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Suppression in primordial power on the Universe’s largest observable scales has been invoked as a

possible explanation for large-angle observations in the cosmic microwave background, and is allowed or

predicted by some inflationary models. Here we investigate the extent to which such a suppression could

be confirmed by the upcoming large-volume redshift surveys. For definiteness, we study a simple

parametric model of suppression that improves the fit of the vanilla !CDM model to the angular

correlation function measured by WMAP in cut-sky maps, and at the same time improves the fit to the

angular power spectrum inferred from the maximum likelihood analysis presented by the WMAP team.

We find that the missing power at large scales, favored by WMAP observations within the context of this

model, will be difficult but not impossible to rule out with a galaxy redshift survey with large-volume

(! 100 Gpc3). A key requirement for success in ruling out power suppression will be having redshifts of

most galaxies detected in the imaging survey.
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I. INTRODUCTION

Measurements of the angular power spectrum of the
cosmic microwave background (CMB) anisotropies from
the WMAP experiment have been used to constrain the
standard cosmological parameters to unprecedented accu-
racy [1–4]. At the same time, several anomalies have been
observed, one of which is the missing power above 60 de-
grees on the sky in the maps where the galactic plane has
been masked [1,5,6]. This is unexpected not only because
skies with such lack of large-scale power are expected with
the probability of about 0.03% in the standard Gaussian,
isotropic model [5–7], but for two other reasons. First, the
missing power occurs on the largest observable scales,
where a cosmological origin is arguably most likely.
Second, missing correlations are inferred from cut-sky
(i.e. masked) maps of the CMB, which makes the results
insensitive to assumptions about what lies behind the cut.
For review of the missing correlations (and other so-called
‘‘large-angle anomalies’’ in the CMB), see [8]; for debate
on this issue, see [8–11]; for signatures of the anomalies in
future polarization observations, see [12].

In this paper we study the possibility that the primordial
power spectrum is suppressed at large scales. This expla-
nation has been invoked before in order to explain
the low power in the multipole spectrum (e.g. [13]). In
the meantime, observations have made it apparent that the
harmonic-space quadrupole and octopole are only moder-
ately low (e.g. [14,15]), and it is really a range of low
multipoles that conspire to produce the vanishing Cð!Þ.
Specifically, as discussed in [5], there is a cancellation
between the combined contributions of C2; . . . ; C5 and
the contributions of C‘ with ‘ $ 6. It is this conspiracy
that is most disturbing, since it violates the independence
of the C‘ of different ‘ that defines statistical isotropy.

Note however that it is a priori not at all clear that
suppression in the large-scale power can explain the
WMAP observations on large scales. While the missing
large-angle correlations in the angular two-point correla-
tion function of the CMB Cð!Þ could be trivially explained
by the missing primordial power, a large suppression
would lower the harmonic power spectrum C‘, inferred
using the maximum likelihood estimator, too much to be
consistent with observations. [We discuss this in Sec. IV
and V below.]
In this paper we perform a two-pronged analysis. First,

we adopt a simple parametric model for the suppression,
and perform a detailed analysis to find the suppressed
power spectrum that improves the fit of the vanilla
!CDM model to the angular correlation function mea-
sured by WMAP in cut-sky maps, and at the same time
improves the fit to the angular power spectrum inferred
from the maximum likelihood analysis presented by the
WMAP team. Second, we address the following question:
if the CMB observations are telling us that the three-
dimensional primordial power spectrum is indeed sup-
pressed at large scales (and our adopted model for the
suppression is at work), could this effect be confirmed in
redshift surveys, with observations of suppressed cluster-
ing of galaxies on the largest scales?
It is important to note that we do not concern ourselves

with questions recently discussed in the literature as to
whether the full-sky or the cut-sky measurements are
more robust. It could be the case that one of these mea-
surements, full-sky or cut-sky, is correct while the other is
not due to some type of systematic error; it could also be
that both of these measurements are correct (in which case
the assumption of statistical isotropy is arguably on less
firm footing). We consider these possibilities separately in
order to get a rough idea on what scale the data favor power
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suppression in either case. Regardless of which of these
possibilities is true, however, our results regarding the
detectability of power suppression, presented in Sec. VI,
are valid.

The paper is organized as follows. In Sec. II we do a
preliminary investigation in which we attempt to recon-
struct the suppression of the primordial power spectrum
(and, correspondingly, the matter power spectrum) directly
from CMB angular power spectrum measurements (the
C‘). In Sec. III, we take the complementary approach,
parameterizing the suppression and finding how it affects
the C‘ and Cð!Þ. Section IV quantifies how well a given
suppressed model fits CMB data in both C‘ and Cð!Þ.
Section V provides a discussion of the results that we
obtain from this analysis; we find that large-scale suppres-
sion of power can significantly increase the likelihood of
the observed CMB at large scales. Finally, in Sec. VI, we
discuss the possibility of detecting suppression in the
matter power spectrum with an upcoming large-volume
redshift survey. We conclude in Sec. VII.

II. SUPPRESSED POWER: PRELIMINARY
INVESTIGATIONS

Let us first review the basic way in which the primordial
power spectrum determines fluctuations in the CMB
observed today. The CMB temperature anisotropies are
decomposed into spherical harmonics with coefficients a‘m

"T

T
ð!;"Þ ¼

X1

‘¼2

X‘

m¼&‘

a‘mY‘mð!;"Þ; (1)

where T is the average temperature of the CMB. The
angular power spectrum, which quantifies the contribution
to the variance of the temperature fluctuations at each ‘, is
then given by the coefficients C‘ where, assuming statisti-
cal isotropy, ha‘ma‘0m0 i ¼ C‘#‘‘0#mm0 . We will also con-
sider the angular two-point correlation function

Cð!Þ '
!
"T

T
ðn̂Þ"T

T
ðn̂0Þ

"

n̂(n̂0¼cos!
; (2)

where we have assumed statistical isotropy, and the expec-
tation is taken over the ensemble of universes. Cð!Þ is
related to the anisotropy power spectrum by

Cð!Þ ¼ 1

4$

X1

‘¼2

ð2‘þ 1ÞC‘P‘ðcos!Þ: (3)

The angular power spectrum C‘ is directly related to the
primordial power spectrum of curvature perturbations laid
down by inflation. The C‘ are given in terms of the pri-
mordial power spectrum by

‘ð‘þ 1ÞC‘

2$
¼

Z
dðlnkÞ½T‘ðkÞ+2"2

RðkÞ; (4)

where T‘ðkÞ is the transfer function and "2
RðkÞ is the

dimensionless curvature power spectrum

"2
RðkÞ '

k3PRðkÞ
2$2 ; (5)

where PRðkÞ is the curvature power spectrum which, at late
times and on subhorizon scales, is related to the matter
density power spectrum PðkÞ via PRðkÞ / k&4PðkÞ.
We would like to infer the primordial curvature power

spectrum "2
RðkÞ given the angular power spectrum C‘

measured from the CMB. There are two approaches we
could take to dealing with Eq. (4): the inverse problem
(discussed in this section) and the parametric forward
problem of starting with various power spectra and at-
tempting to fit the C‘ (discussed in the next section and
pursued in the rest of the paper).
The first option is to directly calculate "2

RðkÞ from the
measured angular power spectrum C‘. This inverse prob-
lem, where we know the result of the integration but not the
integrand, is difficult because the primordial power spec-
trum "2

RðkÞ is a three-dimensional quantity while the CMB
angular power spectrum C‘ is a two-dimensional, pro-
jected quantity. When the problem is discretized, as de-
scribed below, it becomes clear that the problem is
underdetermined and ill-conditioned, as is typical for in-
verse problems: small changes in the observed C‘ typically
lead to large changes in the inferred "2

RðkÞ.
Since we are examining the phenomenon of low power

on large angles in the CMB, it is really the Cð!Þ data that
we wish to be faithful to, so we take Cð!Þ as our starting
point rather than C‘. We start from the pixel-based mea-
surement of the angular correlation function (adopted from
[7]), which we denote with a tilde, ~Cð!Þ. In order to smooth
out the noise in the measured ~Cð!Þ, and thereby simplify
the inverse problem somewhat, we use a ‘‘smoothed
model’’ for ~Cð!Þ that is designed to agree with !CDM at
small angular scales while closely matching the actual
WMAP data at larger angular scales. To this end, we take
the !CDM Cð!Þ and modify it so that it smoothly tran-
sitions to zero for ! above roughly 60 degrees (Fig. 1).
Inverting Eq. (3), we can determine the angular power

spectrum coefficients ~C‘ inferred from our (smoothed)
pixel-based estimate ~Cð!Þ

~C ‘ ¼ 2$
Z 1

&1
P‘ðcos!Þ ~Cð!Þdðcos!Þ: (6)

We are now in a position to directly address the inverse
problem in Eq. (5). We solve this numerically by discretiz-
ing the integral

‘ð‘þ 1Þ ~C‘

2$
¼

Z
dðlnkÞ½T‘ðkÞ+2"2

RðkÞ (7)

'
X

k

F‘k"
2
RðkÞ: (8)
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The kernel F‘k is extracted from CAMB [16]. The basic
strategy here, distilled in diagrammatic form, is to start
from ~Cð!Þ to find the corresponding "2

RðkÞ:
~Cð!Þ ! ~C‘ ! "2

RðkÞ: (9)

We attempted two different methods of solving this
inverse problem, explained more fully in Appendix .
Both methods give similar results, shown with a sample
reconstruction in Fig. 9 in the Appendix. While this result
can only be suggestive (given that we used a smoothed
model for ~Cð!Þ and given that the inverse problem is ill-
conditioned and underdetermined), it does indicate that a
transition to low/zero power on large angular scales in ~Cð!Þ
can be explained by suppression at low k in the primordial
power spectrum "2

RðkÞ. If the transition to zero power in
~Cð!Þ occurs at about 60 degrees, as it appears to do in
the WMAP cut-sky data, then this corresponds to
power suppression at scales of k & 10&3:6 Mpc&1 ,
3:5- 10&4 h=Mpc.

III. SUPPRESSED PRIMORDIAL
LARGE-SCALE POWER

The inverse approach from the previous section and the
Appendix shows that the direct inversion of our smoothed
Cð!Þ leads to a suppression of PðkÞ at log10ðkc=
ðh=MpcÞÞ & &3:5, but the inversion is very noisy and
nonrobust, as expected. We now change tactics and move
to the alternative approach to Eq. (4). Instead of treating
this as an inverse problem, we now parameterize"2

RðkÞ and
treat this as a (much more stable) forward problem. We
utilize a three-parameter model parameterizing the sup-
pressed "2

RðkÞ with an exponential cutoff: following
[13,17], we write

"2
R;supðkÞ ¼

#
1& %e&ðk=kcÞ&

$
Asðk=k0Þns&1 (10)

' Sðk; kc; &; %Þ"2
R;unsupðkÞ; (11)

where we have implicitly defined the factor
Sðk; kc; &; %Þ ' 1& % expð&ðk=kcÞ&Þ by which the power
spectrum is suppressed. The parameter kc controls the k
value of the transition; & controls the sharpness of the
transition; and the extra parameter %, which is not found
in [13] or [17], allows the power spectrum to plateau to a
value other than zero at low k (SðkÞ ! 1& % for k ! 0).
Note that this parameterization has enough freedom to
mimic the results of the inversion shown in Fig. 9 almost
perfectly.
For a given set of parameters fkc; &; %g, we have a well-

defined "2
RðkÞ and can thus use the numerical kernel F‘k to

find the corresponding C‘’s, as in Eq. (8). We can then
determine which combinations of parameters giveC‘’s that
fit the observed WMAP C‘’s, and likewise the observed
Cð!Þ. We are now moving in a direction opposite the one in
Eq. (9):

FIG. 1 (color online). The angular two-point function Cð!Þ.
Measurement from the W-band WMAP 7-year maps, adopted
from [7], is shown here in blue, while our model in which Cð!Þ
smoothly transitions to zero at higher ! is shown in green. This
smoothed model mimics and idealizes the behavior of the
measured Cð!Þ at large scales but follows the !CDM prediction
(red curve) on smaller scales, below roughly 50 degrees. The
dotted line shows zero correlation for reference.

FIG. 2 (color online). Illustration of what the suppression
factor SðkÞ looks like for various combinations of parameters.
The default parameters are logðkcÞ ' log10ðkc=ðh=MpcÞÞ ¼
&2:85, & ¼ 3:0, and % ¼ 1:0. In each plot, one of these pa-
rameters is varied, while the other two are held fixed at their
default values.
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"2
RðkÞ ! C‘ ! Cð!Þ: (12)

Plots of the suppression factor SðkÞ for several sample
parameter values are shown in Fig. 2.

When varying the suppression parameter kc (and, op-
tionally,& and%), we have not simultaneously varied other
parameters that describe the primordial power spectrum,
such as the dark matter and baryon densities, spectral
index, etc. The reason, in addition to simplicity, is that
none of these other parameters can mimic the large-scale
suppression of power, and therefore, power suppression
is not degenerate with other cosmological parameters.
The one possible exception would be primordial non-
Gaussianity of the local type, which does indeed affect
the power spectrum of halos (and, thus, galaxies) on large
scales [18]; however, including this degeneracy is beyond
the scope of this project.

IV. STATISTICAL TESTS

We are interested in how a suppressed primordial power
spectrum, as given in Eq. (11), affects both C‘ and Cð!Þ.
Figures 3 and 4 show examples of how these quantities
vary with changes in the parameters.

More specifically, we look to quantify whether, and to
what extent, a suppressed primordial power spectrum gives
a better fit to observations of C‘ (typically inferred using
maximum likelihood-type techniques at large scales) and
Cð!Þ estimated on cut-sky maps using a pixel-based esti-
mator. We restrict attention here to varying kc rather than
all three parameters, since variations in kc have the greatest
effects on the likelihood, and also since kc directly controls
the scale at which the suppression occurs.

In the case of C‘, it is relatively straightforward to
quantify the fit between a given suppressed model and
the WMAP data. We simply generate a suppressed model
using CAMB and then feed the resulting C‘ spectrum into
the WMAP likelihood code1 to obtain a goodness-of-fit
criterion. Further details are covered in Sec. IVA.

Quantifying the fit between a suppressed model Cð!Þ
and theWMAP data requires a bit more work. In Sec. IVB,
we examine the statistic S1=2, which gives a measure of
correlations in the CMB above scales of 60.. In analogy to
our treatment of the angular power spectrum, we define a
'2 statistic to quantify the goodness-of-fit between a given
suppressed model and the WMAP data.

A. Angular power spectrum C‘

To quantify how well the suppressed angular power
spectrum C‘;sup fits the WMAP observations C‘;WMAP, we
use the WMAP likelihood code to compute '2

C‘;sup
ðkcÞ ¼

&2 lnLsupðkcÞ from C‘;sup. We likewise compute

'2
C‘;unsup

¼ &2 lnLunsup from the unsuppressed !CDM

power spectrum C‘;unsup, finding the difference

"'2
C‘
ðkcÞ ¼ '2

C‘;sup
ðkcÞ & '2

C‘;unsup
(13)

as a final quantification of how well the suppressed model
fits C‘ data relative to the unsuppressed !CDM model.
A negative"'2

C‘
indicates that the suppressed model is a

better fit to the WMAP data than !CDM. For models with
a large amount of suppression (i.e., high kc), the suppressed
model affects the C‘ at increasingly smaller scales (higher
‘), making them inconsistent with the C‘ measured from
WMAP and thus making the quantity "'2

C‘
large and

positive.

FIG. 3 (color online). Effects of the suppression on the angular
power spectrum C‘. The default parameters are again logðkcÞ '
log10ðkc=ðh=MpcÞÞ ¼ &2:85, & ¼ 3:0, and % ¼ 1:0. In each
panel, one of these parameters is varied, while the other two
are held fixed at their default values. The WMAP measurements
are shown as points with measurement error bars (too small to
see in this plot). Cosmic variance (assuming full-sky measure-
ments) is plotted as a band around the most heavily suppressed
model (green curve) in each panel.

1Available from http://lambda.gsfc.nasa.gov/product/map/dr4/
likelihood_info.cfm.
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The results are shown further below in Fig. 6, with
discussion in Sec. V.

B. Angular correlation function Cð!Þ
We now study to what extent the power suppression

from our model can account for the low correlations ob-
served above 60. on the cut-sky WMAP maps [1,5,6]. The
statistic S1=2, defined in [1], quantifies the lack of correla-
tion above 60.

S1=2 '
Z 1=2

&1
½Cð!Þ+2dðcos!Þ: (14)

It is possible to calculate S1=2 directly from the C‘’s:

S1=2 ¼
1

ð4$Þ2
X

‘;‘0
ð2‘þ 1Þð2‘0 þ 1ÞC‘I‘;‘0 ð1=2ÞC‘0 : (15)

For details of how the quantity I‘;‘0 is calculated, see
Appendix A of the published version of Ref. [5].

We would like to generate statistical realizations of the
angular power spectrum based on the underlying primor-
dial power spectrum "2

R. To do that, we first calculate the
expected angular power spectrum C‘;original (using Eq. (7)),
and then create realizations using

C‘;realization ¼ fC‘;original (16)

where the multiplicative factor

f ¼ #ðk ¼ ð2‘þ 1Þfsky=2; ! ¼ 2Þ
ð2‘þ 1Þfsky

; (17)

the numerator is drawn from a gamma distribution with
scale parameter ! ¼ 2 and shape parameter k ¼
ð2‘þ 1Þfsky=2, and the denominator ensures that the
mean of f is unity. The reason we draw from a gamma
distribution is that this is the appropriate generalization of a
'2 distribution when the number of degrees of freedom is
noninteger, as it is above for fsky ! 1; #ðk ¼ r=2; ! ¼ 2Þ
is identical to a '2 distribution for integer r degrees of
freedom. We adopt fsky ¼ 0:75 for the remainder of this
paper. [Modeling of the noise is unnecessary since cosmic
variance dominates at these large scales.]
We examine the resulting distribution of S1=2 values by

performing 100 000 realizations of the C‘ for 2 / ‘ / 50
(going to higher values of ‘ barely changes the S1=2 statis-
tic, since scales above 60. are mostly affected by ‘ & 10),
assuming central values C‘;original calculated based on the
suppressed primordial power spectrum as in Eq. (8), and
calculating S1=2 for each set of C‘;realization. We find that
S1=2 is distributed approximately according to a lognormal
distribution, both for suppressed and unsuppressed models,
and regardless of the particular value of kc. This is illus-
trated in Fig. 5.
In the sample suppressed model (log10ðkc=ðh=MpcÞÞ ¼

&2:85) shown in Fig. 5, the histogram of S1=2 peaks at
1000 ð(KÞ4, has a mean of 8300 ð(KÞ4, and a median of
4300 ð(KÞ4. The histogram of lnðS1=2Þ peaks at 8.4, cor-
responding to an S1=2 of 4400 ð(KÞ4. These values are all
much lower than the mean value expected in the best-fit
!CDM cosmology (about 50; 000 ð(KÞ4), but bigger than
the value measured in WMAP cut-sky maps (about
1000 ð(KÞ4).
In order to calculate a '2 statistic in analogy to the"'2

C‘

above, we first transform the lognormal S1=2 distribution to
a Gaussian by taking the natural log of the S1=2 values. The
result, a nearly perfect Gaussian, is shown for the unsup-
pressed and the sample suppressed model in the lower
panel of Fig. 5. We can then calculate the '2 corresponding
to the probability of getting a certain value Sobs1=2 of S1=2:

'2
S1=2;sup

¼
#lnðS1=2ðkcÞÞ & lnðSobs1=2Þ

)lnðS1=2Þ

$
2

(18)

where lnðS1=2ðkcÞÞ is the mean over the realizations
of lnðS1=2Þ for the given kc and )lnðS1=2Þ is the standard

FIG. 4 (color online). Effects of the suppression on the real-
space two-point correlation function in the CMB, Cð!Þ. The
default parameters are again logðkcÞ ' log10ðkc=ðh=MpcÞÞ ¼
&2:85, & ¼ 3:0, and % ¼ 1:0. In each plot, one of these pa-
rameters is varied, while the other two are held fixed at their
default values.
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deviation over all realizations. For the purposes of this
paper, we choose Sobs1=2 ¼ 1000 ð(KÞ4, since this is

(roughly) the value of S1=2 favored by the cut-sky WMAP
observations [1,5–7].

We also performed 6 500 000 realizations of the C‘

assuming central values C‘;original corresponding to the
unsuppressed !CDM model. From the S1=2 values associ-
ated with these realizations, we calculate '2

S1=2;unsup
in exact

analogy to Eq. (18), and then compute

"'2
S1=2

ðkcÞ ¼ '2
S1=2;sup

ðkcÞ & '2
S1=2;unsup

: (19)

A combined statistic that takes into account both the
measurements of the angular power spectrum C‘ and
the total angular correlation above 60. parameterized by
the statistic S1=2, is then given by2

L ðkcÞ ¼ exp
%
&
"'2

C‘
ðkcÞ

2

&
- exp

%
&
"'2

S1=2
ðkcÞ

2

&

' PðC‘Þ - PðS1=2Þ: (20)

Both PðS1=2Þ and PðC‘Þ are normalized so that their values
for the unsuppressed !CDM model are 1. Hence PðS1=2Þ
and PðC‘Þ should be interpreted as the improvement (rela-
tive to fiducial unsuppressed !CDM) in how well a given
suppressed model fits the WMAP data for C‘ and S1=2.
Note that we are not taking the correlation between the
(maximum likelihood) C‘ and the (pixel-based) S1=2 into
account in our statistic LðkcÞ. We define the statistic in the
simplest possible way, by multiplying the individual like-
lihoods in C‘ and S1=2. This simple combination is suffi-
cient, since it favors suppression on scales between the
scales which PðS1=2Þ and PðC‘Þ independently prefer (this
is confirmed in Fig. 6), and thus captures the essence of
how these two quantities jointly favor suppression. Note
that the main results of this paper, presented in Sec. VI, do
not depend on exactly how we combine the likelihood in
the measured full-sky C‘ and cut-sky S1=2; we only use
LðkcÞ from Eq. (20) to get a rough idea about the scale at

FIG. 5 (color online). The distribution of our realizations of
the statistic S1=2 for the unsuppressed (red histograms) and a
sample suppressed (green histograms) model. The suppressed
model has log10ðkc=ðh=MpcÞÞ ¼ &2:85, & ¼ 3:0, and % ¼ 1:0,
and has a better fit than the unsuppressed model by "'2

S1=2
¼

&7:9. The bottom panel clearly shows that the distribution of
S1=2 is lognormal, whether or not the underlying power spectrum
is suppressed.

FIG. 6 (color online). The improvements in PðS1=2Þ, PðC‘Þ,
and the product thereof—all relative to the unsuppressed-
model—are plotted as a function of kc. The top panel shows
PðS1=2Þ divided by 10 and PðC‘Þ multiplied by 10. The PðS1=2Þ
values are based on 100 000 realizations of the C‘’s as described
in the text. The bottom panel shows the same information as the
top panel, but puts it in terms of chi-square goodness-of-fit
statistics. The maximum improvement in PðS1=2Þ - PðC‘Þ, rela-
tive to the unsuppressed !CDM model, is a factor of 8.7
("'2

S1=2
þ "'2

C‘
¼ &4:3), occurring at log10ðkc=ðh=MpcÞÞ ,

&3:3. All calculations were performed assuming fsky ¼ 0:75.

2Since we are interested in how likely the low value of S1=2 ,
1000 ð(KÞ4 is, given suppression of power, we could have
simply calculated PðS1=2 < 1000Þ—the probability that S1=2 is
as low as 1000—instead of performing the more complicated
calculation above to obtain PðS1=2Þ. However, the danger in
doing this is that suppression on small enough scales leads to
values of S1=2 that are much lower than 1000, and then the
probability that S1=2 is as high as 1000 should become low.
Considering the Gaussian likelihood in lnðS1=2Þ, as we have
done, correctly penalizes values of S1=2 that are too low or too
high.
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which suppression is favored by the data if both measure-
ments are taken at face value. We then proceed in Sec. VI
to study the detectability of suppressed power correspond-
ing to a range of values of the suppression scale kc; these
results do not depend on how PðC‘Þ and PðS1=2Þ are
combined.

We are now in a position to determine which values of
the suppression scale kc improve the joint fit to the angular
power spectrum C‘ and the cut-sky measurements of the
angular correlation function Cð!Þ above 60. (quantified by
the statistic S1=2).

V. CURRENT CONSTRAINTS FROM THE CMB

The top panel of Fig. 6 shows PðS1=2Þ, PðC‘Þ, and their
product as a function of kc, with & held fixed at 3.0 and %
held fixed at 1.0. The bottom panel displays the same result
using '2

S1=2
and '2

C‘
on the vertical axis instead of PðS1=2Þ

and PðC‘Þ.
As indicated in Fig. 6, introducing suppression in the

primordial power spectrum can increase the likelihood of
both the observed C‘ and the observed S1=2, but these two
observations favor suppression at different scales. The
likelihood of the C‘ is improved by at most a factor
of 2.2, with the improvement peaking at log10ðkc=
ðh=MpcÞÞ ¼ &3:4, while greater suppressions can improve
the likelihood of the S1=2 data by huge factors of up to 131,
peaking around log10ðkc=ðh=MpcÞÞ ¼ &2:6 (note the plot-
ting scale of likelihoods in Fig. 6, where individual like-
lihood curves are divided or multiplied by 10 for visual
clarity). The C‘ measurements thus favor suppression on
very large scales, while the cut-sky S1=2 favor suppression
all the way down to relatively small scales, where suppres-
sion is overwhelmingly ruled out by C‘ data. This is
another reminder of just how low the pixel-based cut-sky
measurement of S1=2 is. It is also a reminder of the fact that
such a low value of S1=2 represents a conspiracy of the
low-‘ C‘ values: the WMAP cut-sky data indicate that S1=2
is sufficiently low as to strongly (by factors of over 100 in
likelihood) favor suppression of primordial power at scales
corresponding to k ¼ 10&2:6 , 0:003 h=Mpc, even though
the maximum likelihood C‘ favor suppression only
weakly, at far larger scales, and overwhelmingly reject
the possibility of suppression at the scales favored by the
cut-sky S1=2. A sky with such a low S1=2 as the WMAP cut-
sky ought to have C‘’s that are even more suppressed than
the most suppressed model in Fig. 3. What we see instead
are low-‘ C‘ values that are not so close to zero, but which
instead conspire with one another in just such a manner as
to produce an exceptionally low value of S1=2 anyway [5].

In any case, we have calculated the product statistic
LðkcÞ ¼ PðS1=2Þ - PðC‘Þ, or alternatively "'2

S1=2
þ

"'2
C‘
, as a measure of how well a given suppressed model

fits the WMAP data in both C‘ and Cð!Þ (the latter via
the specific statistic S1=2). Since C‘ and S1=2 data favor

suppression at such different scales, there should be a
‘‘sweet spot’’ somewhere between the peak in PðC‘Þ and
the peak in PðS1=2Þ, where suppression is moderately fa-
vored by both C‘ and S1=2, or heavily favored by one and
still allowed by the other. This is indeed what we find, as
indicated by the red curve in Fig. 6. Because suppression
on overly small scales (below log10ðkc=ðh=MpcÞÞ ! &3:2)
brings the C‘ data for the suppressed model into severe
conflict with the WMAP C‘’s, the peak of the L curve
occurs above these scales, even in spite of the huge gains in
likelihood that PðS1=2Þ gives us at much smaller scales,
where the gain in PðS1=2Þ is still substantial and the C‘ data
still favor—or at least do not heavily disfavor—suppres-
sion. The maximum improvement possible in PðS1=2Þ -
PðC‘Þ, relative to the unsuppressed !CDM model, is
a factor of 8.7 ("'2

S1=2
þ "'2

C‘
¼ &4:3), occurring at

log10ðkc=ðh=MpcÞÞ , &3:3.
The WMAP likelihood code uses a Bayesian (Gibbs

sampler) maximum likelihood method (e.g. [19]) to com-
pute the fiducial C‘’s at the multipoles ‘ / 32 [20,21]. We
experimented with running the likelihood code using
pseudo-C‘ estimates at low multipoles3 and discovered
that in this case, suppression is much more heavily favored
by the C‘ likelihood than it is in the (presumably more
accurate) Gibbs sampler, or else a similar Maximum
Likelihood Estimate (MLE) method. This result is ex-
pected, and holds because the C‘’s that result from the
pseudo-C‘ estimates are lower than those found using the
Gibbs sampler method (see e.g. Fig. 15 in [15]), and
suppression fits them better. In this case we can get "'2

C‘

as low as &7:6, corresponding to improvements in PðC‘Þ
by factors of up to 44 (as opposed to roughly 2 in the best-
case scenarios discussed above).

VI. FUTURE DETECTABILITY USING
GALAXY SURVEYS

The results of the previous section indicate that suppres-
sion of primordial power on large scales can increase the
likelihood of both the observed C‘ angular power spectrum
and the observed cut-sky value of S1=2, provided the sup-
pression ‘‘kicks in’’ on appropriate scales. Now we turn to
the question of whether large-scale suppressed power
could be detected in the matter power spectrum as mea-
sured by upcoming redshift surveys such as the Large
Synoptic Survey Telescope (LSST; [22]). If the zero cor-
relation signature of large-angle Cð!Þ in the CMB is an
authentic effect indicating a deficit of power on the
Universe’s largest scales, is it possible to cross-check and
verify this result using large-scale-structure data?

3We did this by turning off the USE_LOWL_TT option in the test.
F90 routine of the WMAP likelihood code, and also switching off
polarization by turning off the USE_TE and USE_LOWL_POL

options.
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Given suppression of the primordial power spectrum
"2

RðkÞ as parameterized in Eq. (11), the matter power
spectrum will be suppressed by the same factor as "2

RðkÞ:

PsupðkÞ ¼ SðkÞPunsupðkÞ (21)

where SðkÞ ' Sðk; kc; &; %Þ is the same as before. We wish
to determine whether this suppressed matter power spec-
trum could be distinguished from the unsuppressed!CDM
matter power spectrum PunsupðkÞ by a large-volume red-
shift survey.

When measuring the matter power spectrum with a
redshift survey, the error bars in each thin slice in redshift
dz and wave number dk are given by the Feldman-Kaiser-
Peacock (FKP; [23]) formula

)2
Pðk; zÞ ¼

4$2Pðk; zÞ2
k2dkdVeff

(22)

where the effective volume element dVeffðk; zÞ is related to
a comoving volume element via

dVeffðk; zÞ ¼
#

nðzÞPðk; zÞ
1þ nðzÞPðk; zÞ

$
2
dVsurveyðzÞ: (23)

The differential survey volume is given in terms of dz via

dVsurvey ¼ $survey
rðzÞ2
HðzÞ dz; (24)

where rðzÞ is the comoving distance as a function of
redshift, HðzÞ is the Hubble parameter as a function of
redshift, and $survey is the angular size of the survey in
steradians.

The number density of galaxies nðzÞ can be found from

nðzÞ ¼ mðzÞ - Ntot

$survey

R
mðzÞ½rðzÞ2=HðzÞ+dz (25)

where the second term on the right-hand side provides a
normalization. Here Ntot is the total number of galaxies in
the survey and mðzÞ is the (unnormalized) number density
of galaxies, whose functional form we adopt to be

mðzÞ ¼ z2e&z=z0

2z30
: (26)

We take z0 ¼ 0:35, corresponding to the density roughly
expected in the imaging portion of the LSST survey [24],
and assume a 23 000 square degree redshift survey with
0.5, 5 or 50 spectra per square arcminute. [Note that the 0.5
and 5 gal=arcmin2 cases are realistic, being targeted by
surveys in the near future [25,26], while 50 gal=arcmin2

corresponds to the more aggressive case where spectra of
most galaxies in the imaging portion of the survey are
taken.]

Given a suppressed power spectrum as in Eq. (21), we
can calculate

d'2 ' ½Punsupðk; zÞ & Psupðk; zÞ+2
)2

P

(27)

¼
#

nP

1þ nP

$
2
#
$surveyk

3

4$2P2

$#
r2

H

$

- ½Punsup & Psup+2dðlnkÞdz (28)

and then integrate in order to find the '2 statistic for how
well the survey can distinguish between the suppressed and
unsuppressed models.
Note that in the above two equations, wherever a

P ' Pðk; zÞ occurs without being marked as either sup-
pressed or unsuppressed, this is intended to indicate that
either Psup or Punsup may be used. Whether we use Psup or
Punsup depends entirely on which question we are trying to
answer: If we use suppressed-model error bars, then this
'2 ' '2

sup indicates at what confidence level the survey can
rule out suppression. Meanwhile, if we use unsuppressed-
model error bars, then '2 ' '2

unsup indicates at what con-
fidence level the survey can rule out the unsuppressed
!CDM model. Ruling out !CDM is considerably more
ambitious than ruling out suppression, since the error bars
tend to be smaller when they are based on the suppressed
model (due to the fact that )P / Pþ 1=n).
This is illustrated in Fig. 7. The plot shows the unsup-

pressed matter power spectrum, along with the suppressed
version for a particular choice of parameters. The goal of
calculating '2 as in Eq. (28) is to determine whether the
unsuppressed power spectrum can be distinguished from
the suppressed power spectrum for a given set of parame-
ters within the error bars that would be set by an LSST-like

FIG. 7 (color online). Matter power spectrum PðkÞ with and
without suppression. In the suppressed model, the parameters are
log10ðkc=ðh=MpcÞÞ ¼ &2:85, & ¼ 3:0, and % ¼ 1:0. The power
spectrum is shown at z ¼ 0 for a redshift survey with 50 galaxies
per square arcminute. The error bars are based on the suppressed
power spectrum, which means that a sufficiently high '2 value
here would indicate the possibility of ruling out suppression. The
value of '2 turns out to be 57.8, good enough to rule out
suppression at roughly 7:6). (Bins without vertical error bars
contribute nothing to the '2—in effect, their error bars are
infinite.) Note the log scale on both axes.
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survey. For the case pictured—in which the unsuppressed
model is taken as true, and the error bars are calculated
based on the suppressed model which is being tested—it is
possible to rule out suppression with high statistical sig-
nificance. The opposite is, however, not true: if the sup-
pressed model is true, it will be very difficult to rule out the
standard unsuppressed !CDM due to its larger errors.

For example, survey measurements that fell along the
curve predicted for the unsuppressed PðkÞ would, in the
case shown in Fig. 7, fall outside some of the suppressed
model error bars, and ultimately combine to give a total '2

of 57.8, given the survey parameters outlined in the next
paragraph. Meanwhile, taking the unsuppressed model as
fiducial would allow for the possibility of survey measure-
ments ruling out !CDM, but the total '2 would shrink to
2.0 due to the larger error bars.

The final results for the detectability of suppression
are shown in Fig. 8. Instead of plotting '2 we show the

number of sigmas (i.e.
ffiffiffiffiffiffiffiffiffiffi
"'2

p
) at which suppressed

and unsuppressed power spectra can be distinguished as-
suming 1. of freedom on the measurements of PðkÞ. The
figure shows the results as a function of kc, holding the
parameters & and % fixed at 3.0 and 1.0, respectively, and
assuming three different possible values for the number of
galaxies observed per square arcminute (0.5, 5, and 50) in
the spectroscopic survey. We also examined the results
with different values of & and %, but changes in these
parameters do not greatly affect the results unless % be-
comes close to zero. The scale of the suppression as
determined by kc is by far the greatest contributing factor
in determining whether a given suppressed model will be
detectable to a large-volume redshift survey.

Comparison of Fig. 8 with Fig. 6 shows that if present
data for C‘ and Cð!Þ truly point to suppression of the
primordial power spectrum, that suppression is likely on
scales that are too large for foreseeable redshift surveys to
either detect or rule out. The most optimistic scenario
shown in Fig. 8, in which there are 50 galaxies per square
arcminute in the spectroscopic survey, still cannot (at 3))
rule out suppression if log10ðkc=ðh=MpcÞÞ & &3:0, and
cannot rule out !CDM unless the Universe actually
shows suppression of the matter power spectrum on
much smaller scales, with log10ðkc=ðh=MpcÞÞ * &2:7.
Suppression on scales this small is strongly disfavored by
WMAP C‘ observations. Meanwhile, the scales on which
WMAP observations tend to favor suppression (log10ðkc=
ðh=MpcÞÞ ! &3:3) are nearly inaccessible to galaxy sur-
veys. This is a reflection of the fact that the CMB probes
much larger scales than even the largest-volume redshift
surveys of the near future.
If only the cut-sky S1=2 statistic is taken into account,

CMB observations heavily favor suppression on scales
where suppression would be readily detectable by redshift
surveys, at several sigma, for number densities of galaxies
expected in near-future spectroscopic samples.

VII. CONCLUSIONS

In this paper we have studied the suppression of primor-
dial power on large scales as a possible explanation for the
CMB observations. Without considering particular physi-
cal models for the suppression, we adopted a more prag-
matic approach and addressed the following question: do
the suppressed models actually improve the likelihood of
the observed CMB sky and, if so, can the upcoming large-
volume galaxy redshift surveys be used to confirm this
suppression?
We first motivated our search by attempting to invert the

observations of the angular power spectrum C‘ in order to
reconstruct the three-dimensional power spectrumPðkÞ. As
expected, this procedure is very unreliable and noisy due to
the nature of the inverse problem; nevertheless, we ob-
tained useful hints for the form of the suppression that we
should be considering (see Fig. 9 in the Appendix).
We then proceeded to use a parametric model of the

suppression (Eq. (11)), with the most important parameter
(and the only one we varied in our analysis) being the
suppression scale kc. We found (see Fig. 6) that the angular
power spectrum C‘, traditionally inferred using maximum
likelihood-type estimators, prefers a moderate suppression
of power; conversely, the cut-sky pixel-based correlation
Cð!Þ prefers a stronger suppression. It is also possible that
both the full-sky measurement of C‘ and the cut-sky
measurement of Cð!Þ are not anomalous, but rather that
the underlying cosmological model is not statistically
isotropic. While it is not clear how to write down
the combined likelihood in the full-sky and cut-sky
measurements without assuming statistical isotropy, our

FIG. 8 (color online). The detectability of suppression as a
function of kc. These results apply to a survey that extends from
z ¼ 0 to z ¼ 3 covering 23 000 square degrees of sky. From
bottom to top in each set of lines, we assume 0.5, 5 or 50
(spectroscopic) galaxies per square arcminute. [Note that the
0:5 gal=arcmin2 case is entirely realistic in the near future,
corresponding to the number density of spectra planned by e.g.
BigBoss [25], while 50 gal=arcmin2 corresponds to the more
aggressive case where spectra of most galaxies in a large-volume
imaging survey are taken.] Here & is fixed at 3.0 and % is fixed
at 1.0.

DETECTABILITY OF LARGE-SCALE POWER . . . PHYSICAL REVIEW D 82, 123009 (2010)

123009-9



simple choice (Eq. (20)) prefers the suppression at
log10ðkc=ðh=MpcÞÞ , &3:3, and increases the combined
likelihood by about a factor of 8.7, corresponding to
"'2 ¼ &4:3.

Detectability of such a large-scale suppression with
future surveys will be difficult, however, as shown in
Fig. 8. In order to detect the suppression favored by the
CMB angular power spectrum, an LSST-type survey, with
a volume of about 100 Gpc3 and a very large number of
galaxy redshifts measured, will be necessary. Roughly
speaking, a statistically significant ruling-out of the power
suppression will require spectra taken of most galaxies in
the imaging portion of the survey; this will require a
!10-meter ground-based, or a !1:5-meter space-based,
telescope dedicated to taking spectra. Alternatively, photo-
metric redshift techniques may someday become so accu-
rate that our preferred case of ‘‘nearly all galaxies being
spectroscopic’’ is validated relatively straightforwardly.

Additionally, we point out that suppressed power will be
more easily ruled out (given that the true power is not
suppressed) than vice versa, essentially because the model
being tested has smaller cosmic-variance errors if it has
lower power. Therefore, if indeed we live in the Universe
with the true power spectrum of density fluctuations being
standard inflationary power-law (i.e. unsuppressed), then,
for example, a survey covering half the sky with 5 galaxy
redshifts per square arcminute will be able to rule out
power suppressions on scales above roughly 1 Gpc at 3)
confidence; suppression extending to smaller scales is even
easier to detect.

Overall, we are optimistic about the prospects of galaxy
surveys to test models of the suppressed large-scale power
of primordial fluctuations. Dark Energy Survey (DES;
[27]), Baryon Oscillation Spectroscopic Survey (BOSS;
[28]) and, especially, very-large-volume surveys such as
the LSST [22], Joint Dark Energy Mission (JDEM; [29]),

Euclid [30], and BigBoss [25], will be able to test, at least
in part, observations of CMB experiments on the largest
observable scales.
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APPENDIX: DIRECT INVERSION TO
OBTAIN THE PRIMORDIAL

POWER SPECTRUM

As pointed out in Sec. II, the CMB angular power
spectrum C‘ is given in terms of the primordial power
spectrum by

‘ð‘þ 1ÞC‘

2$
¼

Z
dðlnkÞ½T‘ðkÞ+2"2

RðkÞ (A1)

¼
X

k

F‘k"
2
RðkÞ; (A2)

where the discretized numerical kernel F‘k is extracted
from CAMB [16]. Trying to find "2

RðkÞ from a given set
of C‘’s (which themselves correspond to a given Cð!Þ) is
an inverse problem, which we attempted to solve using two
different strategies. [We also attempted a third, doing a
simple matrix inversion of the kernel, but this strategy
simply does not work due to the extreme ill-conditioning.]
The first is the Richardson-Lucy method, an algorithm that
iteratively solves for the portion of the sum that multiplies
the kernel [31–34]:

"2
iþ1ðkÞ ¼ "2

i ðkÞ
X‘max

‘¼‘min

~F‘k
Cobs
‘

Ci
‘

; (A3)

where Cobs
‘ are the observed C‘’s (in this case, the C‘’s

corresponding to the smoothed Cð!Þ shown as the green
curve in Fig. 1), Ci

‘ is calculated from Eq. (A2) for each
iteration i, and

~F ‘k ¼ F‘k

(X

‘

F‘k: (A4)

The method converges to a solution for "2
RðkÞ, but has no

special properties guaranteeing convergence or smooth-
ness of the solution.
A second strategy makes use of linear regularization,

which is one way of putting extra constraints on the solu-
tion. The angular power spectrum C‘ is a two-dimensional
quantity, while the primordial power spectrum "2ðkÞ is
three-dimensional, and so finding the latter from the former
is an underdetermined problem. Linear regularization

FIG. 9 (color online). Sample results of the direct inversion.
The green points represent the factor SðkÞ (see definition of SðkÞ
in Eq. (11)) by which the primordial power spectrum "2

R is
suppressed as determined by the regularized inversion from
Eq. (A2). The angular power spectrum C‘ used in this inversion
corresponds to the Cð!Þ shown as the smoothed green curve in
Fig. 1, though we could have in principle used the actual WMAP
data shown as a blue curve in the same figure.
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compensates for the fact that the inverse problem is
underdetermined.

Numerical Recipes [35] outlines one method of regula-
rizing, which favors a constant solution and penalizes
deviations from this. The goal here is to solve the equation

Ku ¼ b; (A5)

where we refer to matrix K as the kernel; b is a known
vector; and u is the vector to be solved for. Regularization
does this by solving the regularized equation

ðKTK þ *HÞu ¼ KTb; (A6)

where H is a matrix that takes a different form depending
on whether the regularization is linear (penalizing devia-
tions from a constant solution), quadratic, etc., and * is a
parameter that controls how strong the regularizing con-
straint is: higher values of * impose stronger regularizing
constraints on the solution. In our case, we take the kernel
K to be F‘k, u to be a column vector corresponding to
"2

RðkÞ, and b to be a column vector corresponding to Cobs
‘ .

We adopt H corresponding to linear regularization.
It is difficult to get consistent results from either of these

strategies, given the ill-conditioned and underdetermined
nature of the inverse problem. This is part of the reason
why we chose to focus most of our attention on doing the
forward problem outlined in Eq. (12). However, to the
extent that consistent results are possible, both strategies
give similar solutions. A sample result for the suppression
factor SðkÞ (see definition of SðkÞ in Eq. (11)) is shown in
Fig. 9.

The most notable feature of the inversion result is that it
transitions to near-zero power at large scales/low k, with a
form suggesting an exponential cutoff; this provides moti-
vation for adopting the form we did for parametrizing "2

R
in the forward problem (Eq. (11)). Unfortunately, a direct
inversion of the sort described in this Appendix requires
some fine-tuning in order to get results of this quality,
which is why we have emphasized that these results are
suggestive rather than conclusive. The results in Fig. 9
(which correspond directly to the regularized inversion,

but are also similar to the results of the Richardson-Lucy
method) rely on careful tuning of the regularization pa-
rameter * to ensure that the result does not become nega-
tive at low k. [If the regularization is ‘‘not strong enough,’’
with * too small, deviations from a constant solution are
not sufficiently penalized to prevent the solution becoming
negative. If the regularization is ‘‘too strong,’’ with * too
large, the solution simply stays constant at roughly 1. Only,
in particular, intermediate cases does it transition nicely
from 0 to 1.]
In addition to this issue, the fact that the inversion results

show SðkÞ of exactly 1 at high k is a result of a mechanism
that was put into the solution process by hand. Without
enforcing the high k value, the results often converge to a
constant which deviates from unity at high k. To compen-
sate for this and for the issue that the solution does not
always asymptote to nonnegative values at low k, we
attempted a modification of the regularized inversion in
which deviations from 0 and 1 are penalized (rather than
deviations from a constant solution, as in linear regulari-
zation). The solutions we obtained using this method have
the same general form as shown in Fig. 9, with a transition
from 0 to 1 somewhere between log10ðkc=ðh=MpcÞÞ ¼ &3
and &4, but the results are even noisier than the results
obtained with Richardson-Lucy and linear regularization.
When the WMAP data was used directly as input, rather

than the C‘ corresponding to the smoothed model in Fig. 1,
solutions to the inverse problem were even noisier.
Finally, neither the regularized inversion nor the

Richardson-Lucy method give error bars with which the
precision of the inversion might be judged. For all these
reasons, the results of the direct inversion cannot be taken
as anything more than suggestive. With that caveat, it is
still notable that results of both the regularized inversion
and Richardson-Lucy method do consistently suggest a
transition from suppressed power at low k to unsuppressed
power at high k. This provides a hint of the fact that the
likelihood of the WMAP C‘ and Cð!Þ data may be in-
creased by introducing suppression, as explored much
more fully, and confirmed, in Sec. IV and V.
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