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ABSTRACT

We apply the multipole vector framework to full-sky maps derived from the first-year Wilkinson
Microwave Anisotropy Probe (WMAP) data. We significantly extend our earlier work showing

that the two lowest cosmologically interesting multipoles, � = 2 and 3, are not statistically

isotropic. These results are compared to the findings obtained using related methods. In par-

ticular, we show that the planes of the quadrupole and the octopole are unexpectedly aligned.

Moreover, the combined quadrupole plus octopole is surprisingly aligned with the geometry

and direction of motion of the Solar system: the plane they define is perpendicular to the

ecliptic plane and to the plane defined by the dipole direction, and the ecliptic plane carefully

separates stronger from weaker extrema, running within a couple of degrees of the null-contour

between a maximum and a minimum over more than 120◦ of the sky. Even given the alignment

of the quadrupole and octopole with each other, we find that their alignment with the ecliptic

is unlikely at >98 per cent confidence level (CL), and argue that it is in fact unlikely at >99.9

per cent CL. Most of the � = 2 and 3 multipole vectors of the known Galactic foregrounds are

located far from those of the observed sky, strongly suggesting that residual contamination by

such foregrounds is unlikely to be the cause of the observed correlations. Multipole vectors,

like individual a�m , are very sensitive to sky cuts, and we demonstrate that analyses using cut

skies induce relatively large errors, thus weakening the observed correlations but preserving

their consistency with the full-sky results. Similarly, the analysis of COBE cut-sky maps shows

increased errors but is consistent with WMAP full-sky results. We briefly extend these explo-

rations to higher multipoles, noting again anomalous deviations from statistical isotropy and

comparing with ecliptic asymmetry manifested in the WMAP team’s own analysis. If the corre-

lations we observe are indeed a signal of non-cosmic origin, then the lack of low-� power will

very likely be exacerbated, with important consequences for our understanding of cosmology

on large scales.
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1 I N T RO D U C T I O N

Following a series of increasingly successful experiments measur-

ing the anisotropy of the cosmic microwave background (CMB),

full-sky maps obtained by the Wilkinson Microwave Anisotropy
Probe (WMAP) in its first year of observation have revolutionized

the study of the CMB sky (Bennett et al. 2003a,b; Hinshaw et al.

2003a). In particular, a number of cosmological parameters have

been determined with high accuracy (Spergel et al. 2003). More-
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over, a WMAP-type survey opens a unique window to the physics of

the early universe (Peiris et al. 2003) and enables tests of the standard

inflationary picture, which predicts a CMB temperature anisotropy

pattern that is nearly scale-free, statistically isotropic and, to the

accuracy of all current or planned CMB experiments, Gaussian ran-

dom (terms that we will define more carefully below). Consequently,

WMAP data led to many studies of Gaussianity (Chiang et al. 2003;

Komatsu et al. 2003; Larson & Wandelt 2004; Magueijo & Medeiros

2004; Mukherjee & Wang 2004; Park 2004; Vielva et al. 2004;

Cayón, Jin & Treaster 2005; Cruz et al. 2005; Eriksen et al. 2005;

McEwen et al. 2005; Naselsky et al. 2005a; Naselsky, Novikov &

Chiang 2005b; Tojeiro et al. 2006) and statistical isotropy (Hajian

& Souradeep 2003; Eriksen et al. 2004b; Hansen, Banday & Górski

2004a; Hansen et al. 2004b; Donoghue & Donoghue 2005; Hajian
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& Souradeep 2005; Hajian, Souradeep & Cornish 2005; Prunet et al.

2005) of the CMB. While there was no significant evidence for the

violation of Gaussianity and statistical isotropy in the pre-WMAP
era, some of the aforementioned post-WMAP studies found evi-

dence for violation of either Gaussianity or statistical isotropy, or

both.

Arguably, the biggest surprises were to be found in temperature

anisotropies on the largest angular scales. Most prominent among

the ‘low-� anomalies’ is the near vanishing of the two-point an-

gular correlation function C(θ ) at angular separations greater than

about 60◦ (Spergel et al. 2003), confirming what was first measured

using the Cosmic Background Explorer’s Differential Microwave

Radiometer (COBE-DMR) a decade ago (Hinshaw et al. 1996). Be-

yond this long-standing anomaly in the overall amplitude of the

large-angle fluctuations, it has also been noted that the octopole of

the CMB is planar and oriented parallel to the quadrupole (Tegmark,

de Oliveira-Costa & Hamilton 2003; de Oliveira-Costa et al. 2004).

Furthermore, three of the four planes determined by the quadrupole

and octopole are orthogonal to the ecliptic at a level inconsistent

with Gaussian random, statistically isotropic skies at 99.8 per cent

confidence level (CL), while the normals to these planes are aligned

at 99.9 per cent CL with the direction of the cosmological dipole

and with the equinoxes (Schwarz et al. 2004). These peculiar corre-

lations presumably are connected to north–south asymmetry in the

angular power spectrum (Eriksen et al. 2004b) and in the statistics of

the extrema (Wandelt, Larson & Lakshminarayanan 2004). Finally,

there is a suggestion that the presence of preferred directions in the

microwave background multipoles extends beyond the octopole to

higher multipoles (Land & Magueijo 2005a) and that there is an

associated mirror symmetry (Land & Magueijo 2005c).

The correct explanation of these unexpected correlations of the

low-� features of the microwave background with each other and

with the Solar system is currently not known. There are four possi-

bilities: (i) there is a systematic error (an error in the data analysis

or instrument characterization), (ii) the source is astrophysical (i.e.

an unexpected foreground), (iii) it is cosmological in nature (e.g.

an anisotropic universe, such as one with non-trivial topology), or

(iv) the observed correlations are a pure statistical fluke. The evi-

dence for many of these low-� correlations is strong (>99 per cent

CL) and presented with a variety of different methods (see, e.g.

Tegmark et al. 2003; Eriksen et al. 2004b; Hansen et al. 2004b;

Schwarz et al. 2004; Land & Magueijo 2005a). It is therefore un-

likely that all of them are mere accidents. In this paper, we will

at least attempt to clarify which of these and other correlations is

likely to be a statistical fluke. Whatever the source of these correla-

tions, until they are understood, cosmological inferences drawn from

low-� WMAP data (including polarization data), such as the possi-

bility of early reionization, should be viewed with a healthy dose of

skepticism.

This paper has two principal goals. First, we would like to further

develop the theory of multipole vectors, a new representation of

microwave background anisotropy introduced by Copi, Huterer &

Starkman (2004). In particular, we derive several new results, and

comment on various ideas and results on the tests of Gaussianity and

statistical isotropy that were subsequently presented by others using

the multipole vectors or their variants. Our second major goal is to

present a detailed analysis of the large-angle correlations discussed

in Schwarz et al. (2004) and extend them in several directions.

This paper is organized as follows. In Section 2, we introduce the

WMAP maps and their treatment used in our analysis. In Section 3,

we review the theory behind the multipole vectors, derive several

new results, and comment on other recent work on this topic. Sec-

tion 4 deals in more detail with the morphology of the quadrupole

and octopole. In Section 5, we introduce various statistics to quantify

the low-� correlations, extend our analysis to higher �, and present

the results. Section 6 includes a detailed analysis of the issue of

foregrounds and Section 7 describes the cut-sky reconstruction al-

gorithm and results based on reconstructed maps. In Section 8, we

present a comparison to COBE. The correlations of the WMAP angu-

lar power spectrum with the ecliptic plane are discussed in Section 9.

We conclude in Section 10.

2 T H E M I C ROWAV E BAC K G RO U N D S K Y

The temperature fluctuations of the microwave background �T(θ ,

φ; x, t) are, in principle, functions of both the direction of observation

(θ , φ), and the location, x, and time, t, of the observation. In practice,

essentially all our observations occur within the Solar system and

over a cosmologically short period of time, so we can ignore any

local spatial and temporal variations in the microwave background.

Our observations in each wavelength band are therefore the intensity

of the microwave background radiation as a function of direction on

the celestial sphere.

2.1 The standard representation

The most common representation of a real scalar function, f (θ , φ),

on the sphere is as an expansion in terms of multipole moments

f (θ, φ) =
∞∑

�=0

f�(θ, φ), (1)

where the �th multipole, f �(θ , φ), is typically given by

f�(θ, φ) =
�∑

m=−�

a�mY�m(θ, φ). (2)

Here Y �m(θ , φ) are the standard spherical harmonic functions. For

f �(θ , φ) to be real the complex coefficients a�m need to satisfy the

reality condition a∗
�m = (−1)m a�,−m and for fixed � we have 2� +

1 independent, real degrees of freedom (d.o.f.).

Standard cosmological theory predicts that the CMB fluctuations

sample a statistically isotropic, Gaussian random field of zero mean.

‘Gaussian random’ means that the real and imaginary parts of the

a�m are each an independent random variable that is distributed

according to a Gaussian distribution of zero mean. In principle, the

variances of these Gaussian distributions (which, by the nature of a

Gaussian, fully characterize the distribution) could be different for

each � and m and for both the real and imaginary parts. ‘Statistically

isotropic’ means that, instead, these variances depend only on �.

Thus, the expectation of any pair of a�m is

〈a∗
�′m′a�m〉 = C�δ�′�δm′m, (3)

whereC� is the expected power in the �th multipole and its (standard)

observable estimator is

C� ≡ 1

2� + 1

�∑
m=−�

|a�m |2. (4)

The set of estimators {C � | � = 0, . . . , ∞} is called the angular

power spectrum. The cosmic variance in the estimators is

Var(C�) = 2C2
� /(2� + 1). (5)

Since the distributions of Gaussian variables are completely de-

termined by their means and variances (and since the a�m have zero
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means), if the microwave background sky is indeed a realization

of a Gaussian random, statistically isotropic process, then all of

the accessible information in a microwave background temperature

map about the underlying physics is contained in the angular power

spectrum. (Non-linear growth of fluctuations will cause departures

from Gaussianity. However, these departures are small at the large

angular scales we will be considering.)

As mentioned in the Introduction, many studies have been done

looking for evidence of non-Gaussianity or deviations from statisti-

cal isotropy in the microwave background. A significant difficulty is

that in the absence of particular models the range of possible mani-

festations of non-Gaussianity and statistical anisotropy is enormous.

Statistics that measure one manifestation well, can be entirely insen-

sitive to another. Limits on particular statistics should be viewed in

that light. Another conceptual and practical difficulty is separating

tests of Gaussianity from tests of statistical isotropy. If statistical

isotropy, 〈a∗
�′m′ a�m〉 ∝ δ�′� δm′m , is violated, then it is unclear how

one can test Gaussianity, since each a�m could have its own inde-

pendent distribution for which we are provided just one sample.

2.2 Full-sky maps

In this work, we use three full-sky maps based on the original single-

frequency WMAP maps. The first two, the Internal Linear Combi-

nation (ILC) map and the Lagrange Internal Linear Combination

(LILC) map, are minimum-variance maps obtained from WMAP’s

single-frequency maps by Bennett et al. (2003a) (the WMAP team)

and by Eriksen et al. (2004a), respectively. The third map is the

cleaned full-sky map of Tegmark et al. (2003) (henceforth the TOH

map). The full-sky maps may have residual foreground contamina-

tion that is mainly due to imperfect subtraction of the Galactic signal.

Furthermore, the full-sky maps have complicated noise properties

(Bennett et al. 2003a) that make them less than ideal for cosmologi-

cal tests. While one can, in principle, straightforwardly compute the

true (full-sky) multipole vectors from the single-frequency maps

with the sky cut (as explicitly shown for an isolatitude sky cut in

Section 7), a Galaxy cut larger than a few degrees will introduce

a significant uncertainty in the reconstructed multipole vectors and

consequently any statistics.

Nevertheless, there are compelling reasons why we believe the

results of the analysis of the full-sky maps. First, all of the results

are robust with respect to choice of the map, despite the fact that the

ILC and LILC maps were obtained using a different method than

the TOH map. This suggests that the full-sky maps indeed resemble

the true Galaxy-subtracted microwave sky. Furthermore, one can

show that the dominant component of the bias inherent in creating

an ILC-type map has a quadrupolar pattern, and in particular looks

like the spherical harmonic Y 20 with an amplitude of � 20 μK (H. K.

Eriksen private communication). For the quadrupole and octopole

the dominant contributions to the Galactic foregrounds are a lin-

ear combination of Y 20 and Re(Y 31), which is easily seen from the

symmetry of the Galaxy (approximately north–south and east–west

symmetric with a hot spot at the Galactic Centre and a cold spot at the

anti-centre). Indeed, the sum of the synchrotron, free–free and dust

WMAP foreground maps (Bennett et al. 2003a) in the V-band gives

a20 = −217 μK and Re(a31) = 88 μK. These two modes make up

about 90 per cent of the power in the quadrupole and octopole fore-

grounds. The next important modes in the WMAP foreground maps

turn out to be Re(Y 22) and Re(Y 33). The quoted 20 −μK uncertainty

in the ILC-type map for the quadrupole can thus be understood as

a 10 per cent uncertainty in the understanding of our Galaxy. The

uncertainty in the octopole is considerably smaller (�10 μK). As

shown in Schwarz et al. (2004) and further demonstrated in Sec-

tion 6, this Galactic contamination, even if present, would lead to

Galactic and not the observed ecliptic (Solar system) correlations.

2.3 Methodological differences between the minimal

variance maps

The guiding principle in the construction of the WMAP ILC, TOH

and LILC full-sky maps is to search for a temperature map with

minimal variance. For the convenience of the reader we summarize

the essential steps that lead to the cleaned full-sky maps (see the

original papers for full details).

In all three approaches, the input are the five WMAP frequency

maps (K, Ka, Q, V and W band). The bands differ in a number of

ways including noise properties and angular resolution. While the

ILC and LILC maps reduce all five bands to the K-band resolution,

the TOH map makes use of the higher resolution of the higher-

frequency bands. Each map can be written as

T (νi ) = TCMB + Tresidual(νi ). (6)

A combined map is created by the linear combination

T = TCMB +
5∑

i=1

wi Tresidual(νi ), (7)

with
∑

i wi = 1. Now it is assumed that the residuals (noise and

foregrounds) and the CMB are uncorrelated, so that

Var(T ) = Var(TCMB) + Var

(
5∑

i=1

wi Tresidual(νi )

)
. (8)

The idea is now to determine the four independent weights by min-

imizing the variance with respect to all pixels of a region of the

sky. The ILC and LILC maps use the same 12 regions of the sky,

whereas the TOH map uses nine regions. For the ILC and LILC

maps the weights are constants within a region of the sky, whereas

for the TOH map the weights depend on multipole number � (the

minimization is done in spherical harmonic space instead of pixel

space). The regions are selected according to the level of foreground

contamination. To produce the final maps a Gaussian smoothing is

applied to soften the edges. We see that the TOH map on the one

hand and the ILC and LILC maps on the other hand use different

procedures. The ILC and LILC maps differ mainly in the detailed

implementation of the method. The drawback of the minimal vari-

ance method is that large CMB fluctuations tend to be cancelled by

large artificial foregrounds in order to obtain a small variance.

We will see that, despite the differences between the three maps,

the results of our analysis are very similar. This robustness argues

strongly in favour of the legitimacy of using these full-sky maps for

multipole vector analysis.

2.4 Kinetic quadrupole correction

By far the largest signal in the microwave background anisotropy

is the dipole, recently measured by WMAP (Bennett et al. 2003b)

to be (3.346 ± 0.017) mK in the direction (l = 263.◦85 ± 0.◦1, b =
48.◦25 ± 0.◦04) in Galactic coordinates. This is nearly two orders

of magnitude larger than the root-mean-square (rms) anisotropy in

the dipole-subtracted sky, and so thought not to be of cosmological

origin, but rather to be caused by the motion of the Solar system

with respect to the rest frame defined by the CMB. As shown by

Peebles & Wilkinson (1968), the dipole induced by a velocity v is
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Figure 1. The � = 2 multipole from the Tegmark et al. (2003) cleaned map, presented in Galactic coordinates, after correcting for the kinetic quadrupole.

The solid line is the ecliptic plane and the dashed line is the supergalactic plane. The directions of the equinoxes (EQX), dipole due to our motion through

the Universe, NEP and SEP, and NSGP and SSGP are shown. The multipole vectors are plotted as the solid red symbols for each map: ILC (circles), TOH

(diamonds), and LILC (squares). The open symbols of the same shape are for the normal vector for each map. The dotted line is the great circle connecting

the two multipole vectors for this map. The minimum and maximum temperature locations in this multipole are shown as the white stars. The direction that

maximizes the angular momentum dispersion of any of the maps coincides with the respective normal vector as discussed in the text.

T̄ (v/c) cos θ , where θ is measured from the direction of motion.

Given T̄ = (2.725 ± 0.002) K (Mather et al. 1999), one infers that

v � 370 km s−1.

The solar motion also implies the presence of a kinematically

induced Doppler quadrupole (DQ; Peebles & Wilkinson 1968;

Kamionkowski & Knox 2003). To second order in β ≡ v/c � 10−3,

the specific intensity of the CMB for an observer moving with re-

spect to the CMB rest frame includes the usual monopole term with a

blackbody spectrum [∝ x3/(ex − 1), where x = hν/(k BT )]; a dipo-

lar term ∝ cos θ , linear in β, with a dipole spectrum [∝ x4ex/(ex

− 1)2, the same as for primordial anisotropies]; and a quadrupolar

term ∝ 3 cos2θ − 1, quadratic in β, with a quadrupole spectrum

[∝x5ex (ex + 1)/(ex − 1)3]. Higher multipoles are induced only at

higher order in β and so can be neglected.

To first approximation the quadrupole spectrum differs very little

from the dipole spectrum across the frequency range probed by

WMAP. The DQ is itself a small contribution to the quadrupole.

It has a total band-power of only 3.6 μK2 compared to 123.4 μK2

from the cut-sky WMAP analysis (Hinshaw et al. 2003a), 195.1 μK2

extracted (de Oliveira-Costa et al. 2004) from the ILC map (Bennett

et al. 2003b), 201.6 μK2 from the TOH map (Tegmark et al. 2003) or

350.6 μK2 from the LILC map (Eriksen et al. 2004a). Therefore, it

is a good approximation to treat the DQ as having a dipole spectrum

plus a small spectral distortion which we will ignore. We can then

readily subtract the DQ from any microwave background map.

The kinetic quadrupole is a very small contribution to the total

theoretical power in the quadrupole, however, it gives rise to non-

negligible contributions to some of the a2m . This is due partially

to the low power in the observed quadrupole and partially to the

‘orthogonality’ of the correction (the correction is m-dependent and

the largest corrections are not to the largest a2m). This is a well-

known, well-understood physical correction to the quadrupole that

is often ignored. This correction must be applied when studying

the alignment of the quadrupole, leaving it out introduces a cor-

rectable systematic error. Though it has little effect on the power in

the quadrupole, it has a notable effect on the quadrupole orientation

as shown below. We again stress that it is the orientation of the cor-

rection that makes it important. A quadrupole correction of this size

pointing in a random direction would typically not lead to notable

alignment changes.

Figs 1, 2 and 3 show the Doppler-corrected quadrupole, the oc-

topole, and their sum, for the TOH map in Galactic coordinates in

the Mollweide projection. The corresponding multipoles from the

ILC and LILC maps are very similar.

3 M U LT I P O L E V E C TO R S

Multipole vectors provide an alternative representation of the com-

plete set of information represented by the full-sky map. They rep-

resent a radical reorganization of the information that nevertheless

retains the integrity of the individual multipoles. Moreover, the in-

formation is arranged in such a way as to be independent of the

choice of coordinate system. Therefore, the multipole vectors may

be a superior representation for probing the null hypothesis of statis-

tical isotropy, and for looking for signatures of specific effects that

might pick out special directions on the sky due to non-standard

inflationary physics, systematic artefacts in the map-making,
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Figure 2. The � = 3 multipole from the Tegmark et al. (2003) cleaned map, presented in Galactic coordinates. The solid line is the ecliptic plane and the

dashed line is the supergalactic plane. The directions of the equinoxes (EQX), dipole due to our motion through the Universe, NEP and SEP, and NSGP and

SSGP are shown. The multipole vectors are the solid magenta symbols for each map: ILC (circles), TOH (diamonds), and LILC (squares). The open symbols

of the same shape are for the normal vectors for each map. The dotted lines are the great circles connecting each pair of multipole vectors for this map. The

light-grey stars are particular sums of the multipole vectors which are very close to the temperature minima and maxima of the multipole. The solid black star

shows the direction of the vector that appears in the trace of the octopole, T3 (29), of the TOH map. The solid magenta star is the direction to the MAMD for

the octopole, again for the TOH map.

unexpected foregrounds, cosmic topology, deviations from General

Relativity, or other unknown effects.

3.1 Definition

In the multipole vector representation, f �(θ , φ) is written in terms

of a scalar, A(�) and � unit vectors, {v̂(�, j) | j = 1, . . . , �}:

f�(θ, φ) = A(�)

[
�∏

i=1

(
v̂(�,i) · ê

)− T�

]
. (9)

Here ê is the (radial) unit vector in the (θ , φ) direction. [Henceforth,

we will use ê and (θ , φ) interchangeably.] In Cartesian coordinates,

ê = (sin θ cos φ, sin θ sin φ, cos θ ). T� is the sum of all possible

traces of the first term; rendering the full expression traceless. In

this context, a trace means replacing a product of dipoles (v̂(�,i) ·
ê)(v̂(�, j) · ê), by (v̂(�,i) · v̂(�, j)). Equation (9) can also be written as

f�(ê) = A(�)
[
v̂(�,1) · · · v̂(�,�)

]i1···i�
TF

[ê · · · ê]TF
i1···i� , (10)

where [· · ·]TF denote the trace-free tensor product, and the sum over

repeated indices is assumed. These unit vectors v̂(�, j) are only defined

up to a sign (and are thus ‘headless vectors’), as a change in sign

of the vector can always be absorbed by the scalar A(�). We have

chosen the convention that multipole vectors point in the Northern

Galactic hemisphere, although when plotting them we often instead

show the southern counterpart for clarity.

Note that only A(�) depends on the total power C �. The multipole

vectors are independent of C � – if all the a�m of a given � are

multiplied by a common factor, then A� too will be multiplied by

that factor and the v̂(�,i) will remain unchanged. In particular, let

ã�m ≡ a�m/
√

C�; (11)

then, the multipole vectors, v̂(�,i), depend only on the ã�m and not on

C �. This is true independent of any assumptions about Gaussianity

and statistical isotropy. Note, however, that C � and A(�) do not con-

tain identical information; C � is the two-point correlation function

while A(�) contains the two-point correlation as well as a particular

combination of the higher-order moments. An equivalent definition

of the estimator (4) over the full sky is

C� ≡ 1

2� + 1

∫
d
[ f�(θ, φ)]2. (12)

In terms of the multipole vectors (9), we find

(2� + 1)C� = [A(�)
]2

∫ [∏
j

v̂(�, j) · ê − T�

]2

d
. (13)

Evaluating this for the monopole, dipole and quadrupole we obtain

C0 = 4π
[

A(0)
]2

, (14)

3C1 = 4π

3

[
A(1)
]2

, (15)

and

5C2 = 4π

15

[
A(2)
]2

[
1 + 1

3

(
v̂(2,1) · v̂(2,2)

)2

]
. (16)
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Figure 3. The � = 2 + 3 multipoles from the Tegmark et al. (2003) cleaned map, presented in Galactic coordinates. This is a combination of Figs 1 and

2 with only the multipole vectors for the TOH map shown for clarity. The solid line is the ecliptic plane and the dashed line is the supergalactic plane. The

directions of the equinoxes (EQX), dipole due to our motion through the Universe, NEP and SEP, and NSGP and SSGP are shown. The � = 2 multipole vectors

are plotted as the solid red diamond and their normal is the open red diamond. The � = 3 multipole vectors are the solid magenta diamonds and their three

normals are the open magenta diamonds. The dotted lines are the great circles connecting the multipole vectors for this map (one for the quadrupole vectors

and three for the octopole vectors). The minimum and maximum temperature locations of the � = 2 multipole are shown as the white stars. The white stars

are particular sums of the � = 3 multipole vectors which are very close to the temperature minima and maxima of the octopole. The solid black star shows the

direction of the vector that appears in the trace of the octopole, T3 (29). The solid magenta star is the direction to the MAMD for the octopole, again for the

TOH map.

Note the presence of the term v̂(2,1) · v̂(2,2) in the quadrupole ex-

pression. This implies that A(2) cannot be extracted solely from the

angular power spectrum, but requires additional information, such

as higher-order correlation functions.

A simple algorithm for constructing these vectors has been pro-

vided by Copi et al. (2004) which builds upon the standard spherical

harmonic decomposition. The algorithm relies on the observation

that a dipole defines a direction in space, that is, a vector, and, in

general, the �th multipole is a rank �, symmetric, traceless tensor.

This tensor can be written as the symmetric trace-free product of a

vector and a symmetric trace-free rank � − 1 tensor. This procedure

can be repeated recursively. It leads to sets of coupled quadratic

equations for the components of the vectors and the remaining ten-

sor which can be solved numerically. The details of this are given in

Copi et al. (2004). We have used the freely available implementation

of this algorithm1 for our work here.

Recently, the multipole vector representation has been studied and

used in various ways. The multipole vectors can be understood in the

context of harmonic polynomials (Katz & Weeks 2004; Lachieze-

Rey 2004), which has led to an alternative algorithm for determining

the components of the vectors as roots of a polynomial. Expressions

for N-point correlation functions of these vectors (for Gaussian ran-

dom a�m) have been derived analytically by Dennis (2005). Finally,

1 See http://www.phys.cwru.edu/projects/mpvectors/ for access to the code

and other information.

the application of these multipole vectors to the CMB is being ac-

tively pursued (see, e.g. (Copi et al. 2004; Schwarz et al. 2004;

Slosar & Seljak 2004; Weeks 2004; Bielewicz et al. 2005; Land &

Magueijo 2005d)).

The multipole decomposition includes all the available informa-

tion. Some representations related to the multipole vectors do not

fully encode this information as discussed below.

3.2 Maxwell multipole vectors

James Clerk Maxwell, in his study of the properties of the spheri-

cal harmonics, introduced his own vector representation (Maxwell

1891). In this representation, the �th multipole of a function is writ-

ten as

f�(θ, φ) =
[

A(�)
M

(
v̂(�,1) · ∇) · · · (v̂(�,�) · ∇) 1

r

]
r=1

, (17)

where the unit vectors v̂(�, j) are known as the Maxwell multipole

vectors. It is well known that this representation is unique (see Den-

nis 2004, and references therein). It can be shown that these vectors

are precisely the multipole vectors constructed by Copi et al. (2004).

To see this we can rewrite Maxwell’s representation using standard

Fourier integration techniques (see appendix A of Dennis 2004) as

f�(θ, φ) = A(�)
(
v(�,1) · ê

) · · · (v̂(�,�) · ê
)+ B(�), (18)

where A(�) = (−1)� [(2� − 1)!] A(�)
M and B(�) is an object with

maximum angular momentum �− 2 that ensures the traceless nature
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of f �. That is, B(�) = −A(�)T�. [Note that the Maxwell multipole

vector representation is manifestly symmetric in the v̂(�, j).] This

should be compared to the discussion in section III and appendix A

of Copi et al. (2004). Thus, the construction outlined above and given

in detail in Copi et al. (2004) is actually an algorithm for quickly

and easily converting a standard spherical harmonic decomposition

(2) into a Maxwell multipole vector decomposition (18).

3.3 Relation to ‘angular momentum dispersion’ axes

The peculiar alignment of the quadrupole and octopole was first

pointed out by de Oliveira-Costa et al. (2004). They identified n̂�

as the axis, which, when chosen as the fiducial z-axis of the coor-

dinate system, maximizes the ‘angular momentum dispersion’ of

each multipole,

(�L)2
� ≡

�∑
m=−�

m2|a�m |2. (19)

By varying the direction of the fiducial z-axis over the sky, and

recomputing for each such choice the a�m and (�L)2
� , they were

able to find the choice of z-axis that maximizes (�L)2
� . This angular

momentum axis distills from each multipole a limited amount of

information, reducing the 2� d.o.f. in the {v̂(�, j)} to just 2.

Interestingly, de Oliveira-Costa et al. (2004) found that n̂2 · n̂3 =
0.9838 in the TOH map. If the � = 2 modes and the � = 3 modes

are indeed statistically independent, then this degree of alignment

has only a 1.6 per cent chance of happening accidentally. (Arguably

this probability should be increased by a factor of 2, to 3.2 per cent,

since we would have been equally surprised if n̂2 had been nearly

orthogonal to n̂3.)

We can calculate n̂2 explicitly for the quadrupole in terms of the

multipole vectors. The quadrupole function is

Q(r ) = (v̂(2,1) · ê)(v̂(2,2) · ê) − 1

3
v̂(2,1) · v̂(2,2), (20)

where ê = r/r . We now apply to Q(r) the angular momentum

operator

L = −ir ê × ∇, (21)

finding

−iLQ = (v̂(2,1) × ê)(v̂(2,2) · ê) + (v̂(2,2) × ê)(v̂(2,1) · ê). (22)

We want to maximize

(�L)2
2 ≡

∫
sky

|n̂ · LQ|2 dê (23)

over all possible unit vectors to find n̂2. The quantity (n̂ · LQ) is

easily calculated:

in̂ · LQ = ê · [(v̂(2,1) × n̂)(v̂(2,2) · ê)

+ (v̂(2,2) × n̂)(v̂(2,1) · ê)
]
.

(24)

The integral in (23) is straightforward in any basis. For an axis

n̂ ≡ (sin χ cos ψ, sin χ sin ψ, cos χ ), (25)

in a coordinate system where v̂(2,1) is identified with the x-axis and

v̂(2,2) is taken to define the xy-plane with v̂(2,1) · v̂(2,2) ≡ cos ω,

(�L)2
2 = 4π

15

[
4 − sin2 χ

(
2 + sin2 ω + cos(2ω − 2ψ)

+ cos(2ψ))] . (26)

The partial derivative of (�L)2
2 with respect to χ vanishes at χ =

0, π/2 and π. We find that when χ = π/2 there are four minima

of (�L)2
2 for ψ = ω/2 + n π/2, n = 0, 1, 2, 3. The directions

χ = 0 and π are maxima. Since ψ is not defined when sin χ = 0,

these are zeroes of all directional derivatives. Thus, the ‘maximum

angular dispersion’ is obtained in the direction normal to the plane

that is defined by the two multipole vectors of the quadrupole, that

is, ±(v̂(2,1) × v̂(2,2))/|v̂(2,1) × v̂(2,2)|. The minima are defined by the

directions ±(v̂(2,1) ± v̂(2,2))/
√

2.

We had previously identified the ‘area vectors’

w(�;i, j) ≡ v̂(�,i) × v̂(�, j) (27)

and the corresponding normalized directions ŵ(�;i, j) as phenomeno-

logically interesting. Indeed, most of the interesting statistical results

of Copi et al. (2004) and Schwarz et al. (2004) relate to statistics of

the dot-products of area vectors (or their normalized versions) with

one another or with physical directions on the sky, rather than to the

statistics of the dot-products of the multipole vectors themselves.

We see that for � = 2, the maximum angular momentum dispersion

(MAMD) axis is parallel to the area vector, that is, n̂2 = ±ŵ(2;1,2).

This relation between the area vectors and the MAMD axis cannot

extend precisely to higher �. An octopole, for example, has three

multipole vectors {v̂(3,i) | i = 1, 2, 3} which define three distinct

planes with area vectors {w(3;i, j) |i , j = 1, 2, 3; i < j}. The octopole

function is

O(ê) = (v̂(3,1) · ê)(v̂(3,2) · ê)(v̂(3,3) · ê) − T3, (28)

where the trace term is

T3 = 1

5
ê · [(v̂(3,1) · v̂(3,2))v̂(3,3) + (v̂(3,2) · v̂(3,3))v̂(3,1)

+ (v̂(3,3) · v̂(3,1))v̂(3,2)
]
. (29)

Once again, the function (n̂ · LO) is easily calculated for some

arbitrary axis n̂

in̂ · LO = ê · {[(v̂(3,1) · ê)(v̂(3,2) · ê)v̂(3,3)

−1

5
(v̂(3,1) · v̂(3,2))v̂(3,3)

+ cyclic permutations
]× n̂

}
. (30)

The MAMD axis, n̂3, is obtained by integrating the square modulus

of this function over the full-sky dê, and maximizing with respect

to the choice of axis n̂. Unlike in the quadrupole case, we do not

find n̂3 to be a simple combination of the three octopole vectors

v̂(3,i). Rather, n̂3 is some combination of the three directions which

is difficult to determine analytically.

In the specific case where the three octopole vectors lie in a plane

(corresponding to a so-called ‘planar’ octopole), the cross-products

of any two are orthogonal to all three. For a planar octopole, the

MAMD axis and the area vectors of the three octopole planes are

all parallel. In the case of the observed microwave background, the

octopole is relatively planar, for example, for the TOH map:

|w(3;1,2) + w(3;2,3) + w(3;3,1)|
� 0.8

(|w(3;1,2)| + |w(3;2,3)| + |w(3;3,1)|) . (31)

Moreover, the three octopole area vectors surround the quadrupole

area vector (see Fig. 3), so that the MAMD axis – which is some

average of the area vectors – is even closer to the quadrupole axis. For

these reasons, the MAMD axis is a moderately good representation

of the octopole area vectors. This explains that the alignments of

the quadrupole and octopole seen by de Oliveira-Costa et al. (2004)

and by us (Schwarz et al. 2004) are indeed the same effect.
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3.4 Relation to minima/maxima directions

The directions towards the minima and maxima of each multipole

are simple to see and at first glance appear to be an equally useful

representation (see Gluck & Pisano 2005). This, however, is not the

case.

Consider again the quadrupole (20). The extrema of Q on the

sphere occur where the angular momentum is zero. That is, they are

the solutions of

0 = −iLQ(r )

= (v̂(2,1) × ê)(v̂(2,2) · ê) + (v̂(2,2) × ê)(v̂(2,1) · ê).
(32)

The solutions of these equations occur (by inspection) along the

directions

ê = v̂(2,±) ≡ v̂(2,1) ± v̂(2,2)

|v̂(2,1) ± v̂(2,2)| = v̂(2,1) ± v̂(2,2)√
2(1 ± v̂(2,1) · v̂(2,2))

. (33)

It is easily seen that v̂(2,+) · v̂(2,−) = 0. Thus, we see that for the

quadrupole the maxima and minima are orthogonal to each other

and lie in the same plane as the multipole vectors. The quadrupole

multipole vectors bracket the two hot spots – the maxima occur

half-way between the two multipole vectors.

The quadrupole multipole vectors v̂(2,1) and v̂(2,2) contain four

pieces of information and thus fully specify the shape of the

quadrupole [the fifth piece of information being the amplitude A(2)].

The same is not true of the v̂(2,±), the directions to the maxima and

minima. Since the minima and maxima are orthogonal, these vectors

contain only three pieces of information – for example, the direction

of the first maximum, and the orientation of the plane of the max-

ima and minima. The ratio of the amplitudes of the two maxima and

minima is unspecified. That is, we do not know the relative strengths

of the maxima and minima.

For higher multipoles the minima/maxima directions, unlike the

multipole vectors, persist in not containing the full information. The

minima and maxima directions will again lack information about the

relative amplitude of the extrema. There are also additional prob-

lems concerning the definition of the minima/maxima directions:

In the case of a pure Y �0 mode, there are degenerate rings of min-

ima/maxima, which do not allow to assign a unique direction. More-

over, the number of minima and maxima for a fixed value of � is

not unique. For a pure mode (spherical harmonic) the number of ex-

trema depends on � and m in general. To see that it is instructive to

remember that � corresponds to the total number of nodal lines and

m counts the number of meridians that are nodal lines. With this rule

in mind one can easily see that, for example, Y 32 has four maxima

and four minima, whereas Y 33 has three maxima and three minima.

For a general multipole there is no rule on how many minima and

maxima we should expect and thus the minimum/maximum direc-

tions are only of limited use. Conversely, multipole vectors always

contain 2� pieces of information, including information on the lo-

cation, number and relative amplitudes of the minima and maxima.

Therefore, while one might have at first imagined the min-

ima/maxima directions to be independent, they are actually strongly

correlated. This weakens the statistical power of tests of the distribu-

tion of these directions. For these reasons, the statistical properties

of the minima/maxima directions are not considered further in this

work.

3.5 Relation to Land–Magueijo vectors

Magueijo (1995) discussed an alternative approach to the �th mul-

tipole, which is well known to be a representation of a symmetric

trace-free tensor of rank �. Much as for the multipole vectors, in

this approach one recasts the �th multipole as a 3 × 3 × . . . × 3 (�-

dimensional) Cartesian tensor, Oi1···i� (with in = 1, 2, 3). One then

realizes that the information this Cartesian tensor encodes can be re-

cast as 2� − 2 scalars, the 2� − 2 independent invariant contractions

of the rank � trace-free symmetric tensor, and 3 d.o.f. associated with

an orthonormal frame. (The orientation of the z-axis of the frame

is 2 d.o.f. The orientation of the x-axis within the plane orthogonal

to the z-axis is the third. The y-axis is then fixed by orthonormality

and the convention of right-handedness.)

Land & Magueijo (2005b) discussed the two scalars and the frame

associated with the microwave background quadrupole. The two

scalars are the power spectrum and the bispectrum. The vectors of

the frame are the eigenvectors of the 3 × 3 Cartesian quadrupole

tensor. This has the advantage that, at least for the quadrupole, one

has clearly separated the issue of non-Gaussianity (the bispectrum)

from that of statistical anisotropy (the frame). Land and Magueijo

claimed that the frame they found was independent of the multipole

vectors described in Schwarz et al. (2004). However, Schwarz &

Starkman (private communication 2004 as referenced in Land &

Magueijo 2005d) showed that, in fact, two of the axes of the frame

are parallel to the sum and difference of the quadrupole multipole

vectors v̂(2,1) ± v̂(2,2). The third is, of course, parallel to their cross-

product.

Explicitly, for a quadrupole with multipole vectors v̂(2,1) and v̂(2,2),

the Cartesian tensor representation of the quadrupole (20) is

Qi j = v̂(2,1)
i v̂(2,2)

j + v̂(2,1)
j v̂(2,2)

i

2
− 1

3
v̂(2,1) · v̂(2,2)δi j . (34)

This 3 × 3 matrix can be diagonalized. The three eigenvectors mak-

ing up the Land and Magueijo orthonormal frame are

v(LM)
1 ‖ v̂(2,1) × v̂(2,2),

v(LM)
2 ‖ v̂(2,1) + v̂(2,2),

and

v(LM)
3 ‖ v̂(2,1) − v̂(2,2). (35)

It is noteworthy that v(LM)
2 and v(LM)

3 are in the directions of the

quadrupole maxima (or minima), while v(LM)
1 is the quadrupole

area vector w(2;1,2). [The claim by Land & Magueijo (2005b) that

these vectors did not coincide with the quadrupole multipole vec-

tors or area vector of Schwarz et al. (2004) arose because Schwarz

et al. (2004) corrected for the kinetic quadrupole as discussed in

Section 2.4].

A difficulty that arises with the Land and Magueijo approach

is how to go beyond the quadrupole. Land & Magueijo (2005d)

note that the 2� − 2 independent scalars associated with the �th

multipole are just the 2� − 2 linearly independent combinations of

dot-products of the � multipole vectors. The orthonormal frame is

then constructed out of the multipole vectors, as they were for the

quadrupole. However, there are � multipole vectors and so �(� − 1)

different ways to construct the frame (not to mention a much larger

number of ways to choose the set of independent scalars). To define

a unique orthonormal frame Land & Magueijo (2005e) chose the

two vectors that have the two largest values of

Ki =
∑

j �=i

(v̂i · v̂ j )
2. (36)

This is not a unique choice and it is unclear how to fairly choose

such a frame. When they claim that it is this orthonormal frame that

one should use to test statistical isotropy, we must ask which of the

many possible allowed choices of frame is the correct one. As Land

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 367, 79–102



Large-angle anomalies of the microwave sky 87

& Magueijo (2005e) point out the choice of frame is crucial and

their scheme is increasingly sensitive to small fluctuations in the

positions of the multipole vectors as � grows. This leads to discon-

tinuous noise in the Euler angles of the orthogonal frame making it

difficult to interpret the results. As Land & Magueijo (2005e) also

point out different orderings of the vectors will be sensitive to dif-

ferent features in the data. Without a unique and well-understood

prescription this approach does not lead to further understanding.

The multipole vectors, on the other hand are unique. It is true, as

Copi et al. (2004) and Schwarz et al. (2004) point out, and as reiter-

ated by Land & Magueijo (2005d), that they contain information on

both statistical isotropy and non-Gaussianity. Optimal separation of

these two properties remains an open problem.

3.6 Polydipoles

The directions of the multipole vectors are somewhat difficult to

interpret physically. We would argue that in large measure this is

due to the removal of the traces done in constructing the multipole

vector expansion (9). An alternative approach would be to write the

general function f (θ , φ) in a slightly different way:

f (θ, φ) =
∞∑

�=0

P�(θ, φ) ≡
∞∑

�=0

A(�)
P

�∏
i=1

( p̂(�,i) · ê). (37)

The P�, which we term polydipoles, are similar to the multipoles

f � in equation (9), except for our failure to remove the traces in

their construction. But it is this failure which makes them easily

visualized: P�(θ, φ) is the simple product of � dipoles. Therefore,

there are � great circles on which P�(θ, φ) vanishes – the great

circles are normal to each of the polydipole vectors p̂(�,i). These are

clearly related to the � nodal curves of Y �m .

Unfortunately, the polydipole expansion (37) is unstable in the

following important sense. Suppose that in expanding f (θ , φ) we at

first neglect all contributions with angular momentum greater than

L and calculate f � and P� for � = 1, . . . , L. If we then increase L,

the values of f � do not change (since the spherical harmonics are

an orthogonal basis) but the P� generally do. Thus, the polydipole

expansion is well defined only if the angular power spectrum falls

sufficiently quickly at large �. The precise condition for convergence

of the polydipole expansion has not been determined.

The ‘leading’ term in a multipole f � [by which we mean the

part excluding T� in (9)] is a polydipole, which we may term the

associated polydipole of that multipole. (Note that the multipole

vectors are not however the vectors one would get in the polydipole

expansion, so the �th polydipole in a polydipole expansion is not the

associated polydipole of the �th multipole in a multipole expansion.)

To the extent that it is easier to visualize the polydipole, it is of some

limited interest.

4 T H E S T R A N G E P RO P E RT I E S O F T H E

QUA D RU P O L E A N D T H E O C TO P O L E

As we have already remarked, the microwave background

anisotropies on large angular scales seem to have several unusual

properties. Most widely known is that the power in the quadrupole,

C2, is substantially less than is expected from the models that fit the

rest of the angular power spectrum (and other) data. The power in the

octopole is also less than expected, though within cosmic variance

error bars. By � = 4 the power in the CMB is entirely consistent

with theoretical expectations. This was first found by COBE (Ben-

nett et al. 1996) and has now been confirmed by WMAP. The precise

statistical significance of this deviation is a matter of some dispute

(Bielewicz Górski & Banday 2004; Efstathiou 2004; O’Dwyer et al.

2004; Slosar, Seljak & Makarov 2004).

It has also been known since COBE, but had largely been forgotten

until confirmed by WMAP (Spergel et al. 2003), that the two-point

angular correlation function of the microwave background

C(θ ) = 〈T (ê1)T (ê2)〉 (38)

(where ê1 · ê2 = cos θ ) is nearly zero at angular scales between

about 60◦ and 170◦. Spergel et al. (2003) argued that, given the best-

fitting Lambda cold dark matter (�CDM) model, this is unlikely at

the 0.15 per cent level. What has been under-appreciated, is that this

vanishing of C(θ ) is not merely due to the lack of quadrupole power,

but also due to the lack of octopole power, and may be even due to

the ratio of C 2 : C 3 : C 4 (Luminet et al. 2003).

These anomalies relate exclusively to the power in the various

multipoles. More recently, attention has turned to the ‘shapes’,

‘phase relationships’ or ‘orientations’ of the multipoles, that is, to

the information contained in the multipole vectors. As remarked

above, several groups of authors have noted particular anomalies.

In this section, we will first describe them, mostly in the language

of multipole vectors, before proceeding to try to assign them some

statistical significance in the next section.

We believe that the observed lack of power at large angles justi-

fies singling out the two most responsible multipoles for particular

scrutiny. To do so is no more dubious than the practice of firefight-

ers to respond to the house where the fire alarm is ringing rather

than to all the houses in the neighbourhood. That these lowest mul-

tipoles represent a physically interesting scale – the recent scale of

the horizon, especially, the scale of the horizon at approximately

dark energy domination – makes it doubly justified to focus our

attention, at least initially, on them.

Table 1 contains the multipole vectors and area vectors for the

quadrupole and octopole that will be discussed below.

4.1 The queerness of the quadrupole

Fig. 1 shows the � = 2 multipole from the Tegmark et al. (2003)

cleaned map after subtraction of the kinetic quadrupole. The solid

line is the ecliptic plane and the dashed line is the supergalactic

plane. The directions of the equinoxes (EQX), dipole due to our

motion through the Universe, north and south ecliptic poles (NEP

and SEP) and north and south supergalactic poles (NSGP and SSGP)

Table 1. Multipole vectors, v̂(�,i), and oriented area vectors, w(�;i, j), for the

quadrupole and octopole in Galactic coordinates (l, b). All vectors are given

for the TOH-cleaned map after correcting for the kinetic quadrupole and the

coordinates are consistent with how they are plotted in Figs 1–3 and 6. The

magnitudes for the oriented area vectors are also given.

Vector l b Magnitude

(◦) (◦)

v̂(2,1) 118.9 25.1 –

v̂(2,2) 11.2 16.6 –

w(2;1,2) 74.3 −56.6 0.990

v̂(3,1) 86.9 39.3 –

v̂(3,2) 22.6 9.2 –

v̂(3,3) −44.9 8.2 –

w(3;1,2) 101.6 −49.8 0.902

w(3;2,3) −6.3 −79.5 0.918

w(3;3,1) 38.4 −38.9 0.907
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are shown. The multipole vectors are plotted as the solid red symbols

for each map (see figure caption), while the open symbols of the

same shapes are for the normal vector for each map. The dotted line

is the great circle connecting the two multipole vectors for this map.

The minimum and maximum locations of the temperature in this

multipole are shown as the white stars. The following observations

can be made about the quadrupole.

(i) The great circle defined by the quadrupole multipole vec-

tors v̂(2,1) and v̂(2,2) passes through the NEP and SEP. This is es-

pecially true for the TOH and LILC maps, with some slight de-

viation for the ILC map. We can rephrase this to say that the

(normalized) quadrupole area vector ŵ(2;1,2) lies on the ecliptic

plane.

(ii) The axis of this great circle [i.e., ŵ(2;1,2)] is aligned with both

the dipole and the equinoxes.

4.2 The oddness of the octopole

Fig. 2 shows the � = 3 multipole from the Tegmark et al. (2003)

cleaned map. Many of the features are the same as for the quadrupole

map (see Fig. 1). Note that there are now three multipole vectors

(closed symbols) and three normal vectors (open symbols) plot-

ted. Also there are three dotted lines showing the great circles con-

necting each pair of multipole vectors for this map. Several per-

plexing observations can also be made about the properties of the

octopole.

(i) The octopole has three multipole vectors: v̂(3,1), v̂(3,2) and v̂(3,3).

One of these, v̂(3,1), lies quite near the ecliptic poles. Therefore, the

two great circles defined by the pairs (v̂(3,1), v̂(3,2)) and (v̂(3,1), v̂(3,3))

each nearly passes through the ecliptic poles. But in fact, one of

these great circles passes much closer to the poles than the position

of v̂(3,1). The associated area vectors, w(3;1,2) and w(3;3,1), therefore

lie on (or nearly on) the ecliptic.

(ii) The third pair of multipole vectors, (v̂(3,2), v̂(3,3)) defines a

great circle that includes the supergalactic poles. This pair also lies

within 9◦ of the Galactic plane. The associated area vector w(3;2,3),

therefore lies on the supergalactic plane and only 10.◦5 from the

Galactic poles.

(iii) The octopole is notably planar, but not overwhelmingly so.

Namely, the area vectors of the octopole cluster only somewhat

compared to expectations.

(iv) The three maxima and three minima are very nearly

at ±v̂(3,1) ± v̂(3,2) ± v̂(3,3), even though these are not generi-

cally where the angular momentum is zero. (Note that there

are eight such choices but only six are either minima or max-

ima direction.) This contrasts with the quadrupole, where the ex-

trema can be shown analytically to be at ±v̂(2,1) ± v̂(2,2) (see

Section 3.4).

(v) The vector from the octopole trace, T3, (see equation 29) lies

on the ecliptic plane. The importance of this vector is unclear. Note

that T3 is proportional to the difference between the octopole and

the polydipole, P3.

4.3 The remarkable relation of the quadrupole

and the octopole

Fig. 3 shows the sum of � = 2 and 3 in the TOH-cleaned map, after

kinetic quadrupole subtraction. We can see that, beyond the separate

oddities of � = 2 and 3, there are additional unexpected relationships

between the quadrupole and octopole.

(i) The quadrupole normal vector ŵ(2;1,2) (open red symbols) –

or equivalently the quadrupole MAMD axis n̂2 – is aligned with

the octopole MAMD axis n̂3 (magenta star). It is also aligned with

the three octopole area vectors (open magenta symbols), especially

with one of them.

(ii) The ecliptic carefully traces a zero of the combined map,

doing so almost perfectly over the entire hemisphere centred on

the Galactic Centre, and even relatively well over the antipodal

hemisphere.

(iii) Two of the extrema south of the ecliptic are clearly stronger

than any north of the ecliptic. The weakest southern extremum is

essentially equal in power to the strongest northern extremum. (It is

slightly stronger in the LILC map, slightly weaker in the TOH and

ILC maps.)

5 S TAT I S T I C S

We now revisit the statistics used to quantify the alignment of the var-

ious vectors with each other and with the Solar system. In Schwarz

et al. (2004), we considered the dot-products, Ai, of the three oc-

topole area vectors with the quadrupole area vector, and the mutual

dot-products, Di, of the three octopole normal vectors (area vectors

normalized to unit length) with the quadrupole normal vector. We

found that both the Ai and Di are unusually large. Note that we can

take as a convention that Ai � 0 since each vector is ambiguous in

sign. The various dot-products are shown in Table 2. As we empha-

sized in Schwarz et al. (2004), all of the aforementioned alignments

are statistically significant at 99.8 per cent CL or higher.

To compute all probabilities we compare statistics applied to

WMAP maps to that applied to Monte Carlo (MC) simulations. Un-

less otherwise noted, MC simulations are comprised of 100 000

realizations of Gaussian random, statistically isotropic maps with

WMAP’s (inhomogeneous) pixel noise.

5.1 Requirements for robust statistics

In previous work (Schwarz et al. 2004), we used a particular set of

statistics, for example, for a set of vectors that have dot-products

Table 2. Values of various vector dot-products for the TOH-cleaned map,

corrected for the kinetic quadrupole. We show the values of the dot-products

of the three octopole area vectors with the quadrupole area vector (Ai, i
= 1, 2, 3); the dot-products of the three octopole normal vectors with the

quadrupole normal vector (Di, i = 1, 2, 3; the normals are the unit area

vectors); and the dot-products of the four quadrupole and octopole area and

normal vectors with the NEP, the NGP, the NSGP, the dipole and the equinox.

Value of the dot-product

Test w(2;1,2) w(3;1,2) w(3;1,3) w(3;2,3)

Ai – 0.851 0.783 0.762

w · NEP 0.027 0.161 0.041 0.481

w · NGP 0.827 0.688 0.570 0.903

w · NSGP 0.392 0.262 0.630 0.0011

w · dipole 0.974 0.883 0.755 0.674

w · equinox 0.968 0.886 0.681 0.766

Di – 0.953 0.872 0.838

ŵ · NEP 0.027 0.179 0.045 0.523

ŵ · NGP 0.835 0.763 0.629 0.983

ŵ · NSGP 0.396 0.291 0.694 0.0012

ŵ · dipole 0.984 0.979 0.832 0.733

ŵ · equinox 0.978 0.982 0.751 0.834
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{Ai | i = 1, . . . , n} (with one another, or with a particular physical

direction on the sky) with ‘unusually’ high values. We asked what is

the probability that a random MC map has the highest dot-product

higher than A1, the second highest one higher than A2, the third

highest one higher than A3, and so on down to the nth such dot-

product. For several cases that number was, as reported, very small.

For example, for the dot-products between the quadrupole area vec-

tor w(2;1,2), and each of the three octopole area vectors {w(3;1,2),

w(3;2,3), w(3;3,1)}, only 21 out of 100 000 MC maps (for the TOH

DQ-corrected map) satisfied the criterion, that is, only 21 had A1

larger than the TOH value of A1, A2 larger than the TOH value of

A2 and A3 larger than the TOH value of A3.

One can ask if this statistic preferentially returns a small probabil-

ity even if there is really none to be found. This is clearly not the case

– the vector dot-products could have been either large, small or ‘av-

erage’; we noted they were large and found an easy-to-understand

statistic that quantified the effect. Weeks (private communication),

however, has pointed out that the above-described statistics for the

Ai do not define an ordering relation on the set of possible Ai; they

therefore implicitly incorporate some a posteriori knowledge. One

would therefore like to confirm this result with different, indepen-

dent statistics.

5.2 S and T statistics – definitions

To quantify the various alignments we found, it is desirable to choose

the statistics in such a way that the a posteriori knowledge of the

particular nature of the alignments is not used to find unjustly small

probabilities. With that in mind we define and discuss two statistics,

S and T , which do define ordering relations. The first of these was

briefly mentioned and used in Schwarz et al. (2004) as suggested

by Weeks.

Two natural choices of statistics which define ordering relations

on the three dot-products Ai, each lying in the interval [0, 1], are:

S ≡ 1

3
(A1 + A2 + A3) (39)

and

T ≡ 1 − 1

3

[
(1 − A1)2 + (1 − A2)2 + (1 − A3)2

]
. (40)

Both S and T can be viewed as the suitably defined ‘distance’ to the

vertex (A1, A2, A3) = (0, 0, 0). A third obvious choice, (A2
1 + A2

2 +
A2

3)/3, is just 2S − T . Of course many other choices exist, involving

higher powers of Ai.

One could also ask about the probability that, for example, two

out of three normals are aligned, and so we generalize the definitions

to

S(n,m) ≡ 1

m

m∑
i=1

Ai (41)

T (n,m) ≡ 1 − 1

m

m∑
i=1

(1 − Ai )
2, (42)

where the Ai are ordered from largest to smallest. Note that, if the

Ai are large (near 1), both S(n,m) and T (n,m) will be large (near 1).

One could further generalize these statistics to arbitrary weighting

by different alignments; for example,

S(n;α) ≡
n∑

i=1

αi Ai

/
n∑

i=1

αi (43)

with 0 � α i � 1. Hereafter, we consider only the values α i = 0 or

1. Finally, there is nothing special about the area vector products

Ai and we apply the statistics S(n,m) to dot-products of the vector

normals, Di, and also to dot-products of the normals with specific

directions or planes in the sky [ecliptic plane, north Galactic pole

(NGP), supergalactic plane, dipole and equinox] that were discussed

in Schwarz et al. (2004). When comparing to planes, we order the

dot-products (taken with the plane’s axis), from smallest to largest.

5.3 S and T statistics – quadrupole and octopole

Fig. 4 shows histograms of S(n,m) statistics (left-hand column) and

T (n,m) statistics (right-hand column) for Gaussian random, statis-

tically isotropic MC maps, as well as values for the TOH DQ-

corrected map. The statistics shown are S(3,m) and T (3,m) for the

intrinsic alignment of the octopole area vectors with the quadrupole

area vector, and S(4,m) and T (4,m) for the alignment of normals

with the ecliptic plane, Galactic poles, and supergalactic plane. The

dipole and equinox alignments are similar to the ecliptic plane and

are not shown.

Note several interesting features in Fig. 4. First, the probabili-

ties for the algebraically related values of S(n,1) and T (n,1) are by

definition identical, since they measure the extremeness of a single

parameter. Secondly, evidence for alignment of the quadrupole and

octopole and for alignment of multipoles with the ecliptic plane

(and similarly with the dipole and equinoxes) is strongest when all

dot-products are considered – that is, when m = n. This gives us fur-

ther confidence that these probabilities are generally not dominated

by one or two unusual alignments, but rather when alignments of

all four normals, either mutual or with the specified direction, are

considered.

We note that the alignment of normals with either the supergalac-

tic plane or the Galactic poles is dominated by a single normal,

ŵ(3;2,3). In the case of the supergalactic plane, this normal is only

0.◦07 away from the plane (in the TOH map), while the other three

are not particularly close to the plane at all; see Table 2, Fig. 1 and

Schwarz et al. (2004). Therefore, S(4,1) < S(4,m) for m � 2. Although

this normal is still within approximately 1.◦5 in the ILC and LILC

maps, this is still sufficient to raise the probability of S(4,1) to approx-

imately 10 per cent. The fact that only the S(4,1) statistic and only the

TOH map show small probabilities suggests that the supergalactic

correlation is a statistical fluctuation.

The same normal ŵ(3;2,3) is approximately 10◦ from the Galactic

pole. This is largely responsible for the measured correlation of the

quadrupole and octopole with the Galactic pole, although it is true

that S(4,4) < S(4,1) for this case. We discuss this further in Section 5.4.

In the absence of any model, S(n,n) and T (n,n) statistics seem the

fairest choice, and the one we adopt. These statistics treat planes and

directions identically (i.e. the ordering of the relevant dot-products

does not matter). Table 3 shows the probabilities for the seven dif-

ferent tests applied on the TOH, LILC and ILC maps using the

S(4,4) statistic. We show the results based on both DQ-corrected and

DQ-uncorrected maps.

Finally, there has been some confusion regarding constraints from

the application of the S statistic to the normalized, Di, and unnor-

malized, Ai, area vectors. It has been claimed that the S statistic

applied to the area vectors Ai is both not a measure of alignment

between the octopole and quadrupole and not a very robust statis-

tic. It was argued that one should only use the Di. The heuristic

argument is that the S statistic applied to the Ai is not actually a

measure of alignment since the Ai incorporate information about

the lengths of the area vectors, not just their directions (see, e.g.
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Figure 4. Histograms of S(n,m) statistics (left-hand column) and T (n,m) statistics (right-hand column) for Gaussian random, statistically isotropic MC maps

with m = 1 . . . n of the most-aligned area vectors considered separately in each panel. First row panels show the n = 3 mutual dot-products of quadrupole and

octopole area vectors Ai, second row shows dot-products of the n = 4 normals with the ecliptic plane, third row shows dot-products of the n = 4 normals with

the NGP while the fourth row shows dot-products of the n = 4 normals with the supergalactic plane. Specific values for the WMAP (TOH DQ-corrected map),

for each m, are shown with vertical lines. The numbers show the percentage of MC maps that have a more extreme value (i.e. larger mutual dot-products Ai,

larger products with the NGP, or smaller dot-products with the NEP and NSGP). In other words, the numbers show the extremeness of each vertical line’s value

in the corresponding histogram. Note that the statistical significance is strongest when all vectors are considered (i.e. when m = n), except for the supergalactic

plane where a single octopole normal is only 0.◦07 away from this plane while the other three are not particularly unusual.

Weeks 2004). However, what this means is that the S statistic ap-

plied to the Ai weights the contribution of each plane according to

how well the two associated multipole vectors define that plane –

the closer they are to orthogonal, the more well defined the plane is,

and the more heavily the plane is weighted; the more nearly parallel

they are, the less well defined the plane is and the smaller its weight-

ing in the statistic. This weighting thus seems entirely intuitive and

appropriate.
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Table 3. Table of probabilities (in percent) for the seven different tests using the TOH, LILC and ILC maps. We show the results based on both DQ-corrected and

uncorrected maps. The statistics S(n,n), computed for each microwave background map and compared to 100 000 realizations of Gaussian random, statistically

isotropic maps with WMAP’s pixel noise, have been used to compute all probabilities. Except for the test Di, all tests are based on the dot-products of the area

vectors, w, of the quadrupole and octopole.

Test TOH DQ-corrected LILC DQ-corrected ILC DQ-corrected TOH-uncorrected LILC-uncorrected ILC-uncorrected

Ai 0.117 0.602 0.289 0.582 2.622 0.713

Di 1.246 1.309 2.240 1.262 1.309 2.567

Ecliptic plane 1.425 1.480 2.006 1.228 1.735 2.724

NGP 0.734 0.940 0.508 0.909 1.265 0.497

Supergalactic plane 14.4 13.4 8.9 11.6 10.2 6.5

Dipole 0.045 0.214 0.110 0.093 0.431 0.207

Equinox 0.031 0.167 0.055 0.064 0.315 0.080

The confusion noted above has arisen from inconsistently apply-

ing the test to maps, some with the kinetic quadrupole correction

applied and others without it. The specific concern about the ro-

bustness of this statistical test was that the S statistic applied to the

Ai of the LILC map was apparently much less unlikely than the S
statistic applied to the Ai of the TOH map (Weeks 2004). However,

this result compared the Doppler-corrected TOH map to the uncor-

rected LILC map. The former has probability around 0.1 per cent,

whereas the latter has probability 2.6 per cent. When we Doppler-

correct the LILC map (as one should), we find that the probability

falls to around 0.6 per cent, comparable to that of the TOH map (see

Table 3). Also the Doppler-corrected ILC map yields a similar 0.2

per cent probability. Far from challenging the robustness of the S
statistic for the area vectors, the probabilities derived from different

maps support it.

5.4 The evidence for ecliptic (and other) alignment

The values in Table 3 show alignment of the area vectors of the

quadrupole and octopole with each other and with some specific

physical directions. Also shown in Table 3 is the statistical evidence

for a correlation with the dipole and equinox direction (at larger 99.7

per cent CL in all three maps), with the NGP (at larger 99 per cent

CL) and the ecliptic plane (at larger 98 per cent CL). As discussed

in Section 5.3, our use of the S(4,4) statistic [instead of the S(4,1)

statistic] shows that the correlation with the supergalactic plane is

not significant.

Previously, we have claimed that there is evidence for ecliptic

alignment, but not for Galactic alignment. Yet Table 3 shows a

slightly higher significance for the Galactic than the ecliptic align-

ment. A suggestion has also been made (Bielewicz et al. 2005)

that the only significant correlation is between the quadrupole and

octopole area vectors themselves. We want to know whether an ex-

planation for the observed alignments should be sought in cosmol-

ogy, in Galactic foregrounds, in Solar system astrophysics, or in the

sytematics of the data analysis. In this section, we show that, having

taken the alignment of the quadrupole and octopole as given, there

is a >98 per cent CL further alignment with the ecliptic plane (and

we argue that this alignment is in fact >99.9 per cent CL unlikely),

but the additional alignment with the Galaxy is not significant. Our

result tells us what level of chance occurrence you would have to

accept if you choose to explain the alignments cosmologically, or

by Galacitic contamination. Conversely, it measures the extent to

which an explanation in terms of a Solar system foreground or a

systematic error is required.

To begin we take the correlations in the quadrupole and octopole

(specifically their area vectors) to be fixed as measured. We then
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Figure 5. Histogram of the S(4,4) statistics applied to the TOH map

quadrupole and octopole area vectors and a fixed direction or plane on the

sky, where the area vectors have been rotated together in a random direc-

tion 105 times. Vertical lines show the S statistics of the actual area vectors

applied to the ecliptic plane, NGP, supergalactic plane, dipole and equinox

directions (Table 4 shows the actual product percentile ranks among the ran-

dom rotations for all three full-sky maps). This figure and Table 4 show that,

even given the relative location of the quadrupole–octopole area vectors (i.e.

their mutual alignment), the ecliptic plane, dipole and equinox alignments

are unlikely at the �95 per cent CL while the NGP and supergalactic plane

alignments are not.

compute 100 000 rotations of the TOH quadrupole and octopole on

the sky and compute the S(4,4) statistic for each direction in each

of these rotated microwave background skies (see Bielewicz et al.

2005 for a similar approach). The results are shown in Fig. 5. The

histogram is the distribution of the S(4,4) statistic we get from these

TOH-rotated skies and the dashed vertical lines are the values of

S(4,4) statistic for each of the ecliptic plane, NGP, supergalactic plane,

dipole and equinox axes. In Table 4, we list the percentiles of the

values of S(4,4) statistic for these five physical directions for all three

of the TOH, the ILC and the LILC maps. (The distributions for the

ILC and LILC maps are quite similar to the TOH distribution.)

The results are striking. The percentile for the ecliptic plane is

between 0.2 per cent (LILC) and 1.7 per cent (ILC). The percentile

for the Galactic pole is between 87 and 90 per cent, so that the two-

sided probability is only between 74 and 80 per cent. (We justify

below why a two-sided probability is not appropriate for the ecliptic

plane alignment.) This shows that, given the observed shapes and

alignment of the quadrupole and octopole, the evidence from the

area vectors for additional correlation with the ecliptic is at least
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Table 4. Percentile ranks of the quadrupole–octopole area vector dot-products with specific direc-

tions, among the 105 such products where the area vectors have been rotated together in a random

direction. We show dot-products for the TOH, LILC and ILC area vectors, and the NEP, NGP,

NSGP, dipole and equinox directions. This table shows that, even given the relative location of

the quadrupole–octopole area vectors (i.e. their mutual alignment), the ecliptic plane, dipole and

equinox alignments are unlikely at the �95 per cent CL while the NGP and supergalactic ones are

not.

Test TOH DQ-corrected LILC DQ-corrected ILC DQ-corrected

Ecliptic plane 1.0 0.2 1.7

NGP 87 88 90

Supergalactic plane 34 33 25

Dipole 95.6 93.8 94.5

Equinox 96.1 94.4 96.4

10 times stronger than for additional correlation with the Galaxy.

There is also mild evidence for additional correlation with the dipole

or equinox at approximately the 95 per cent CL (approximately the

90 per cent CL when we take two-sided probabilities).

Qualitatively, we can understand from inspection of Fig. 3 why

the quadrupole and octopole normals are so much better correlated

with the ecliptic than with the Galactic pole. These four normals

essentially surround the ecliptic, therefore it is relatively hard to be

more correlated; similar is true, though to a lesser extent for the

dipole and equinox directions. On the other hand, just one of the

normals comes somewhat close to the Galactic pole, while the other

three are further away. The situation for the dipole and equinox is

intermediate to these two.

It is also very important to note that the quadrupole area vector
does not contain all the information about the quadrupole. That

means the information that a zero of the sum of quadrupole and

octopole traces the ecliptic for about one-third of the sky is not

contained in our S(4,4) statistics. Moreover, the S(4,4) statistic does
not make use of all the information contained in the octopole area
(normal) vectors. To see this consider a somewhat idealized sky

which is dominated by Y 33 in some frame. (This is nearly true for

the � = 2 + 3 sky.) In this case, all the � = 3 multipole vectors

lie approximately in a single plane, and the three normal vectors

are closely aligned, and define a small circle. Any rotation around

the axis defined by the centre of that small circle will give rise to

the same results in our statistical tests, because this rotation merely

leads to a rotation of the Y 33 minima and maxima within the octopole

plane. The three minima and three maxima are separated by three

nodal lines, which are great circles. For one of those great circles

to be the ecliptic, the axis of rotation (the direction defined by the

three normal vectors) would have to lie on the ecliptic. This is what

we have nearly found to be the case in the data.

However, placing the normal vectors on the ecliptic plane does

not itself guarantee that the ecliptic plane is one of the null-contours

between extrema. The freedom to rotate all the multipole vectors in

their plane remains. With 60◦ between extrema, the chance of the

ecliptic plane being a null-contour within the observed tolerance

of about 3.◦5 is about 6 per cent. Since this rotational freedom is

entirely independent of the alignment of the area vectors, we can

multiply the probability of the area-vector alignment by the prob-

ability of the rotational alignment to obtain at most 0.1 per cent

(ILC), and as little as 0.01 per cent (LILC). (It is not appropriate

to use two-sided probabilities, because if the normal vectors had

been aligned with the ecliptic poles rather than the ecliptic plane,

then the ecliptic plane could not have been a null-contour between

extrema.) The ecliptic plane only traces the null-contour over one-

third of the sky due to the fact that the sky is not a pure Y 33 mode.

However, the ecliptic plane also does not pass between just any two

extrema but instead splits the weaker extrema in the north from the

stronger extrema in the south. Thus, these two effects approximately

cancel each other leaving us with the probabilities estimated above.

Though this is an estimate and a more detailed statistical analysis is

warranted, the probability of the quadrupole and octopole being this

aligned with the Solar system is unlikely at greater than 99.9 per cent

CL.

We note that it has been suggested that one should reduce the

significance of this discovery by some large number of possible

‘physical great circles’ with which we could have noted a correla-

tion – that our focus on the ecliptic is purely (and by implication

fatally) a posteriori (Slosar & Seljak 2004; Bielewicz et al. 2005).

To the contrary, we would argue that given the experiment there are

precisely two great circles and their axes with which one must look

for correlations – the ecliptic and the Galactic equator. The former

because WMAP orbits the sun deep within the Solar system, and

correlations with the ecliptic could be a sign of either systematic

errors or a local foreground; the latter because the Galaxy is an im-

portant foreground source, and correlations to the Galactic equator

would be a sign of residual Galaxy contamination (cf. Section 6).

Similarly, the Doppler dipole is the dominant foreground, and its

modulation is a callibration source, motivating us to consider corre-

lations with the dipole direction. The case for checking correlations

with the equinoxes and with the supergalactic plane is less clear.

Post facto justification can certainly be found for checking each –

the equinoxes could conceivably enter through the mathematical

description of the orbital mechanics of the satellite; the supergalac-

tic plane represents a possible sub-cosmological foreground (and

was suggested to us by I. Tkachev for this reason). However, we

include them in our tabulations because we checked them, and to

exclude them would increase the apparent significance of the cor-

relations which we did find. (Conversely, we did not check a long

list of other directions and then display only the ones that showed

correlations.)

5.5 Single multipole alignment test for � � 50

So far we have devoted attention to alignments of the area vectors

defined by the quadrupole and octopole. We would now like to in-

vestigate alignment in higher multipoles. To simplify the analysis,

we consider a single multipole � at a time. We then ask whether the

multipole in question is unusually planar. Note, however, that this

test is by no means exhaustive in finding unusual correlations – for

example, we are not considering pairs of multipoles, as we did for

the quadrupole and octopole. In fact, the octopole, when considered

alone, is not unusually planar as first shown by Tegmark et al. (2003)
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and further illustrated using our tests below. Nevertheless, consid-

ering the more complicated tests applied to higher multipoles is not

efficient at this time without a specific suspected theory or model in

mind. Moreover, we are curious to investigate whether the ‘bites’

observed on the angular power spectrum at a handful of multipoles

(Hinshaw et al. 2003a) are somehow correlated to the multipole

vector alignments in those multipoles. Therefore, we proceed with

testing the single multipole alignment of area vectors.

For a fixed multipole � we have N � = �(� − 1)/2 area (headless)

vectors wi . We would like to find the plane that is defined by these

vectors. We define the plane as the one whose normal, n̂, has the

largest dot-product with the sum of the area vectors. Since wi · n̂ is

defined only up to a sign, wi is headless, we take the absolute value

of each dot-product. Therefore, we need to find n̂ that maximizes

S ≡ 1

N�

N�∑
i=1

|wi · n̂| . (44)

An exact procedure to find the best aligned direction is non-trivial

due to the presence of the absolute value. Instead of writing an

absolute value we replacewi by si wi , where si is ±1, such that there

are only positive terms in the sum. The problem is that we cannot

know the signs before we know the best aligned directions and thus

we have to try out all the possibilities. There are N � area vectors,

and thus there are 2N� possible choices for the set {si}. As is easily

seen, for large � this becomes computationally more expensive than

a numerical search for the best aligned direction. For any fixed set

of signs {si}, the best aligned direction n̂ expressed in spherical

coordinates, (θ , φ), is given by

tan φ =
(∑

siwi,y

)/(∑
siwi,x

)
tan θ =

[∑
si (wi,x cos φ + wi,y sin φ)

]/(∑
siwi,z

)
, (45)

where w i,x denotes the x component of wi , etc.

In practice, we used an iterative solution to the problem: pick

some trial direction n̂ so that we can immediately computeS. Repeat

many times for n̂ randomly chosen on a unit sphere, and simply find

one that has maximal S. We find that the search converges after a

few thousand trials for the direction n̂.

We compute SWMAP for any given multipole � in the TOH map,

and then compare it to the value of S (i)
MC, at that multipole, com-

puted in a large number of MC realizations of a Gaussian random,

statistically isotropic sky with WMAP’s pixel noise added. We then

rank-order SWMAP among the S (i)
MC. A low rank indicates that the

WMAP areas are roughly aligned, or equivalently, that the multipole

vectors are planar and most of the power lies in the corresponding

plane. Conversely, a high rank would imply that the multipole in

question is non-planar relative to a Gaussian random, statistically

isotropic expectation. We use 10 000 MC realizations at l � 20 and

at any l that has a very low or high rank in order to obtain sufficient

statistics; at all other � we use 1000 realizations.

Table 5 shows the ranks of the S statistic for 3 � � � 50, given as

percentages.2 For example, 25 per cent would indicate that 25 per

cent of MC maps are more planar and 75 per cent are less planar

at that �. Note that, while the octopole alone is planar only at the

92 per cent CL, the quadrupole and octopole together are planar at

99.65 per cent CL. The planarity of the quadrupole and octopole is

2 The quadrupole alone has only one area vector which picks out a unique

direction n̂ and therefore cannot be used with the S statistics as defined in

equation (44).

Table 5. Ranks of the S statistics, R, given as percentiles. Low ranks

indicate multipoles that are planar (i.e. their area vectors are aligned), while

high ranks indicate multipoles that are non-planar. The statistic S, defined

in equation (44), is applied to the TOH-cleaned map and compared with

Gaussian random, statistically isotropic skies to obtain the ranks. We used

10 000 realizations of such skies for � � 20 and for � = 44, and 1000

realizations for all other multipoles. Values within 5 percentiles of 0 or 100

are shown in bold.

Single-� Ranks of the S statistic (per cent)

� R � R � R � R � R

2+3 0.35 11 42 21 32 31 33 41 26

2 – 12 19 22 48 32 46 42 3

3 7 13 3 23 20 33 65 43 86

4 75 14 5 24 15 34 11 44 99.7

5 99.7 15 62 25 48 35 13 45 35

6 4 16 4 26 46 36 96 46 31

7 45 17 3 27 96 37 89 47 49

8 77 18 18 28 80 38 47 48 27

9 95 19 19 29 58 39 86 49 91

10 65 20 29 30 4 40 12 50 19

therefore very significant, in agreement with other tests (see, e.g. Ai

and Di in Table 3). The � = 5, in contrast, is non-planar and only

0.3 per cent of MC realizations exhibited lower planarity. What

has been called the ‘sphericity’ of � = 5 was first pointed out by

Eriksen et al. (2004a); their test found it unusual at the 5–10 per cent

level.

Visual inspection of Table 5 suggests that there is an excess of

both high and low values. Simple attempts to quantify this do indeed

find such anomalies at between 95 and 99 per cent CL. We might

therefore conclude that the alignment test as defined in equation (44)

gives strong hints of something unusual at 4 � � � 50 in the TOH-

cleaned map, but without further evidence, the case is not sufficiently

strong to stand on its own for any bold claims. Moreover, we find

that at � � 8, the values of the S statistic differ substantially among

the TOH, ILC and LILC maps.

Apart from looking at the S statistics, we also inspected the best

aligned directions n̂ (the direction that maximizes S). We would

expect that only the best aligned directions of planar multipoles have

a well-defined meaning. For � < 8 only � = 6 is singled out by our

statistics. We find the corresponding vector at (l, b) = (152.◦4, 50.◦3),

which is 46.◦2 from the ecliptic pole. Among the higher best aligned

directions, � = 21 and 44 are within 2.◦6 and 9.◦0, respectively, of

the dipole. All other vectors are more than 10◦ from any physical

direction studied in this work.

In addition to the S statistic described above, we also applied

Bingham’s statistic test of isotropy (Fisher, Lewis & Embleton 1993;

Morgan, Green & Spooner 2005). Let us assume we have N unit

vectors with components (xi, yi, zi) (i = 1, . . . , N ) and that we want

to check whether they are distributed isotropically. We construct the

orientation matrix

T = 1

N

N∑
i=1

⎛⎜⎝ xi xi xi yi xi zi

yi xi yi yi yi zi

zi xi zi yi zi zi

⎞⎟⎠ , (46)

which is real and symmetric with unit trace, so that the sum of its

eigenvalues ek(k = 1, 2, 3) is unity. For an isotropic distribution

all three eigenvalues should be equal to 1/3 to within statistical

fluctuations. Bingham’s modified statistic B� (Bingham 1974) is
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defined as

B� = B
[

1 − 1

N

(
47

84
+ 13

147
B + 5

5292
B2

)]
, where

B = 15N
2

3∑
k=1

(
ek − 1

3

)2

. (47)

For isotropically distributed vectors and N � 1,B� is distributed

as χ 2
5. Here we compare WMAP’s value of B� for a given multipole

to MC simulations directly, and therefore do not require assuming

N � 1.

Bingham’s statistic results for 2 � � � 50 are broadly consistent

with those for the S statistic shown in Table 5 (and hence we do not

show them separately). We find that � = 5 is non-planar at the 99.8

per cent CL. but, apart from that, other multipoles are neither planar

nor non-planar at a level not expected from such a statistical sample.

Finally, note that Bingham’s statistic, being general and coordinate-

independent, does not use all information and is typically not as

strong as the coordinate-dependent tests.

5.6 Higher multipole angular momentum vectors

The angular momentum dispersion (19) can be maximized for all

multipoles and thus serves as a statistic. That is we can find the axis

n̂� around which (�L)2
� is maximized. The spherical harmonics

provide an irreducible representation of the rotation group in three

dimensions and transform as Y ′
� = YT

� D
(�) where Y � is a vector of

the �th multipole spherical harmonics (2� + 1 components) and D(�)

is a rotation of this multipole. Since a scalar function (such as the

temperature) is invariant under rotations the a�m must transform as

a′
� = D†a� under rotations. The rotations can be parametrized in

terms of the Euler angles α, β, γ in the zyz representation as

D(α β γ ) = exp

(
iα

h̄
Lz

)
exp

(
iβ

h̄
L y

)
exp

(
iγ

h̄
Lz

)
(48)

where Ly and L z are the y and z components of the angular mo-

mentum operator, respectively. The discussion here follows Ed-

monds (1960). For an alternative representation see appendix A

of de Oliveira-Costa et al. (2004).

To perform the maximization it is convenient to use the matrix

representation for the rotations

D(�)
m′m(α β γ ) = eim′γ d (�)

m′meimα, (49)

where

d (�)
m′m=
∑

k

(−1)�−m′−k√(� + m ′)!(� − m ′)!(� + m)!(� − m)!

k!(l − m ′ − k)!(l − m − k)!(m + m ′ + k)!

×
(

cos
β

2

)2k+m′+m (
sin

β

2

)2�−2k−m′−m

. (50)

In this representation, the angular momentum dispersion (19)

becomes

(�L)2
�=
∑
m′,m′′

a∗
�m′a�m′′ ei(m′−m′′)γ

∑
m

m2d (�)
m′m(β)d (�)

m′′m(β)

≡
∑
m′,m′′

H (�)
m′m′′ (γ )G(�)

m′′m′ (β)

= Tr
(
H(�)(γ )G(�)(β)

)
. (51)

Note that this expression separates into a term that depends only on

γ and the a�m,H(�)(γ ), and a term that only depends on β,G(�)(β).

Table 6. The MAMD results for the TOH-cleaned map. Shown in the table

is the multipole number, �, the Galactic coordinates of the direction in which

the axis around which the angular momentum dispersion is maximized, (l,
b), the value of the normalized angular momentum dispersion around this

axis, (�L̃)2
�
, and the percentage of MC maps that had a maximum angular

momentum dispersion larger than the value found from the TOH map. Values

within 5 percentiles of 0 and 100 are shown in bold. See the text for details.

� l b (�L̃)2
�

MC larger

(◦) (◦) (per cent)

2+3 −112.7 59.7 0.962 0.37

2 105.7 56.6 0.993 –

3 121.6 62.0 0.942 11.24

4 −106.0 36.3 0.637 75.93

5 −170.0 24.0 0.484 99.44

6 −160.5 44.1 0.817 3.00

7 −119.7 54.8 0.585 58.13

8 149.7 20.1 0.546 62.28

9 162.1 77.9 0.504 80.69

10 153.8 11.1 0.511 70.17

11 −76.9 12.2 0.540 45.15

12 46.3 37.2 0.565 28.75

13 −71.7 41.7 0.651 2.73

14 59.3 9.3 0.636 2.60

15 −81.3 31.1 0.503 49.27

16 137.9 78.7 0.632 1.82

17 −163.5 30.2 0.593 4.70

18 152.8 19.0 0.540 14.85

19 −121.2 60.3 0.530 16.20

20 124.2 20.9 0.500 28.78

To extremize this function we take derivatives of (�L)2
� with respect

to β and γ which also separates. It is easy to show that

∂γ H (�)
m′m′′ (γ ) = i(m ′ − m ′′)H (�)

m′m′′ (γ ) (52)

and that both G(�)
m′′m′ (β) and ∂β G(�)

m′′m′ (β) can be calculated quickly

and efficiently (see, Edmonds 1960 for details). These rotation an-

gles are related to standard Galactic coordinates via

(l, b) = (γ − 180◦, 90◦ − β). (53)

Finally, we will find it convenient to work with the normalized

angular momentum dispersion (the t statistic of de Oliveira-Costa

et al. 2004)

(�L̃)2
� ≡ (�L)2

�

/
�2
∑

m

|a�m |2 . (54)

The normalized dispersion takes a value between (� + 1)/3�

and 1.

We have maximized the normalized angular momentum disper-

sion for � = 2 to 20 for the TOH-cleaned map. The ILC and LILC

maps give similar results. The results are shown in Table 6. For

each multipole we provide the direction in Galactic coordinates, (l,
b), for the axis around which the angular momentum dispersion is

maximized and the value of the MAMD. We have also performed

10 000 MC simulations of Gaussian random, statistically isotropic

skies and found the MAMD for each one of them. The final column

in the table gives the percentage of MC skies that had an angular

momentum dispersion larger than that for the WMAP data. We have

also done the same procedure for a joint fit to the quadrupole and

octopole (� = 2 + 3). That is, we find the single axis that maximizes

both multipoles.
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We find that the octopole is planar, but only at 89 per cent CL. The

strong correlation between the quadrupole and octopole is seen by

the fact that less than 0.4 per cent of all Gaussian random, statistically

isotropic skies have the quadrupole and octopole this well aligned.

We again confirm the ‘sphericity’ of � = 5 first pointed out by

Eriksen et al. (2004a). We find the angular momentum dispersion

to be very low – all but 0.56 per cent of the MC skies have a value

larger than the WMAP data. They have also suggested that � = 6

is planar; by this test it is somewhat planar with only 3 per cent of

MC skies being more planar than the data. We find a total of five

multipoles that are somewhat planar (less than 5 per cent of MC

skies having a larger angular momentum dispersion), those being

� = 6, 13, 14, 16 and 17. We only find the � = 5 multipole to be

particularly non-planar.

Setting aside the � = 2 + 3 result, we see that six of the 18 angular

momentum dispersions are in either the top or bottom 5 percentile.

The probability of having six or more of the 18 so anomalously high

or low is 0.6 per cent. We also see that of these six, all but � = 5 are

in the top 5 percentile. The probability of having five or more of the

18 so anomalously high is 0.15 per cent.

Inspecting the directions of MAMD we find that only the � = 4 di-

rection is close to one of the physical directions under consideration:

its distance to the ecliptic pole is 10.◦3. Note that this confirms the

qualitative impression from looking at the � = 4 map (see Schwarz

et al. 2004) that this mode has its minima and maxima aligned with

the ecliptic plane. It is also interesting to note that the directions

given in Table 6, especially for the planar multipoles, are consistent

with the ones found as the best aligned directions.

These results are another suggestion that the higher � multipoles

are not statistically isotropic. Reassuringly, comparison of Tables

5 and 6 shows the same five multipoles which had a high angu-

lar momentum dispersion also exhibited comparably low ranks of

the S statistic, while � = 5 showed a high rank of S. This differ-

ence in range of � in Sections 5.6 and 5.5 was purely a result of

computational limitations.

5.7 ‘Shape’ statistic

The angular momentum dispersion searches for planarity through a

weighted average that favours modes with m = �. Land & Magueijo

(2005a) have suggested the use of the ‘shape’ statistic which finds the

preferred axis and the preferred m for each multipole. The statistic

is defined as

r� = max
m,n̂

r (�)
m , (55)

where

r (�)
m ≡ (2 − δm,0

) |a�m |2
/∑

m

|a�m |2 . (56)

and n̂ is the z-axis of the coordinate system in which the a�m are

computed. Note that the angular momentum dispersion is a weighted

sum of these terms,

(�L)2
� = 1

�2

�∑
m=0

m2r (�)
m . (57)

The maximization of the shape statistic (55) follows the same

formalism as for the angular momentum dispersion and will not be

discussed further (see Section 5.6). We have performed this maxi-

mization and confirm the results of Land & Magueijo (2005a). In

particular, we find that the surface defined by r � is complicated with

many local maxima. The results are quite sensitive to the data and

are not consistent among the three full-sky maps made from the

WMAP data (see fig. 2 of Land & Magueijo 2005a). Unfortunately,

this sensitivity is not understood in terms of features of the data. That

is, the variability in the results cannot be understood in terms of fea-

tures such as non-Gaussianity or a violation of statistical isotropy.

The sensitivity of the shape statistic is related to the difficulty in

uniquely defining the Land–Magueijo vectors (Land & Magueijo

2005e, also see Section 3.5). For these reasons, the shape statistic

does not serve as a robust statistic for separating or understanding

Gaussianity versus statistical isotropy.

6 F O R E G RO U N D S

So far, we have taken into account the effects of noise in the full-sky

cleaned maps by including the WMAP pixel noise into our MC maps.

We now explore the effect of the foregrounds on the quadrupole–

octopole anomaly.

While it has repeatedly been emphasized that there might be resid-

ual foreground contamination left in the cleaned maps, it seems that

such a contamination should lead to Galactic and not ecliptic cor-

relations. Here we explicitly show this with a quantitative analysis.

We slowly add the measured WMAP foreground contaminations to

WMAP full-sky maps and monitor how the directions defined by the

quadrupole and octopole change.

Let TCMB(n̂) be the cleaned-map microwave background temper-

ature in some direction, and TFOR(n̂) the temperature from one of

the three basic foreground maps (thermal dust, free–free emission

or synchrotron emission) provided by the WMAP team. We form

the total contaminated map as

Ttot(n̂) = TCMB(n̂) + c TFOR(n̂)

√
Var(TCMB)

Var(TFOR)
. (58)

where c is the foreground fraction. Note that the second term has

been normalized so that

Var(Ttot) = Var(TCMB) + c2 Var(TFOR)
Var(TCMB)

Var(TFOR)

= Var(TCMB)(1 + c2) (59)

so that the rms contribution to the total rms temperature from the

added foreground is a factor of c relative to the contribution of the

cleaned microwave background map. (For reference, the constant√
Var(TCMB)/Var(TFOR) is of the order of unity in all cases we con-

sider.) In Copi et al. (2004), we have performed tests with c � 0.2 and

found no significant changes to the results in that paper. Note that

the contribution in power of known foregrounds to the microwave

background, after removing the foregrounds, is estimated to be less

than a percent in the V and W bands (Bennett et al. 2003a). How-

ever, this estimate is for the multipole range 2 � � � 100 while the

foreground contamination is most significant at low multipoles (see

fig. 10 in Bennett et al. 2003a). Therefore, it is reasonable to assume

that the contribution of residual foregrounds at large angular scales

is less than about 10 per cent in power, or c � 0.3.

We have added increasing amounts of foreground, corresponding

to c taking values from zero (no foreground) to ±1000 (essentially

pure foreground) and recomputed the multipole vectors and their

normals. Fig. 6 shows the trajectories of the multipole vectors and

their normals as increasing amount of the foreground (V-band syn-

chrotron map produced by WMAP) is added to the microwave back-

ground map. The solid diamond symbols show the zero-foreground

locations of the multipole vectors while the solid stars refer to their

pure-foreground locations. Similarly, the empty diamond and star

symbols refer to the zero- and pure-foreground normal vectors. On
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Figure 6. Trajectories of the multipole vectors and their normals as increasing amounts of the foreground are added to or subtracted from the microwave

background map. We have used the synchrotron V-band foreground and the TOH-cleaned map; the coefficient c shows the rms contribution of the foreground

to the microwave background (see equations 58 and 59). The solid diamond symbols show the zero-foreground locations of the multipole vectors while the

solid stars refer to their pure-foreground locations. Similarly, the open diamond and star symbols refer to the beginning and end points of the normal vectors.

On each trajectory we label a few values of the coefficient c. The top panel shows � = 2 (two vectors and one normal) and the bottom panel shows � = 3 (three

vectors and three normals). Not all trajectories end on plotted symbols. For these trajectories they end on the multipole vector (or normal) that is the negative

of the plotted vector at the start of the trajectory. Note that, in the large-foreground limit, the quadrupole vectors move near the z-axis and the normal into the

Galactic plane, while for the octopole all three normals become close to the Galactic disc at 90◦ from the Galactic Centre. Therefore, as expected Galactic
foregrounds lead to Galactic, and not ecliptic, correlations of the quadrupole and octopole.

each trajectory we label a few positive and negative values of the

coefficient c. The top panel of Fig. 6 shows � = 2 (two vector and

one normal) and the bottom panel shows � = 3 (three vectors and

three normals).

In the pure-foreground limit, the quadrupole vectors move near

the z-axis and their normal into the Galactic plane as is expected for

an almost pure Y 20 mode (see the discussion in Section 2.2). In the

same limit, two of the octopole multipole vectors move close to the

Galactic poles and one close to the Galactic Centre. Consequently,

all three normals become close to the Galactic disc at 90◦ from the

Galactic Centre. This is indeed the signature of the expected Re(Y 31)

domination in the foreground octopole. Therefore, both the vectors

and their normals clearly migrate from locations correlated with the

ecliptic and other directions discussed in Schwarz et al. (2004) and in

this paper to locations specified by the Galactic foreground emission.

Further, note that appreciable admixture of the foreground (|c| � 0.1

for the quadrupole and |c|� 0.3 for the octopole) is necessary for this

migration to become apparent by eye. This confirms the argument
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in Section 2.2 that the quadrupole foreground is the most critical

one.

The reader might note that two of the octopole multipole vectors

are within 10◦ of the Galactic plane, or, equivalently, one of the

octopole normals is about 10◦ from the Galactic poles. One might

ask if that could be a sign of residual Galactic contamination of the

cleaned full-sky maps. However, as seen in Fig. 5 and Table 4, given

the observed pattern of quadrupole and octopole area vectors, the

alignment of these area vectors with the NGP is significant at <90

per cent CL (compared to a 99 per cent CL correlation with the

ecliptic plane). Moreveor, since a correlation of the normal with the

Galactic plane would have been even at least as noteworthy, this 90

per cent CL figure should be reduced to 80 per cent.

We also observe that when adding foreground, one of the two

multipole vectors close to the Galactic plane moves far away from

that plane. The other multipole vector close to the Galactic Centre

does not move very far (about 10◦). But, a 10◦ alignment of one

of the cleaned-map multipole vectors with one of the foreground

multipole vectors is not statistically significant by any statistical

test applied in this work.

Finally, we do not expect more than one foreground multipole

vector to lie near the Galactic plane since the dominant foreground

mode of the octopole is indeed Re(Y 31). The second biggest fore-

ground mode is Re(Y 33), which has its three multipole vectors in

the Galactic plane at l = 30◦, 90◦ and 150◦. But, the cleaned full-sky

map does not resemble that pattern either. We are not able to identify

a Galactic contamination of the cleaned full-sky maps and thus see

no evidence to question more significant ecliptic correlations found

in the previous sections.

We have checked that the results are qualitatively unchanged if

we use the W-band synchrotron map, or the V-band free–free and

dust foreground maps instead of the V-band synchrotron map. We

have done some further testing, recomputing the S statistics applied

to different alignments but now with the foreground incrementally

added to both the microwave background and MC maps. We found

that the results are consistent with those inferred from Fig. 6 and in-

dicate that large admixture of the known Galactic foreground would

not cause the alignments found in Schwarz et al. (2004).

Results of this investigation are therefore in agreement with the

intuitive expectation: Galactic foregrounds lead to Galactic, and
neither ecliptic nor dipole, correlations of the quadrupole and oc-
topole. In fact, it is difficult to see how any known foreground that

has most of its power in the Galactic plane can lead to the Solar

system correlations that we find.

7 E F F E C T S O F C U T S K I E S

As mentioned in Copi et al. (2004), Galaxy cuts of a few degrees or

larger introduce significant uncertainties to the reconstructed full-

sky multipole vectors. This is precisely why we used the cleaned

full-sky maps – sky cuts of 20◦ or so would simply lead to large

uncertainties in our statistical tests. Nevertheless, we would like to

look at the issue of sky cuts in more detail; in particular, we would

like to explore how correlation significance varies as we introduce

a sky cut.

We are interested in finding the full-sky (true) a�m which are

derived from the full-sky temperature distribution and denoted by

at
�m . In general, we cannot view the full sky as the Galaxy ob-

scures our field of view and must be cut out. There are well-

known techniques for relating the cut-sky decomposition, ac
�m , to the

true-sky decomposition (Wandelt, Hivon & Górski 2001; Mortlock,

Challinor & Hobson 2002). We briefly discuss the key facts here.

The decompositions are related by

ac
�m =

∑
�′m′

W��′,mm′at
�′m′ , (60)

where

W��′,mm′ ≡
∫

Scut

Y ∗
�′m′ (
)Y�m(
) d
 (61)

and Scut is the cut sphere. There are fast, stable recursion relations

for calculating these W ��′,mm′ (Wandelt et al. 2001; Mortlock et al.

2002). In this work, we restrict ourselves to longitudinal cuts sym-

metric across the Galactic (xy) plane. In this case, m = m′ and W
is a symmetric matrix. For notational convenience we will drop

the m index and keep in mind that the subsequent equations hold

independently for each m. Thus we write

ac
� =

∑
�′

W��′at
�′ . (62)

Since information is lost in the cut, W is not an invertible matrix.

We can, however, replaceW with an invertible matrixW̃ constructed

from W by removing the rows and columns with small eigenvalues.

That is, W̃ ≡ Ṽλ̃Ṽ
T

where λ̃ is the diagonal matrix of eigenvalues

such that λ̃ j = λ j if λ j > λthreshold and λ̃ j = λ̃−1
j = 0 otherwise. A

threshold of λthreshold < 0.1 is typically sufficient and is used in this

analysis. An estimate, ãt
� for the true decomposition is

ãt
� =

∑
�′

W̃ −1
��′ ac

�′ . (63)

We can prevent leakage of power from non-cosmological monopole

and dipole modes by projecting out these modes using a partial

Householder transformation (see, appendix C of Mortlock et al.

2002 for details).

There is an error in this approximation which is evident from the

fact that

ãt = W̃
−1

ac = W̃
−1

Wat (64)

and W̃
−1

W �= I due to the loss of information in the cut. Our error

in the approximation is found to be

〈|at − ãt|2〉 = 〈(at − ãt)∗(at − ãt )T〉
= (I − W̃

−1
W)〈(at)∗(at)T〉(I − W̃

−1
W)T.

(65)

Here 〈(at
�)

∗at
�〉 = C� and this error can be readily calculated.

Fig. 7 shows the quadrupole–octopole correlation probabilities

with the sky cut between 0 and ±20◦ performed along the Galac-

tic plane (left-hand column), ecliptic plane (central column) or an

arbitrarily chosen plane3 (right-hand column). We consider the S
statistic probabilities applied to the ecliptic plane, NGP, dipole and

the equinoxes (first to fourth row, respectively). The solid line is

the mean value, while the dark and light regions represent 68 and

95 per cent CL regions, respectively, from 1000 realizations of re-

constructed a�m coefficients that take into account the noise in the

reconstruction process. While the increasing cut clearly increases

error in the vector reconstruction and therefore uncertainty in the

3 The ‘arbitrary’ plane is chosen as one obtained by rotating the map in

Galactic coordinates by +45◦ around the z-axis and then by −60◦ around

the new x-axis. The resulting map has neither the ecliptic nor the Galactic

plane located along the equator.
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Figure 7. Quadrupole–octopole probabilities for the TOH DQ-corrected map for an increasingly larger iso-latitude cut-off ±(degrees shown), performed

symmetrically around the Galactic plane (left-hand column), ecliptic plane (central column) or an arbitrarily chosen plane (right-hand column). We consider

the S statistic probabilities applied to the ecliptic plane, NGP, dipole and the equinoxes (first to fourth row, respectively). The solid line is the mean value, while

the dark and light regions represent 68 and 95 per cent CL regions, respectively, from 1000 realizations of reconstructed a�m coefficients that take into account

the noise in the reconstruction process. The dashed line denotes the probability obtained from the full-sky map, corresponding to the case of zero cut.

final probability, it is clear that in essentially all cases the probabil-

ities remain consistent with the full-sky values at 95 per cent CL,

and in most cases at the 68 per cent CL for cuts up to 10◦.

This figure clearly shows that sky cuts of a few degrees or larger

introduce significant uncertainty in the extracted multipole vectors

and their normals, leading to increased error in all alignment tests.

Nevertheless, the cut-sky alignments are consistent with their full-

sky values even for relatively large cuts. Note that the shift of the

mean value of the alignments (black curves in the panels of Fig. 7) to

less significant values, as the cut is increased, is entirely expected:

an unlikely event, in the presence of noise in the data, becomes

less unlikely because any perturbation will shift the multipole and

area vectors away from their aligned locations. While the results of

this exercise are in good agreement with those found by Slosar &

Seljak (2004) and Bielewicz et al. (2005), unlike these authors, we

emphasize that the cut sky is always expected to lead to shift in the

alignment values and to increased errors (see again Fig. 7).

8 C O M PA R I S O N S W I T H C O B E

Since the alignments we are studying are on very large scales (i.e.

quadrupole and octopole scales), it is natural to ask whether they

can be seen in COBE-DMR maps (Bennett et al. 1996). COBE
angular resolution is about 7◦, which is more than sufficient for this
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test. However, full-sky maps produced by the COBE team are very

noisy (G. Hinshaw, private communication) while, as discussed in

Section 7, using the cut-sky maps produces too much uncertainty in

the vectors for Galaxy cuts larger than a few degrees.

Fortunately, Markov chain Monte Carlo (MCMC) Gibbs sampler

realizations of the full-sky COBE maps have been produced. Us-

ing their Global Estimation Method, Wandelt et al. (2004) generate

10 000 realizations of the COBE sky consistent with DMR measure-

ments and expected foregrounds. Following their own conservative

approach, we drop the first 1000 maps which might be affected by

the burn-in of the MCMC, and choose every 200th map from the

remaining 9000. The resulting 45 maps are essentially uncorrelated

and their analysis is computationally undemanding. We then com-

pute the S statistic for each COBE map and rank-order it relative

to 100 000 MC realizations of the Gaussian random, statistically

isotropic sky. The COBE-derived values for the statistic S are repre-

sented by histograms, while a WMAP full-sky map is represented by

a single value. We then ask whether the two are consistent. Note that

we have corrected all COBE maps for the DQ using the procedure

described in Section 2.4.

The results are shown in Fig. 8. The x-axis in each panel shows

the logarithm of the probability of the S statistic (the probability is

simply its rank relative to 100 000 MC realizations of the Gaussian

random, statistically isotropic sky). The vertical lines show values

for the TOH, ILC and LILC maps. The histogram shows values for

the 45 COBE maps produced using the MCMC Gibbs sampler. Ob-

viously, there is significant variation in the COBE statistics which

traces to the fact that the MCMC maps are based on incomplete

sky information. Nevertheless, we see that the statistically signif-

icant alignments found with WMAP are in most cases consistent

with the results from COBE. For example, 11 out of 45 COBE maps

show the alignment with the NEP that is equally or less likely than

that in the WMAP maps, while four to eight COBE maps (depend-

ing on which WMAP map is considered) show equal or less likely
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Figure 8. The oriented area statistics from full-sky WMAP maps compared to those from MCMC realizations of the COBE full sky based on COBE-DMR

cut-sky data. We consider the S statistic applied to the dot-products of quadrupole–octopole area vectors (Ai) and the normals (Di), as well as the sum (i.e.

the S-statistic) of the four dot-products of the area vectors, one quadrupole and three octopoles, with the special directions or planes – the ecliptic plane, NGP,

dipole and equinox. The WMAP maps considered for the TOH, ILC and LILC as shown by the vertical lines. The histograms are from a total of 45 MCMC

COBE maps from Wandelt et al. (2004) (their maps 1000, 1200, . . . , 9800) which are sufficiently separated in the chain so as to be essentially uncorrelated.

alignment with the equinoxes. Note too that the alignment with the

supergalactic plane differs significantly in the three WMAP maps.

Consequently, the comparison of MCMC-derived COBE maps with

WMAP-cleaned full-sky maps shows that COBE data are consistent
with WMAP in regards to all alignments found in Schwarz et al.
(2004).

9 A N G U L A R P OW E R S P E C T RU M – E C L I P T I C

P L A N E V E R S U S E C L I P T I C P O L E S

There are at least three points in the binned WMAP temperature an-

gular power spectrum (TT) that deviate from the predictions of the

best-fitting �CDM model at comparable or greater statistical sig-

nificance to the power deviation of the quadrupole. These are clearly

seen in fig. 12 of Bennett et al. (2003b) in the bins � = 20–24, 37–

44 and 201–220, which are visibly low, high and low, respectively.

These deviations are approximately 2, 2.5 and 1.5 times the esti-

mated error in the average C � in each of those bins. In each case,

this is largely cosmic variance dominated, with only a small fraction

of the error being due to statistical error. Nevertheless, it should be

appreciated that the statistical significance of these deviations may

decline in the second- or third-year WMAP maps.

Various explanations have been offered for these deviations in

the angular power spectrum as arising from fundamental physics

(e.g. Gordon & Hu 2004; Enqvist, Hannestad & Sloth 2005, and

references therein). However, it is instructive to examine the angular

power spectrum computed separately using data from the ecliptic

plane versus data from the ecliptic pole. This is presented in fig. 7

of Hinshaw et al. (2003b). [Note that this figure has been replaced

in the final, published version of the paper (Hinshaw et al. 2003a)

with a cross-band power spectrum that shows some of the same

features.] The figure caption instructs the reader to ‘note that some

of the ‘bite’ features that appear in the combined spectrum are not

robust to data excision’. Specifically, the three deviations at � ≈ 22,
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40 and 210 are found only in the ecliptic polar data and not in the

ecliptic planar data. This suggests that there are some continuous

parameters – the latitude of the planar-polar division, the orientation

of the reference plane relative to the ecliptic, etc. – as a function of

which the separation is approximately maximized by the WMAP
team’s choice of an ecliptic planar-polar division.

A more detailed study is merited after future data releases. In

the meantime, the dip at the first peak, while the least significant,

has the virtue of being in a region of the angular power spectrum

that has previously been probed by multiple experiments – TOCO

(Miller et al. 1999; Torbet et al. 1999), Saskatoon (Netterfield et al.

1996), Boomerang (Netterfield et al. 2002; Jones et al. 2005), Max-

ima (Hanany et al. 2000), and Archeops (Benoit et al. 2003; Tristram

et al. 2005). Of these, only Archeops saw evidence of a dip in the

power at the first peak, though it was of limited statistical signifi-

cance. Other experiments, saw no such dip with greater statistical

confidence. However, other than WMAP only Archeops covered a

significant portion of the north ecliptic hemisphere; the others cov-

ered much less sky or the southern sky. Thus, if the dip in the first

peak is localized to the northern sky, especially to the region near

the NEP, all the experiments could be consistent. Notably, Archeops

also shows evidence of excess of power at � � 40.

Fig. 7 of Hinshaw et al. (2003b) contains further perplexing

anomalies in the low-� sky – the angular power spectra extracted

from the ecliptic planar and polar regions disagree for � < 10. The

differences are much larger than would be expected from statistics

alone, these low-� values of C � being very well measured (as can

be seen from the error bars in fig. 8 of the same paper).

(i) There is a nearly complete absence of ecliptic polar power in

the � = 6–7 bin that is highly reminiscent of the findings in Tables

5 and 6 that � = 6 is very ‘planar’. This suggests further that said

planarity is closely aligned with the ecliptic, and that this connection

extends to � = 7 as well. This is also reflected by the fact that the

best aligned vectors for � = 6 and 7 from Section 5.5 are 46◦ and

23◦, respectively, from the ecliptic pole, which already indicates that

there is little power in the (ecliptic) polar cap region defined as β >

30◦ in the WMAP analysis.

(ii) The aplanarity of � = 5 (and to a lesser extent � = 4), as seen

again in Tables 5 and 6, may also be reflected in the notably even

distribution of power between the plane and poles.

(iii) There is a dramatic deficit in ecliptic planar power compared

to ecliptic polar power at � = 2 and 3.

If indeed there is contamination of the microwave background

from some source in the ecliptic (north?) polar region that is re-

sponsible for the deviations at � ≈ 22, 40 and 210, then it is possible

that this contamination is also the source of the low-� microwave

background in the polar regions. In this case, the maximum cosmic

contribution to the CMB at low � would be the lesser of the eclip-

tic planar and polar values (barring an exceptional cancellation). In

particular, the cosmic C2 and C3 would be bounded by the ecliptic

(planar) values. These are dramatically lower than the customary

values as extracted from the full sky with a Galactic cut, and con-

siderably less consistent with theoretical expectations than even the

current low values.

1 0 C O N C L U S I O N

The multipole vector formalism first introduced to the study of the

CMB by Copi et al. (2004) has proven to be a useful means of study-

ing the structure of the CMB, particularly, on large scales. In this

work, we have provided an extensive discussion of the multipole

vector formalism highlighting the fact that the multipole vectors

provide an alternative, complete representation of a scalar func-

tion on a sphere (see Section 3 for details). In particular, we have

pointed out that the algorithm of Copi et al. (2004) converts the

standard spherical harmonic decomposition into the multipole vec-

tor representation first discussed by Maxwell (18). We have shown

how the multipole vector formalism relates to the previously stud-

ied MAMD directions, Land–Magueijo vectors, and temperature

minima/maxima directions. Note that, unlike the multipole vectors,

neither the MAMD nor the minima/maxima directions contain the

full information of a multipole, and are thus not complete representa-

tions of the microwave sky. The Land–Magueijo vectors and scalars

are a complete representation, but suffer from a rapid proliferation

of arbitrary choices for � > 2.

As noted, the multipole vectors are an excellent way to study

alignments and correlations in the microwave sky. We have pro-

vided a qualitative description of the striking properties of the

quadrupole and octopole in Section 4. We note that there are strange

properties for the quadrupole and octopole individually as well as

jointly. Not all of these unexpected properties are independent of

each other and an explanation, whether statistical fluke, residual

foreground contamination, or real CMB features, remains to be

determined.

By eye the properties of the quadrupole and octopole multipole

vectors seen in Figs 1–3 are striking. To quantify these correlations

we have used the S and T statistics for the oriented area and nor-

mal vectors (see Section 5.2) and applied them to the quadrupole

and octopole (see Section 5.3). We confirm the alignment of the

quadrupole and octopole planes at greater than 99 per cent CL We

also confirm that the quadrupole–octopole planes are aligned with

the geometry and direction of motion of the Solar system. In par-

ticular, they are perpendicular to the ecliptic plane at approximately

98 per cent CL and to the dipole and equinox at >99.8 per cent CL.

They are also perpendicular to the Galactic poles at >99 per cent

CL.

We have shown that the alignment with the ecliptic plane remains

at 99 per cent CL when the quadrupole–octopole alignment is taken

as given (for the TOH-DQ map; similar or stronger results hold for

the other maps, see Section 5.4). The correlations with the dipole and

equinox remain at approximately the 95 per cent CL. However, the

correlations with other directions, such as the Galactic poles, do not

persist. This strongly supports the reality of the ecliptic correlation

in the data and suggests that the aforementioned alignment with the

Galactic poles is accidental.

We further stress that the 99 per cent CL correlation of the

quadrupole–octopole planes with the ecliptic plane is a lower bound.

As is evident from Fig. 3 and discussed in more detail in Section 5.4

the ecliptic plane carefully threads its way between the temperature

minima and maxima of the � = 2 + 3 map separating the weak

power in the northern ecliptic sky from the strong power in the

southern ecliptic sky. This extra feature that is manifested in the

multipole vectors is not contained in our statistics of oriented area

(nor normal) vectors. Thus, the analyses discussed in this work and

in the literature which rely solely on dot-products of the oriented

area (or normal) vectors are not using all the information available in

the multipole vectors. Dot-products of oriented area (and normal)

vectors are well suited for identifying and defining planes but do

so at the expense of the information of the structure with respect

to these planes. (For the quadrupole the area vector contains only

three out of four pieces of information, while the normal only two.

For the octopole the complete information is contained in the three

normals, but the dot-product statistic misses several d.o.f.) We have
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estimated that including this extra structure strengthens the 99 per

cent CL bound on the correlation of the quadrupole–octopole with

the ecliptic plane to between 99.93 per cent CL (for the ILC map)

and 99.996 per cent CL (for the LILC map).

The set of possible correlations of the multipole vectors that

we have checked is by no means exhaustive. Others could be

checked in the future. Cautious of the dangers of a posteriori

trolling through large numbers of possible correlations, our phi-

losophy has been to focus on a very few statistical tests over a very

limited range of values of � in the hope that theoretical insights

would then have predictive power for other tests, other values of

�, and other data sets (such as CMB polarization maps). Our ex-

ploration of higher values of � in some measure affirms the danger

of proceeding further in the absence of theoretical guidance – we

find strong hints of statistical anisotropy, but without a theoreti-

cal framework with which to organize them, can make no strong

claim.

In this work, we have continued to use cleaned, full-sky maps

produced from the first-year WMAP data. The concern with using

these maps is the potential for residual Galactic foregrounds biasing

the results. Though it is difficult to see how Galactic contaminations

can lead to ecliptic correlations, we have studied this in two different

ways: we have explored the properties of the foreground multipole

vectors (in Section 6) and we have explored how the multipole

vectors and our results change when we perform a symmetric cut

across the Galactic (and other) planes (in Section 7). As expected

a Galactic foreground is dominated by the Y 20 and Re(Y 31) modes.

These are very different from the modes that dominate in the full-

sky maps. As shown in Fig. 6 this corresponds to the multipole

vectors and normals for the full-sky maps being in very different

locations than those for the foregrounds. As foreground contamina-

tion is slowly added to the full-sky maps we see how the full-sky

multipole vectors move to the foreground multipole vectors. We

have found that large foreground contaminations (|c| ≈ 0.3 for the

quadrupole, |c| ≈ 1–3 for the octopole) are required to make the full-

sky multipole vectors look like those from the known foreground

maps.

An alternative to using foreground maps is to mask out all infor-

mation in the regions of the sky dominated by foregrounds. This is

a more conservative approach but throws away information about

the CMB in some regions of the sky. For this reason any results

from such a cut-sky analysis will be weaker than the corresponding

full-sky analysis. In Section 7, we considered symmetric cuts across

the Galactic (and other) planes to access the effect on the multipole

vectors and correlations we have found from the full-sky analyses.

As seen in Fig. 7 even small cuts lead to large uncertainties in our

results. This is true independent of the plane about which we cut.

The correlations we report from the full sky remain consistent in

the cut-sky analysis but are weakened as expected. This result is

consistent with the power equalization reconstruction by Bielewicz

et al. (2005) the cut-sky analysis of Slosar & Seljak (2004).

As a final comparison of the quadrupole and octopole alignments

we calculated the correlations for COBE maps (see Section 8). Again

the results are consistent with those from the WMAP full-sky maps

(as shown in Fig. 8) but do not have the statistical significance.

The lack of power on the largest angular scales first observed

by COBE and more recently confirmed by WMAP has motivated

much of the study of the low multipole moments, in particular the

quadrupole and octopole. However, these are not the only multipole

bands where there are peculiar features in the power spectrum. We

have extended some of the studies to higher multipoles (Sections 5.5

and 5.6). Our tests suggest that there may exist peculiarities in these

multipole ranges not solely in the power, but also in the structure of

the multipoles. These studies, however, are not complete and thus

it is not possible to assign statistical significance to them. They do,

however, point the way for future work.

To conclude, using the multipole vector decomposition we have

shown that the quadrupole and octopole of the microwave back-

ground sky are correlated with each other at a level that is excluded

from being chance in excess of 99 per cent. This comes about from

a preponderance of peculiar correlations and is statistically inde-

pendent of their observed lack of power. This observation is in bold

contradiction to the predictions of pre-existing cosmological model,

and argues against an inflationary origin for these fluctuations. In

addition, there is strong evidence (again of greater than 99 per cent

CL) that the microwave background at these multipoles is correlated

with the geometry and direction of motion of the Solar system. The

observed signal is most unlikely to be due to residual contamina-

tion of the full-sky microwave background maps by known Galactic

foregrounds.

These results strongly suggest that either there is additional, un-

explained foreground contamination of the microwave background,

potentially from a source local to our Solar system or its neighbour-

hood, or that there is an unexpected systematic error in the WMAP
maps. We remain convinced by the WMAP team’s arguments that

there is no unexpected systematic error (Bennett et al. 2003a; see

also Finkbeiner 2004). In particular, it is very hard to see how a

north–south ecliptic asymmetry, or a quadrupole–octopole plane

perpendicular to the ecliptic could be induced in the WMAP instru-

ment or analysis pipeline. COBE, with largely independent error

sources, saw compatible correlations. There is also the tantalizing

suggestion by Archeops of a deficit in power near the first peak

which is localized on the sky to the region of the ecliptic north pole.

The astute reader will note that we have persisted in our failure

to offer either a satisfactory possible explanation for an ecliptic-

correlated foreground (especially one apparently concentrated in

a plane perpendicular to the ecliptic) or a prediction that can be

convincingly tested. Both are failings which we intend to remedy

in the near future. However, we note that should indeed the low-

� microwave background prove to be dominated by a new fore-

ground, this would imply that, barring an unexpected foreground

alignment, the power in the underlying cosmic contribution at these

multipoles is likely to be suppressed below even the currently ob-

served too-low value. It is at least amusing to note that the scale

on which the lack of large-scale correlations is then manifested is

comparable to the horizon scale at the onset of cosmic acceleration.

At the least this profound lack of large-angle correlations would

further challenge generic inflationary models, maybe even general

relativity on the scale of the observable universe will need to be

reconsidered.

Whatever the origin of these low-� correlations, it is clearly nec-

essary to reconsider any inferences drawn from the low-� WMAP
data, including the temperature-polarization cross-correlation. For

example, our work suggests that the evidence for early reioniza-

tion of the Universe, resting as it does on the low-� temperature-

polarization cross-power spectrum (TE) angular power spectrum

should be viewed with a healthy dose of skepticism.

On the experimental side, we are eagerly waiting for two new

major and largely independent probes of the large-angle microwave

background radiation that may shed new light on the anomalies dis-

cussed in this paper: polarization measurements by WMAP (though

they are expected to be systematics-dominated on large scales),

and measurements of temperature and polarization by the Planck

experiment.
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