the mixed curvaton/inflaton
type, Tseliakhovich et al [71] recently defined a variable x1 where x1 = ξ2

m and where only the scale-
independent case was considered. In addition, their function ξ is defined differently: ξhere = 1/(1 + (ξthere)2).
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2.5 A comment on naturalness and completeness

Given that it is already difficult to convincingly explain one field with a very flat potential,
we may reasonably ask if the scenarios we are considering are even less likely than the usual
single-field inflation. It is very hard to answer that question without better fundamental
models - it may be that where there is one inflaton-like field, there are naturally several
(especially in higher dimensional models), or not. In inflation, there is a very compelling
reason why the spectral index should be slightly different from one: old inflation models with
exact de Sitter space are difficult to connect to the early, hot universe after inflation, while
slow-roll with the Hubble parameter not exactly constant can have a natural end to inflation
and a period of reheating. If the slow-roll scenario is right and if two fields are present and
relevant during inflation, it may be reasonable to expect that they both have nearly flat and
yet not identical potentials. If one accepts that local type non-Gaussianity is natural (or more
compellingly, if it is observed), scale dependence is also natural. In the absence of a range of
compelling high energy models, it is hard to quantify the likelihood of any of these scenarios.

However, from a phenomenological point of view, considering a generalized local ansatz
is helpful in two ways: first, it argues for a careful analysis of different mass tracers in any test
for primordial local type non-Gaussianity and second, it provides a test of our understanding
of structure formation. As we will see, the existing expressions for halo bias do not give
particularly satisfactory agreement with our simulations.

The generalized local ansatz above is useful to uncover new observational signatures, and
it would be interesting to investigate to what extent it holds in more complicated models with
more (and coupled) fields. However, even with this ansatz we are still far from considering
all possible known effects. In most two field models, we expect higher order terms (like
a ζ

3 contribution) to be present in the expression for the non-Gaussian curvature. Those
corrections are also important for comparison of observation with realistic models and have
been considered in [52, 72–76]. In addition, there are other possibilities that require something
even more general than the symmetric, factorizable form. For example, non-gaussianity
generated by loop effects can sometimes be large and goes like [58]

�ζ
3
� ∝ fNL(min{k1, k2, k3})[P (k1)P (k2) + 5 perm.] (2.20)

In addition, the power-law behavior of our ansatz is a poor model for scenarios with a feature
at some particular scale, such as [77] (features in the potential) or [78] where non-Gaussianity
effectively switches on at some scale where a spectator field becomes light.

Finally, we note that scale-dependent non-Gaussianity may also arise in other ways
and for other bispectra, but most other examples in standard inflationary models are less
divergent in the squeezed limit than the local shape is and so have a weaker signal in the
bias. However, there is a small region of parameter space in ekpyrotic models that seems
to generate bispectra with scale-dependent amplitudes consistent with current observations,
and more divergent than the local ansatz [79].

3 Generalized local ansatz and large scale structure statistics

Our ansatz for the factorizable, symmetric, scale-dependent local bispectrum is

BΦ(k1,k2,k3) = ξs(k3)ξm(k1)ξm(k2)PΦ(k1)PΦ(k2) + 5 perm . (3.1)

– 8 –
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where we parametrize the k-dependence of the amplitude as

ξs,m(k) = ξs,m(kp)
�

k

kp

�n
(s),(m)
f

. (3.2)

with |n
(s),(m)

f
| < 1. Ideally, the pivot scale kp can be chosen at a point where the amplitude

and running of the shape are as close to uncorrelated as possible. We adopt kp = 0.04Mpc−1

based on analysis for the CMB in [80], although they used a slightly different ansatz for the
scale dependence. Note, however, that the constraints on ξs,m(k) will be entirely independent
of the chosen value of kp.

Although generically we might expect both functions ξs(k) and ξm(k) to be present, we
can consider the two functions separately for simplicity. For that reason, we will compare
the following two bispectra in what follows:

B
s

Φ(k1,k2,k3) = ξs(k1)PΦ(k2)PΦ(k3) + 5 perm (3.3)

B
m

Φ (k1,k2,k3) = ξm(k1)ξm(k2)PΦ(k1)PΦ(k2) + 5 perm

The first line applies to a model where only one field contributes to the curvature pertur-
bations (and the inflationary background is sourced by something else). For example, it is
generated by a curvaton model where the potential has terms other than the mass term,
eq. (2.17), or from a simplified version of the δN case from section 2 (where we take ξ(k), the
ratio of power in the two fields, to be constant). Since the curvature perturbations come only
from one field, we label the new function ξs(k) with s for single field. Scale-dependence in
this function indicates the presence of non-trivial self-interactions (eg, deviation of the cur-
vaton potential from exactly quadratic). The second line corresponds to a scenario where (at
least) two fields contribute to the curvature perturbations, but the relevant self-interactions
are purely quadratic. For example, this is the mixed inflaton/curvaton model of eq. (2.16),
where the curvaton has only a quadratic potential. The label m on ξm(k) indicates that
multiple fields contribute to the curvature perturbations. Scale-dependence in ξm shows how
much the potentials for the fields differ.

Notice that the first model in eq. (3.3) has a form that is equivalent to the bispectrum
one would get from generalizing the local ansatz by

Φ(x) = ΦG(x) + fNL ∗
�
Φ2

G(x)− �Φ2
G(x)�

�
. (3.4)

This also justifies the single-field label. Scale dependence of this type was studied recently
in ref. [81].

3.1 Scale-independent non-Gaussianity and bias

In this section we will work out a prediction for the possible signatures of our generalized
local ansatz in the halo power spectrum. We will only be concerned with the behavior of the
power spectrum at very small k, where the deviation from the Gaussian case is largest. The
matter perturbations δ at redshift z are related to the perturbations in the early matter era
potential Φ by

δ(�k, z) = M(k, z)Φ(�k) (3.5)

M(k, z) =
2
3

1
Ωm

c
2

H
2
0

D(z)
g(0)
g(∞)

T (k)k2
,

– 9 –



J
C
A
P
0
3
(
2
0
1
1
)
0
1
7

so that Pδ(k, z) = M
2(k, z)PΦ(k). Here ΩM is the matter density relative to critical, H0 is

the Hubble constant, D(z) is the linear growth function at redshift z normalized to one today,
and the growth suppression factor is g(z=0)

g(z=∞)
� 0.76 in the best-fit ΛCDM model. We use the

Eisenstein & Hu [82] fit to the transfer function T (k). The variance of density fluctuations
at redshift z smoothed on a scale R associated to mass M is σ

2(M, z), defined by

σ
2(M, z) =

� ∞

0

dk

k
WR(k)2M(k, z)2∆2

Φ(k). (3.6)

where the power spectrum of the primordial curvature perturbations is given by eq. (2.4)
and WR(k) is the Fourier transform of the top-hat window function. The spatial smoothing
scale R is related to the smoothing mass scale M via

M =
4
3
πR

3
ρm,0, (3.7)

where ρm,0 is the matter energy density today. We write the combination M(k, z)WR(k) ≡
MR(k, z).

3.2 Peak-background split and halo bias

Halos in N-body simulations are associated with peaks of the initial, linear density field
δ ∝ k

2Φ, whose heights exceed some threshold [83, 84]. The basic idea of the peak-background
split [85] is to compute the effect of long-wavelength background modes on the heights of
small-scale peaks, and thereby estimate the large-scale clustering of halos. The procedure
used in the peak-background split is to perturb a single background mode ∆Φ(kl) and prop-
agate the effect of this perturbation to the height of a peak near threshold. In Gaussian
cosmologies, where there is no mode coupling, the heights of peaks are simply boosted by the
density associated with the background mode, ∆δ(kl) ∝ k

2

l
∆Φ(kl). With non-Gaussianity,

however, there is mode coupling, so we have to compute how this background mode affects
shorter-wavelength modes Φ(ks) as well. This clearly involves looking at the bispectrum in
the squeezed limit BΦ(kl,ks,−ks − kl ≈ −ks) where kl � ks.

Using the argument above, we can predict the consequences of modifying the local ansatz
to include some form of scale dependence; our discussion here is similar to that in [86–88].
To get a feel for the effect of the scale-dependent non-Gaussianity on the bias, notice that we
can rewrite the expression for the ∆N type non-Gaussian field (the first line of eq. (3.3)) in
Fourier space as a sum of Gaussian modes ΦG(k) and a non-Gaussian piece ΦB(k) designed
to recover the single-field model bispectrum:

Φ(k) = ΦG(k) + ΦB(k) (3.8)

ΦB(k) = ξs(k)
�

d
3
q1

(2π)3

�
d

3
q2

(2π)3
δ
3
D(q1 + q2 + k)Φ(q1)Φ(q2)

where we have dropped the δ
3
D

(k) term which is not important for this discussion. Now
we can use eq. (3.8) to consider the effect of some long-wavelength perturbation ∆Φ(kl).
Considering k ≈ −q2 ≈ ks and q1 = kl in that expression we see that

∆ΦB(ks) = 2ξs(ks)∆Φ(kl)Φ(ks) (3.9)
∆δ(ks) = 2ξs(ks)∆Φ(kl)δ(ks) (3.10)
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where in the latter equation, we have used the Poisson equation. We then sum over all the
short wavelengths to get the total boost in peak height, which then translates into the halo
excess and halo bias.

To see how this works, let us compute the effect of non-Gaussianity on a typical peak.
Consider a peak of the smoothed density field,

δR(x) =
�

d
3k

(2π)3
δ(k)W (kR)e−ik·x (3.11)

whose height is δpk = νσ, where σ is given by eq. (3.6). The average density profile around
such a peak was first determined by Bardeen et al. [89]. Below in section 3.3 we assume the
limit ν � 1, and if we adopt the same limit here, this average profile is given by

�δ(r)|δpk� =
ξus(r)

σ2
δpk, (3.12)

where again σ
2 is given by eq. (3.6), and

ξus(r) =
�

k
2
dk

2π2
Pδ(k)W (kR)j0(kr) (3.13)

is the cross-correlation function between the unsmoothed density δ and the smoothed density
δR, at separation r. For any finite ν, there is also a term in the average profile proportional
to ∇2

ξ that steepens the profile [89] and that is easy to include, but we omit it here for
clarity.

Our expression in eq. (3.10) requires the peak profile in k-space, so we Fourier transform
eq. (3.13), which gives

δ(k) =
δpk

σ2
Pδ(k)W (kR). (3.14)

Inserting this expression into eq. (3.10) gives the change in the k-space peak profile, which we
then smooth and Fourier transform to obtain the total boost in the smoothed peak height:

∆δpk =
�

k
2
dk

2π2
W (kR)∆δ(k)

= 2∆Φ
δpk

σ2

�
k

2
dk

2π2
Pδ(k)W 2(kR)ξs(k). (3.15)

For scale-independent non-Gaussianity, where ξs(k) = fNL, this expression reduces to
the familiar ∆δpk = 2fNL∆Φδpk [15]. For the more general case of scale-dependent non-
Gaussianity, fNL is replaced by an effective coefficient

f
eff
NL = σ

−2

�
k

2
dk

2π2
Pδ(k)W 2(kR)ξs(k) = σ

−2

�
k

2
dk

2π2
PΦ(k)M2

R(k)ξs(k). (3.16)

We see that the presence of the scale-dependent function ξs(k) implies that collapsed objects
have a shift in bias with amplitude given by an effective fNL roughly on the scale of the
object. That is, if ξs(k) (which in this simple case is like fNL(k) as in eq. (3.4)) increases
on small scales, smaller mass objects will have a larger non-Gaussian correction than very
massive objects.
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For the curvaton type model, the second line of eq. (3.3), the effect above comes along
with an additional k-dependence in the bias:

∆δ(ks) = 2ξm(kl)ξm(ks)∆Φ(kl)δ(ks). (3.17)

In this case, different mass tracers have a non-Gaussian shift in bias, ∆b, with an amplitude
proportional to an “effective fNL” set by their mass (a consequence of ξm(ks)) and a scale
dependence that goes as k

−(2−nf ) (a consequence of ξm(kl)).
On a final note, recall that we have taken the high-peak limit ν → ∞, in which the

average peak profile is simply proportional to the matter correlation function ξus(r). More
realistically, the typical peak profile for the relevant regime ν ∼ 1 is considerably steeper than
this. This change in the peak profile is irrelevant for scale-independent non-Gaussianity, but
it can be important for scale-dependent non-Gaussianity, since the peak profile in Fourier
space can extend to much higher k than implied by eq. (3.14). This can change the mass
dependence of f

eff
NL

, a point that we will return to in section 4.

3.3 Alternative derivation of scale-dependent effects

The intuitive procedure above leads to essentially the same result as the procedure outlined
by Grinstein and Wise [90] and further developed by Matarrese et al. [91]. For a generic non-
Gaussian distribution, refs. [90, 91] found a way to express the two-point function of peaks in
terms of a series expansion in correlation functions; this expansion is valid in the high-peak
limit (ν � 1, where ν is defined just below). Motivated by the results of [15], this expression
was recently applied to the case of local non-Gaussianity by Matarrese and Verde [92]. We
can use the same starting point to consider the effects of our generalized local ansatz, and
express the two-point function for halos of mass M (ξh,M (|�x1 − �x2|)) in terms of the n-point
functions of the density field smoothed on the associated scale R (ξ(n)

R
(�x1, . . . , �xn))

ξh,M (|�x1−�x2|) =
ν

2

σ(M)2
ξ
(2)

R
(�x1, �x2)+

ν
3

2σ(M)3
[ξ(3)

R
(�x1, �x1, �x2)+ ξ

(3)

R
(�x1, �x2, �x2)]+ . . . (3.18)

where the dots represent higher order terms (both higher correlation functions and higher
powers of the two- and three-point function). The collapse threshold δc is contained in
ν ≡ δc/σ(M). Now we can use the Fourier transform of the halo auto-correlation, eq. (3.18),
to compute the bias:

PM,h(k, z) =
ν

2(z)
σ(M, z)2

Pδ,R(k, z) +
ν

3(z)
2π2σ(M, z)3

PΦ(k)MR(k, z) (3.19)

×ξs(kp)[ξm(kp)]2
�

k

kp

�n
(m)
f

� ∞

0

dk1 k
2
1PΦ(k1)MR(k1, z)

�
1

−1

dµ MR(k̃, z)

×




PΦ(k̃)
PΦ(k)

�
k1k̃

k2
p

�n
(m)
f �

k

kp

�n
(s)
f −n

(m)
f

+

�
k̃

kp

�n
(s)
f �

k1

kp

�n
(m)
f

+
PΦ(k̃)
PΦ(k1)

�
k1

kp

�n
(s)
f

�
k̃

kp

�n
(m)
f





=
ν

2(z)
σ(M, z)2

Pδ,R(k, z)
�
1 +

4δc

MR(k, z)
ξs(kp)[ξm(kp)]2

�
k

kp

�n
(m)
f

FR(k, n
(s)

f
, n

(m)

f
)
�
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where k̃
2 = k

2 + k
2
1

+ 2kk1µ and the redshift independent integral is

FR(k, n
(s)

f
, n

(m)

f
) =

1
8π2σ(M)2

� ∞

0

dk1 k
2
1PΦ(k1)MR(k1) (3.20)

×

�
1

−1

dµ MR(k̃)




PΦ(k̃)
PΦ(k)

�
k1k̃

k2
p

�n
(m)
f �

k

kp

�n
(s)
f −n

(m)
f

+

�
k̃

kp

�n
(s)
f �

k1

kp

�n
(m)
f

+
PΦ(k̃)
PΦ(k1)

�
k1

kp

�n
(s)
f

�
k̃

kp

�n
(m)
f





→
1

2π2σ(M)2

� ∞

0

dk1 k
2
1PΦ(k1)M2

R(k1)
�

k1

kp

�n
(s)
f +n

(m)
f

.

The second expression is in the small k limit, so k̃ ≈ k1. In that limit, FR(k, n
(s)

f
, n

(m)

f
) is a

constant that depends on the smoothing scale. When n
(s),(m)

f
= 0, this expression reduces to

that of [92] and is identically one in the small k limit. Notice also that this agrees with the
ν � 1 result from the peak background split, eq. (3.16).

The Lagrangian halo bias bL for halos of mass M is defined by

Ph(k) = b
2
LPδ(k) = b

2
L,0

�
1 +

∆b

bL,0

�2

Pδ (3.21)

where in the second equality the fNL = 0 contribution bL,0 has been explicitly factored out.
We will actually compare the halo-matter cross-correlation spectrum (rather than the halo
auto-correlation) to the matter spectrum from our simulations, and so we are after an analytic
expression for b itself instead of b

2. From eq. (3.19) the change in the bias relative to the
Gaussian value is

∆b ≈
δc

σ(M, z)2



 2δc

MR(k, z)
ξs(kp)[ξm(kp)]2

�
k

kp

�n
(m)
f

FR(k, n
(s)

f
, n

(m)

f
)



 (3.22)

where we have taken the square-root by expanding around the Gaussian result which is
not always strictly valid. However, the resulting expression agrees with the peak back-
ground split (and we find that keeping the square-root yields worse agreement between the-
ory and simulation). The results for the constant, small k part of the integral in eq. (3.20),
FR(k) → F(M,k � 1) for the representative two-parameter cases are plotted as a function
of mass (related to smoothing scale R following eq. (3.7)) in figure 1. The functions ξs,m are
normalized to ξs,m(kp) = 1 so that the left panel shows an effective fNL generated by the
scale-dependence for each scenario. The right panel compares the prediction for the non-
Gaussian correction to the (Lagrangian) bias for the single-field and multi-field scenarios.
(This label indicates how many fields contribute to the curvature perturbations - the inflaton
itself may be separate).

3.4 Summary of analytic results

We have arrived at the same prediction in both of the previous subsections: a general fac-
torizable and symmetric extension of the local ansatz leads to two possible modifications of
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Figure 1. Left panel : The effective amplitude of the non-Gaussian bias on small scales (f eff
NL) as

a function of the object’s mass for the generalized local ansatz with either n
(m)
f or n

(s)
f set to zero.

The blue short dashed lines show the single field effect (n(m)
f = 0) and the red long dashed lines

show the multi-field function (n(s)
f = 0). The upper lines show the effect of non-Gaussianity that

increases on small scales, with n
(s)
f = 0.6 or n

(m)
f = 0.3 while the lower lines have n

(s)
f = −0.6 or

n
(m)
f = −0.3. All curves are normalized to ξs,m(kp) = 1. Right panel : A comparison of the correction

to the bias of objects of mass 4.4× 1014
h
−1

M⊙. The solid black curve is the usual local ansatz, the
blue long dashed curve is the single-field model with n

(s)
f = 0.6, the red short dashed curve is the

multi-field scenario with n
(m)
f = 0.3, and the purple dot-dashed curve is the multi-field scenario with

n
(m)
f = −0.3. Again, ξs,m(kp) = 1.

the non-Gaussian halo bias. First, different mass objects may see a different non-Gaussian
correction that goes roughly like the amplitude of the non-Gaussianity on the scale of the
object. Second, the power of k appearing in the scale-dependent correction can be shifted
away from the standard k

−2 result when there are two fields contributing to the curvature
power and their relative importance is a function of scale. Either the first effect alone or a
combination of both may be found, depending on the origin of the scale dependence. The
most general case has two parameters to characterize the running, and one to characterize
the amplitude. From the point of view of measurements of bias, these combine into the mass-
dependent coefficient of the scale-dependent term, f

eff
NL

, and the power of k that appears in
the denominator. In other words, phenomenologically we have (in the small k limit)

∆bNG(k, M) ∝
f

eff
NL

(M)

k
2−n

(m)
f

. (3.23)

More precisely (and in terms of the Gaussian Eulerian bias b
E

G
)

∆bNG(k,M) = f
eff
NL(M,n

(s)

f
, n

(m)

f
, kp)

�
k

kp

�n
(m)
f

�
3(bE

G
− 1)δcΩmH

2
0
g(∞)

c2k2T (k)D(z)g(0)

�
(3.24)

where
f

eff
NL(M, n

(s)

f
, n

(m)

f
, kp) = ξs(kp)[ξm(kp)]2FR(k � 1, n

(s)

f
, n

(m)

f
) . (3.25)
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There is some suggestion, both from simulations and from analytic considerations, that
there is an additional factor multiplying the expression above for ∆bNG even in the case of
constant local non-Gaussianity. For example, Giannantonio and Porciani [93] have suggested
a multiplication by a factor

q = 1 +
∆bI

b
E

G
− 1

(3.26)

where ∆bI is a second order non-Gaussian correction that can be calculated from some choice
of non-Gaussian mass function (and the subscript I indicates that it is scale-independent). It
corresponds to just the non-Gaussian part of their quantity b10 in, for example, their eq. (67).5

Although this particular analytic expression is reasonably well motivated, we do not find
that such a correction alone substantially improves the fit to our simulations (especially for
negative fNL), so we remain agnostic about the analytic form of any additional corrections
and instead focus on the effects unique to the generalized local form, especially f

eff
NL

(M). We
have verified that for scale-independent local non-Gaussianity, the values of q fit from our
simulations are consistent with the findings of Pillepich et al. [94], where q measured from
their simulations is labeled β (see eq. (18) of that reference). From a practical perspective, the
coefficient above can be fit from simulation and should not significantly affect our conclusions.

3.5 Forecasts based on the analytic prediction

We now estimate the ability of future observations to detect slow-roll values of the run-
ning parameter. Here we present Fisher matrix forecasts based on the analytic pre-
dictions above. This analysis complements earlier forecasts made for both the scale-
independent [15, 25, 95, 96], and also scale-dependent [80] models of non-Gaussianity.

We first consider the two simpler scenarios, given in eq. (3.3), that isolate the single
field or multi-field effects and each have only two parameters. These can be obtained by
setting either of the functions ξs or ξm to one in the general expressions above (and so either
n

(s)

f
or n

(m)

f
is set to zero). The explicit expressions are

single field : ∆bNG(k, M) = f
eff
NL(M,n

(s)

f
, kp)

�
3(bE

G
− 1)δcΩmH

2
0
g(∞)

c2k2T (k)D(z)g(0)

�
(3.27)

f
eff
NL(M, n

(s)

f
, kp) =

ξs(kp)
2π2σ(M)2

� ∞

0

dk1 k
2
1PΦ(k1)M2

R(k1)
�

k1

kp

�n
(s)
f

multi− field : ∆bNG(k, M) = f
eff
NL(M,n

(m)

f
, kp)

�
k

kp

�n
(m)
f

�
3(bE

G
− 1)δcΩmH

2
0
g(∞)

c2k2T (k)D(z)g(0)

�

f
eff
NL(M,n

(m)

f
, kp) =

ξm(kp)2

2π2σ(M)2

� ∞

0

dk1 k
2
1PΦ(k1)M2

R(k1)
�

k1

kp

�n
(m)
f

We have used only the small k portion of the integral expression from eq. (3.20) since this
corresponds to the prediction from the peak-background split, and since the integrand at
high wavenumbers (e.g. k ∼ O(0.1) h Mpc−1) depends on the explicit form of the window
function. We report constraints on the momentum dependent functions that contribute to

5We thank Tommaso Giannantonio for detailed correspondence on this point.
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the integral in f
eff
NL

(M):

most general : fNL(k) = ξs(kp)[ξm(kp)]2
�

k

kp

�n
(s)
f +n

(m)
f

(3.28)

single field only : fNL(k) = ξs(kp)
�

k

kp

�n
(s)
f

multi− field only : fNL(k) = [ξm(kp)]2
�

k

kp

�n
(m)
f

where the last two lines specialize to the simpler cases of considering only the single-field or
multi-field effects. Conceptually, f

eff
NL

(M) and its Fourier-space analogue, fNL(k) capture the
high frequency scale-dependence of non-Gaussianity, k ∼M

−1/3. In addition to this, the bias
has low-frequency scale-dependence ∝ k

−2+n
(m)
f for k �M

−1/3. This is why our expressions
for fNL(k) and f

eff
NL

(M) contain only one power of n
(m)

f
, even though the bispectrum has two

k
n

(m)
f terms. Fiducial values adopted were fNL(kp) ≡ ξs(kp)ξ2

m(kp) = 30 (corresponding to the
approximate central value of constant fNL inferred from WMAP data [26]), and n

(s),(m)

f
= 0

while kp = 0.04 Mpc−1 as before. We will see in a moment that the true best-measured scale
from the large-scale clustering of galaxies and clusters is somewhat smaller.

Suppose that we have measurements of the power spectrum using objects (galaxies and
clusters of galaxies) that have been separated in several mass bins. We assume that the
covariance matrix of measured Fourier-space overdensities in a given redshift bin centered at
z is given by

Cab(k, z) = b(k, Ma, z) b(k, Mb, z) P (k, z) + δab

1
na(z)

(3.29)

where the labels a and b refer to mass bins. This equation encodes how to combine obser-
vations from different mass bins, and also straightforwardly specifies the dependence on the
parameters of interest f

eff
NL

(kp) and n
(s),(m)

f
via eqs. (3.22) and (3.20).

The Fisher matrix can now be evaluated in the FKP approximation [97], where infor-
mation is summed over the redshift bins and wavenumber shells. We have

Fij = Ωsurvey

�
zmax

0

�
dV

dΩdz

�
dz

�
kmax

kmin

Tr
�
C
−1

C,iC
−1

C,j

� k
2
dk

(2π)2
, (3.30)

where Ωsurvey and zmax are the solid angle and maximum redshift in the survey respectively,
V is volume, commas denote derivatives with respect to the non-Gaussian parameters, and
we have suppressed the dependencies of C on wavenumber and redshift. In practice we
replace integrals with sums to evaluate this expressions. We neglect the effect of redshift
uncertainties, but assume thick redshift bins with ∆z = 0.2.

For definiteness, we assume a dataset of the quality expected from the Dark Energy
Survey (DES; [6]), with zmax = 1 and covering 5000 square degrees; the total volume in this
survey is about 6.5 h

−1Mpc3. We assume kmin = 0.0001 h Mpc−1 and kmax = 0.1 h Mpc−1;
the latter ensures that all information safely comes from the linear regime. Although
the largest scales included here are superhorizon, they contribute very little information
to the final constraint because there are so few modes. However, to be precise on those
scales one needs to specify a gauge, with comoving-orthogonal gauge recovering the expres-
sion used here [98]. Finally, we choose the number density of sources above some mass
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Figure 2. Forecasted constraints on fNL(k) in the model where a single field generates the curvature
perturbations (left panel) and in the multi-field model (right panel). We show forecasts for data
expected from DES (solid black curve) and LSST (dashed black curve) observations. The wavenumber
at which the constraints are the best is kuncorr, and at this wavenumber the normalization and slope
of the power law are precisely uncorrelated. The six colored contours on top of each panel show the
individual constraints from six narrow mass bins uniformly distributed in log10 M from 1013.5

h
−1

M⊙
to 1015

h
−1

M⊙ (assuming the DES survey). In the single-field scenario, individual masses do not
break degeneracy between amplitude and running of fNL(k) and only constrain this function at a
single k value; combined masses are required to break the degeneracy. In the multi-field scenario, the
degeneracy is broken even with halos of a fixed mass. [Note that, in all cases, the overall constraints
on fNL(k) between different wavenumbers k are strongly correlated, given that we are assuming a
power law in k.]

to correspond exactly to the expectation from the Jenkins mass function [99]. Therefore,
na(z) =

� Ma,high

Ma,low
(dn/d lnM)(z) d lnM , where Ma,low and Ma,high and the boundaries of the

a-th mass bin. The total number density of sources at z = 0 and above 1013.5
h
−1

M⊙ is
n � 10−4 ( h Mpc−1)−3. We assume a large number of mass bins (forty) in M/M⊙, uni-
formly distributed in log10 M from 1013.5

h
−1

M⊙ to 1015.5
h
−1

M⊙.
First considering the single-field case, the error in fNL(k) at any k is given by a simple

propagation of errors

σ(fNL(k)) =




�

∂fNL(k)
∂fNL(kp)

�2

Covff +
�

∂fNL(k)

∂n
(s)

f

�2

Covnn + 2
∂fNL(k)
∂fNL(kp)

∂fNL(k)

∂n
(s)

f

Covnf




1/2

(3.31)

=




�

k

kp

�2

n
(s)

f
Covff +

�
fNL(kp)

�
k

kp

�n
(s)
f

ln
�

k

kp

� �2

Covnn (3.32)

+2fNL(kp)
�

k

kp

�2n
(s)
f

ln
�

k

kp

�
Covnf




1/2

where Cov ≡ F
−1 is the covariance matrix of the two non-Gaussian parameters that we

consider. The errors in fNL(k) are shown in the left panel of figure 2.
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We are also interested in finding the best-constrained wavenumber, kuncorr. When kp =
kuncorr, then the errors on the parameters ξ(kp) and n

(s),(m)

f
are uncorrelated . While this

best-constrained wavenumber can obviously be read off from figure 2, it can also be calculated
analytically as

kuncorr = kp exp
�
−

Covnf

fNL(kp)Covff

�
, (3.33)

where kp = 0.04 h Mpc−1 is the arbitrary pivot in eq. (3.2). The way that kuncorr ‘runs’ with
changing mass illustrates the point we made in section 3.2 that different mass halos probe
scale-dependent NG on scales corresponding to those masses.

We find that the best-constrained wavenumber of our survey, for the single-field model
and assuming DES-quality data, is kuncorr � 0.1 h Mpc−1, and the corresponding parameter
errors at kuncorr are

σ(fNL(kuncorr)) � 8, σ(n(s)

f
) � 0.5 (DES forecast, single− field). (3.34)

We also find that the error in fNL(kuncorr) is largely insensitive to the fiducial value of fNL(kp),
while the error in the spectral index n

(s)

f
becomes larger for a smaller fiducial fNL(kp) (which

is expected, since a larger fiducial non-Gaussianity increases the absolute change in fNL(k �=
kuncorr) for a fixed change in n

(s)

f
).

We repeated the same exercise assuming data of the quality expected from the Large
Synoptic Survey Telescope (LSST; [9]), with zmax = 3 and covering 20,000 square degrees;
the constraints became

σ(fNL(kuncorr)) � 1.7, σ(n(s)

f
) � 0.17 (LSST forecast, single− field). (3.35)

Next we consider the multi-field model; see the right panel of figure 2. As expected, the
numerical constraints on the amplitude are comparable to the single-field case, however the
constraints on the running improve, and the best-determined scale moves to a slightly lower
k:

σ(fNL(kuncorr)) � 8, σ(n(m)

f
) � 0.2 (DES forecast, multi− field) (3.36)

σ(fNL(kuncorr)) � 1.7, σ(n(m)

f
) � 0.04 (LSST forecast, multi− field). (3.37)

The colored contours in figure 2 show the individual constraints from each of the six narrow
mass bins uniformly distributed in log10 M from 1013.5

h
−1

M⊙ to 1015
h
−1

M⊙ (this is for
the DES survey scenario and the single-field inflaton model).6 The thick black curve in
either panel shows the combined constraint. Note that the combined constraint contains
the information from the individual bins and the correlations between them (corresponding
to a �= b in eq. (3.29)). A particularly interesting feature of testing these models with
primordial non-Gaussianity is that halos of different mass complement in producing the
overall constraint. For example, inspection of eqs. (3.22) and (3.20) shows that, with a single
mass measurement, the normalization and slope of the single-field model, fNL(kp) and n

(s)

f
,

are completely degenerate, and only fNL(k) at a single k value is measured. By adding a
6The careful reader will notice that these six bins in mass are an oversampling of the 30 original bins

in mass we assumed in this interval, which are a subset of the total of 40 bins in mass we assumed in
M = [1013.5, 1015.5] h−1M⊙.
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Figure 3. Left panel: constraints in the fNL(kp)-n
(s)
f plane in the inflaton model. Lines show

degeneracy directions that each of six individual mass bins suffers (these mass bins correspond to
colored curves in figure 2). Right panel: Constraints in the n

(s)
f -n(m)

f plane assuming both single-
field and multi-field models, and marginalizing over the amplitude (term fNL(kp) ≡ ξs(kp)ξm(kp)2 in
eq. ( 3.28)).

wide range of masses, this degeneracy is broken. This is shown in the left panel of figure 2,
where narrow mass bins only constrain this function near a single k value. In contrast, the
right panel shows that for the multi-field scenario the degeneracy is broken even with halos
of a fixed mass, as expected from eq. (3.24).

Similarly, figure 3 contains more visual information on how the degeneracy is broken
with multiple mass measurements. The left panel shows the constraint in the fNL(kp)-n

(s)

f

plane for the DES survey, with lines showing degeneracy directions that each of the six
individual mass bins suffers (these mass bins correspond to colored curves in figure 2). The
right panel shows the constraint in the n

(s)

f
-n(m)

f
plane, marginalized over the amplitude

fNL(kp) ≡ ξs(kp)ξm(kp)2, for both DES and LSST surveys.
Clearly, even the information from large-scale structure alone offers the possibility of

distinguishing the origin of primordial non-Gaussianity by constraining both single-field and
multi-field model parameters simultaneously, but the most interesting level to probe is run-
ning of order the spectral index, n

(s,m)

f
∼ O(0.04). It is not completely clear if we can

reach that level, and there are several factors that could push the predictions above in ei-
ther direction. First, the forecasts presented here are in some sense a best-case scenario,
given that for simplicity we did not marginalize over the standard cosmological parameters,
and we assumed no systematic errors in recovering the power spectra of halos, only taking
into account the statistical uncertainties. In particular, measurements of mass of clusters of
galaxies suffer from statistical and systematic errors that are currently at least at the 10%
level per cluster. On the other hand, constraints presented might be reached in the near
future because we do not expect that serious degeneracies exist between the non-Gaussian
and other cosmological parameters [15]. One exception might be the Gaussian bias b

E

G
, which

will need to be measured concurrently rather than predicted by theory as we assumed here.
In addition, we caution that our simulation results do not agree quantitatively with

the analytic prediction (see the next section). In fact, the simulations find a substantially
stronger dependence on mass than what is predicted. If the simulations are proven correct,
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then the effects shown above will be easier to distinguish, which is very encouraging for
distinguishing between different mechanisms that may lead to large local non-Gaussianity.

Finally, the constraints above are from bias alone, but the Planck satellite will consid-
erably improve constraints on fNL from the CMB through measurements of the bispectrum
itself, so that any scale dependence may also be constrained [80]. Whereas current con-
straints come from k � 10−3

h
−1Mpc, Planck constraints will extend to higher � and should

overlap with constraints from the bias. Existing CMB analyses [80] have used a different
parametrization of possible scale-dependence, and so it would be interesting to repeat this
with our ansatz. As pointed out by [71] and explored in detail by [100], even more infor-
mation can be extracted from joint constraints on models where two fields contribute to
the curvature fluctuation. Multiple observations can separate the inherent size of the non-
Gaussian interaction in one field (fσ

NL
) from the rescaling by the fraction of power from the

non-Gaussian field, ξ(k), which combine as shown in eq. (2.16) to give the amplitude of the
non-Gaussian term in the bias, ξ

2
m(k) = f

σ

NL
ξ
2(k), that we have constrained here.

4 Simulation results

To check the dependence of the effective fNL on the tracer mass, we generated initial condi-
tions with a non-zero bispectrum of the form shown in the first line of eq. (3.3) (the single
field model) with scale-dependent amplitude as defined in eq. (3.2). This is equivalent to
eq. (3.4), so our function ξs(k) corresponds to a commonly used definition for fNL(k) (see
also eq. (3.28)). This is the simplest possible model, but serves to check the predictions for
how the effective coefficient of the non-Gaussian bias (“f

eff
NL

”) varies with the mass of the
halo. We have also performed a small number of simulations using the bispectrum form in
the second line of eq. (3.3), to verify that the bias has the expected scale-dependence. These
simulations confirm that in such models ∆b no longer simply scales as k

−2 on large scales,
but has n

(m)

f
dependence as well. However, at large enough values of the running to be

distinguished by our simulations, second order effects are significant. For now we focus on
the first scenario which is simpler and already uncovers a disagreement between the analytic
predictions and the numerical results.

To perform these non-Gaussian simulations, we first generated a realization of a Gaus-
sian random field Φ(x) with amplitude chosen so that σ8 = 0.8 and with spectral index
ns = 0.96. Then we squared the field, Fourier transformed and multiplied by the scale-
dependent fNL shown in the second line of eq. (3.28). Finally, we transformed this component
back to real space and added it to the Gaussian piece. We then use the Zeldovich approxima-
tion to initialize our particles at scale factor a = 0.005. We evolved the particles forward in a
flat ΛCDM cosmology with parameters consistent with WMAP7 best fit values (Ωm = 0.27,
h = 0.7), using a particle-mesh code with adaptive (drift-kick-drift) timestepping, and 8 grid
cells per particle. We ran a Friends-of-Friends halo finder, using linking length b = 0.2, at
a = 0.5, 0.667, and 1. We measure halo clustering and halo bias, using the large-scale ratio
of the halo-matter cross-correlation function to the matter auto-correlation function.

We ran 8 realizations each of Gaussian and non-Gaussian initial conditions, including
ξs(kp) ≡ fNL(kp) = 100 with n

(s)

f
= 0, 0.6, fNL(kp) = 300 with n

(s)

f
= 0,±0.6, and fNL(kp) =

630 with n
(s)

f
= 0,−0.6. All cases had pivot point kp = 0.04 Mpc−1. The box size was

2400 h
−1 Mpc, with (1024)3 particles, giving a mass per particle of 9.65 × 1011

h
−1

M⊙.
Although our lowest-mass halos do not have many particles in these simulations, we used
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Figure 4. Dependence of scale-dependent non-Gaussian bias on mass, inferred from simulations.
Left panel : Simulation results for the non-Gaussian contribution to the bias of halos with mass
(4 − 8) × 1013

h
−1

M⊙. The black circles points have constant ξs(kp) ≡ fNL(kp) = 300, the blue
squares have the same ξs(kp) but n

(s)
f = −0.6, and the red triangles have n

(s)
f = 0.6. Error bars are

sample variance across several simulations with the same parameters. Right panel : The same set of
curves for halos with mass (32 − 64) × 1013

h
−1

M⊙. The scatter here is larger than in the previous
plot since there are fewer objects at this mass.

a few Lbox = 520h
−1 Mpc simulations (with fNL(kp) = 300) where these halos were well-

resolved to verify our results. These simulations were performed on the SciNet machines,
where each run took about 3.5 hours on 16 nodes.

We find that the simulations with constant fNL are offset from the analytic expectation
at small k by a factor that is nearly constant with mass and is less than one for both positive
and negative fNL. This is consistent with findings by other simulations, and the behavior of
the offset was studied in detail by Pillepich et al. [94] and Giannantonio and Porciani [93].
However, as discussed above, we will effectively fit this offset out and examine only the
difference in behavior between our fNL constant simulations and those with running.

From the simulations with scale-dependent non-Gaussianity, we find that different mass
objects are indeed sensitive to an effective fNL that depends on the scale of the object and
which increases (decreases) for positive (negative) running as the mass and size of the object
decreases. Figure 4 illustrates this effect: the non-Gaussian term in the bias for small mass
objects has a smaller (larger) amplitude for positive (negative) running than for constant fNL

(left hand panel). The curves converge for larger mass objects (right hand panel). The bias
correction ∆b is calculated from the difference between the matter-halo cross correlation in
a Gaussian simulation and the non-Gaussian case built from the same Gaussian realization,
then averaged over realizations. The qualitative effect we expected is present, but for some
halos the magnitude of the effect is not well predicted by the analytic expressions from
section 3. Figure 5 shows the deviation between simulation and prediction for fNL = 300,
n

(s)

f
= ±0.6 (the same generic trend was seen in all parameter sets). We plot the ratio of the

non-Gaussian correction with running to the non-Gaussian correction for constant fNL:

F
sim
≡

b(fNL = 300, n
(s)

f
= 0.6)− b(fNL = 0)

b(fNL = 300, n
(s)

f
= 0)− b(fNL = 0)

=
∆b(n(s)

f
)

∆b(n(s)

f
= 0)

. (4.1)

This is compared with the theoretical expectation calculated from the small k limit of
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Figure 5. Simulation results for the scale-dependent non-Gaussian bias compared to theory. In
the left panel, the vertical axis shows the mass-dependent ratio of the bias for non-Gaussianity that
runs compared to the fNL constant case, measured from fNL = 300 simulations at z = 0. The
upper points/lines have n

(s)
f = 0.6 and lower points/lines show n

(s)
f = −0.6. Redshifts z = 0 (blue,

higher values of σ(M),and z = 1 (red, lower values of σ(M) are shown. The dashed lines are the
analytical prediction, showing that agreement is better at small σ(M). The right panel shows the
same information, but plotted as a function of mass. Note that the theoretical prediction as a function
of mass (solid lines in the right panel) is redshift independent.

eq. (3.20). The curves are plotted as a function of σ(M). As the figure demonstrates,
the simulation results agree well with our analytic model in the high-mass limit σ(M)� δc,
but towards lower masses (e.g. σ(M) � 0.8) the simulations produce a stronger effect than
eq. (3.20) would predict. Note that the discrepancy does not appear at a fixed mass, but
rather at a fixed σ(M). This is illustrated in the right panel of figure 5, which is identical to
the left panel of figure except that now mass M is the abscissa. The figure shows that for
fixed mass M , the simulations agree with eq. (3.20) at high redshift, but begin to disagree
at low redshift as σ(M) grows.

One very plausible explanation for this discrepancy at low mass (σ � 0.8) is that
the profiles of the peaks that produce halos begin to change as σ increases. As we have
argued, the non-Gaussian bias of halos of mass M is sensitive to the value of fNL at some
effective k ∝ M

−1/3. Implicit in this scaling is the assumption that the profiles of peaks
that collapse into halos are similar at different masses, just rescaled in size. However, we
know that this assumption is incorrect. Bardeen et al. [89] argued from Gaussian statistics
that as σ(M) increases, the peaks that collapse into halos generally become steeper. N-
body simulations confirm the presence of this effect, but show that it is much stronger in
magnitude than predicted by Bardeen et al., apparently due to environmental effects during
halo formation [101]. Because peaks at high σ(M) are much steeper than rare peaks at low
σ(M), they are sensitive to non-Gaussianity at higher wavenumbers, even at the same peak
size R. For scale-independent fNL, this change in peak profile has no effect, but for nonzero
nf it can dramatically enhance the mass dependence of non-Gaussianity, as our simulations
show. It remains to be seen whether the magnitude of the change in peak profile can account
for the discrepancy between our simulations and eq. (3.20); this is work in progress.
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5 Conclusions

In summary, we have introduced a generalization of the local ansatz, eq. (2.9), that is a sym-
metric, factorizable function of the momenta and includes scale-dependent non-Gaussianity.
This more general expression is motivated by natural features of models that give an observ-
ably large amplitude for local type non-Gaussianity, and distinguishes between non-Gaussian
curvature fluctuations generated by a single field and multiple fields. If only one field con-
tributes to the curvature fluctuation (and is different from the inflaton so that the non-
Gaussianity may be large), the scale-dependence of the non-Gaussianity characterizes the
self-interactions of the field. If two fields contribute to the curvature fluctuations, scale-
dependence indicates how the ratio of power in the fields changes, which is a function of how
different the potentials are. If local non-Gaussianity is large enough to be observed, such
scale-dependence is as natural as running of the power spectrum.

Models with scale-dependent local non-Gaussianity can generate two signatures in the
non-Gaussian contribution to the halo bias. First, the non-Gaussian term may be propor-
tional to an effective fNL related to the amplitude of the bispectrum on the scale of the
object so that different mass objects have a different amplitude correction. Second, the k

−2

behavior of the non-Gaussian bias can be modified to k
−(2−n

(m)
f ) (where |n(m)

f
| < 1), and one

should expect the first effect to accompany this one.
We have used N-body simulations to verify that different mass objects do indeed have

a non-Gaussian bias proportional to an effective fNL that varies with the mass of the object.
It is interesting that the simulations show that scale dependence with n

(s),(m)

f
< 0 can erase

the scale dependent effect on the bias for some range of masses, highlighting the need for
analysis using multiple tracers of different mass. However, the quantitative result for halos
at large σ(M) is not well predicted by our analytic expressions. We have speculated that
the origin of this discrepancy may be related to differences in the initial peak profiles of the
halos, but leave a detailed investigation for a later work.

Future surveys are sure to bring interesting results. Using the analytic predictions,
we find that they may be able to distinguish the different pieces of our generalized local
ansatz, and so different origins of local non-Gaussianity, especially if the running is somewhat
large (n(s),(m)

f
∼ O(0.1)). However, the existing analytic expressions predict a weaker effect

than we see in the simulations, and our forecasts only account for constraints from massive
groups and clusters of galaxies, neglecting the (potentially) greater sensitivity to running
possible when galaxy correlations are included as well. As we stressed throughout the paper,
tracers of different masses can probe non-Gaussianity on distinct mass (and length) scales, so
combining galaxy clustering measurements with measurements of groups and clusters should
significantly improve upon the cluster-only constraints on running that we have presented.
Our forecasts for future surveys should therefore be taken as a lower limit on the potential
to observationally distinguish these features.
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