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Distribution of singularities in the cosmic microwave background polarization
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The polarization of the cosmic microwave background radiation will have a distribution of singularities
and antisingularities, points where the polarization vanishes for topological reasons. The statistics of
polarization singularities provides a nontrivial scheme to analyze the polarization maps that is distinct
from the usual two-point correlation functions. Here we characterize the statistics of the singularity
distribution in simulated polarization maps, and make predictions that can be compared with ongoing and
upcoming observations. We use four different characterizations: the number density of singularities, the
nearest-neighbor distance between singularities, the critical exponent � that describes the scaling of total
topological charge q within a closed curve of length L (q / L�), and the angular two-point angular
correlation functions for singularities of equal and opposite charge. In general, we find that the number
density of singularities is sensitive to the underlying cosmology but the distribution is uniform random
except on small scales where singularities of the same charge repel and those of opposite charge attract.
These conclusions appear to be extremely robust with respect to variations in the underlying cosmological
model and the presence of non-Gaussianity; the only exception we found are cases where statistical
isotropy is grossly violated. This suggests that, within the assumption of statistical isotropy, the
distribution is a robust feature of the last scattering surface and potentially may be used as a tool to
discriminate effects that occur during photon propagation from the last scattering surface to the present
epoch.
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FIG. 1. Fundamental singularities of charge �1=2. Each dash
represents the linear polarization of the CMB radiation at that
point. The � marks the position of the singularity where the
linear polarization vanishes for topological reasons.
The cosmic microwave background (CMB) anisotropies
are linearly polarized at the 10% level. The polarization,
predicted almost four decades ago [1], has recently been
observed [2,3] and efforts are underway to map it on
increasingly smaller scales. The polarization is most easily
described in terms of so-called E and B modes [4,5]. The
two-point correlation function of E and Bmaps is typically
taken as a statistic of choice to represent the polarization
properties of the map. The two-point function fully de-
scribes the map if it is Gaussian random and isotropic,
otherwise higher-order correlation functions are necessary
for the full description (for a review of CMB polarization,
see e.g. Ref. [6]).

In this paper we explore another, independent and
largely unexplored signature of CMB polarization: the
distribution of singularities [7–9]. The CMB polarization
map (denoted P) corresponds to a map from the sky—the
two dimensional sphere, S2—to the space of headless
vectors, S2=Z2, given by the phase and amplitude of po-
larization:

P:S2 ! S2=Z2: (1)

Such maps are known to contain topological features that
are characterized by points with vanishing polarization,
known as ‘‘singularities’’ or ‘‘defects,’’ and each singular-
ity carries a topological charge. The total topological
charge within a closed contour on the sky can be calculated
as an integral over the contour. This is very similar to
Gauss’ law that is used to determine the electric charge
within a closed surface by integrating the electric field over
the surface. The polarization singularities have fundamen-
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tal charge �1=2. The antisingularities have fundamental
charge �1=2. These fundamental singularities are shown
in Fig. 1. They can be combined to form three kinds of
double singularities as shown in Fig. 2: ‘‘knots’’ and
‘‘foci,’’ which have charge �1, and ‘‘saddles’’ with charge
�1 [7]. The total charge in a given map is zero for all
practical purposes, as discussed in the next section.

Polarization of the CMB, like the temperature, provides
an extremely important window to the processes in the
early universe. In fact, the polarization has some advan-
tages over the temperature, and, in particular, it offers a
more direct probe of the recombination era at large angular
scales [10]. It is therefore worthwhile to consider alterna-
tive analyses of the polarization, and this motivates us to
explore the distribution of singularities. Our predictions
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FIG. 2. Singularities of charge �1, constructed by combining
the two fundamental singularities shown in Fig. 1. The top row
shows examples of a ‘‘knot’’ and a ‘‘focus,’’ while a ‘‘saddle’’ is
shown at the bottom, using the nomenclature from Ref. [7].

FIG. 3 (color online). Top panel: An example of the mock
polarization map. For visual clarity, this map was produced at the
resolution NSIDE � 256, has power out to ‘max � 50 and con-
tains about 6000 singularities. Bottom panel: The distribution of
singularities in the same map.

1Since the sky is a two sphere, the net charge is �2. This is
simply due to the topology of the two sphere—it is impossible to
comb the hair on a two sphere without singularities. This charge
is a small number compared to the charges that are present due to
the statistical nature of the polarization map and can be ignored
for practical purposes.
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can be tested as soon as polarization maps become avail-
able. Furthermore, since all of our statistics are computed
in real (and not Fourier) space, sky cuts due to galaxy and
other foreground contamination will be relatively easy to
take into account.

Polarization singularities have first been described in
Refs. [7,8]. The expected distribution has been described
in Ref. [9] based on earlier experience with condensed
matter systems. We extend previous work and use a highly
quantitative analysis of the singularities, describe their
statistics as a function of pixelization scale and the under-
lying cosmological model, and assess the statistical errors
for each measurement.

I. THE DEFINITION OF SINGULARITIES

The polarization patterns with fundamental (charge
�1=2) singularities are shown in Fig. 1. The polarization
map is described by the Stokes parameters Q and U. The
properties of the polarization under rotations imply that

Q � I cos�2�	; U � I sin�2�	; (2)

where I is the radiation intensity and � is the polarization
angle. The �1=2 singularities are locations around which
� changes by ��. Therefore, given a polarization map, we
can find the change in � as we go around a small closed
path and this will tell us whether there is a singularity
within that closed path. By going around all possible paths,
we can find all the polarization singularities. In the con-
tinuum, there would be an infinite number of small paths.
But in practice, the map is pixelized and the change in � is
found around circuits defined by neighboring pixels. The
algorithm for finding the singularities in a pixelated map is
well-known and is described in the appendix.

In this paper we will be concerned with the distribution
of polarization singularities. We will characterize the dis-
tribution in three distinct ways. The first method is to find
the total charge q within a closed path of length L. The
mean charge will, of course, be zero because one can have
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positive and negative charges with equal probability.1

Next, we compute the distribution of the distance to the
nearest neighbor of a singularity. Finally, motivated by the
analyses of the galaxy distribution on the sky, we compute
the angular two-point correlation function of singularities
in the polarization map. This work complements the pio-
neering theoretical discussions in Refs. [7–9] and helps
establish the distribution of singularities in the CMB po-
larization as a significant probe of the universe.

In the next section, we describe how we create the mock
polarization maps. In Sec. III we find the critical exponents
and the angular correlation function, as well as the distri-
bution of distance to the nearest neighbor for a vanilla
mock map. We investigate the effects of nonrandom phases
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and non-Gaussianity in Sec. IV and summarize our results
in Sec. V. In the appendix we describe the algorithm for
determining the presence of a singularity.

II. SCHEME TO PRODUCE MOCK
POLARIZATION MAPS

To produce mock polarization maps, we proceed as
follows. We first produce the angular power spectra (tem-
perature and polarization) of the CMB using the CMBFAST

package [11]. Our fiducial model is the standard �CDM
cosmology with a flat universe with matter energy density
relative to critical �M � 0:3, dark energy equation of state
w � �1, scalar spectral index ns � 1:0, physical matter
and baryon energy densities of �Mh2 � 0:127 and
�Bh

2 � 0:021 respectively, and no tensor modes (we ex-
plore the variations to this model in Sec. IV). We can obtain
an arbitrary number of statistically independent maps by
generating different sets of coefficients aE‘m and aB‘m, con-
sistent with the same underlying power spectra CE‘ and CB‘
respectively, and generating the polarization map in
HEALPIX [12] for each set separately. Recall that the co-
efficients a�E;B	‘m fully describe a given map and, for a
Gaussian random map, come from a Gaussian distribution
of variance C�E;B	

‘ . In some cases we will want to produce
polarization maps that do not come from Gaussian random
a‘m, and in those cases we simply input the desired non-
Gaussian a�E;B	‘m directly. An example of a mock map and its
singularities is shown in Fig. 3.

III. STATISTICS OF THE SINGULARITY
DISTRIBUTION

A. Number of singularities

We first compute the total number of singularities (or
charges) Nsin, positive plus negative, in a given mock map.
As expected, the number of charges increases with the map
resolution, just as, for example, the number of temperature
hot and cold spots increases with resolution. Nsin increases
roughly as the square of the maximum resolution of the
map ‘max so that, for example, a map (consistent with our
fiducial �CDM model) with ‘max � 100 has about 6000
singularities, while a map with ‘max � 500 has about
140 000 singularities; see Table I. Note that, even if we
are able to measure the polarization with infinite resolu-
TABLE I. The (approximate) number of defects in a polariza-
tion map as a function of the map resolution ‘max.

‘max Number of defects

100 6800
200 19 000
300 55 000
500 140 000
1000 450 000
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tion, Nsin does not increase indefinitely, but levels off when
the power in polarization becomes negligible. For a stan-
dard �CDM model, the EE power spectrum has power all
the way to ‘
 2000, implying that the total number of
singularities is likely to be larger than a million.
Fortunately, we do not need to worry about this issue, or
wait for polarization experiments that will reach scales this
small, such as PLANCK, in order to explore the distribu-
tion of singularities: the tests we propose can be performed
for polarization maps covering any range of angular scales,
and statistics from the measured map of any given resolu-
tion can be compared to Monte Carlo tests with mock maps
of the same resolution.

B. Scaling of RMS charge

We would now like to quantify how the variance in the
number of singularities increases with the area covered on
any given map. The root-mean-square (RMS) fluctuation
of the charge within a closed path of length L is expected to
be

��q�L		 � h�q�L	 � �q�L		2i1=2 � aL�; (3)

where q�L	 is the total topological charge within L, �q�L	 is
its mean among the different paths of the same length, a is
a system-dependent constant and the critical exponent � is
expected to be 0.5 [9]. Using our numerical analysis of
mock data we will be able to predict both a and � together
with error bars.

To compute the RMS of charge per ring, we create a
polarization map in the HEALPIX representation, and pick a
point on it that we call the North Pole. Each ring of angle �
from the North Pole has length L � 2� sin�, and we find
q�L	 for all rings using the procedure described in the
appendix. We then rotate the North Pole of the map in a
random direction (i.e. assign it to a new, randomly chosen
point on the sphere) and repeat the computation of q�L	 for
each ring. We repeat this procedure a hundred times in
order to obtain sufficient statistics and compute ��q�L		.
The mean charge per ring, averaged over all rotations, is
nearly zero, while the fluctuations around the mean are
what we are interested in.

Figure 4 (top panel) shows the scaling of ��q�L		 with L
for maps of two resolutions ‘max � 100 and 500, corre-
sponding to polarization having power down to scales of

2� and 
0:4� respectively. In both cases we have fixed
the pixelization of the map to the HEALPIX parameter
NSIDE � 256, corresponding to pixels of about 0:25� on
a side. In these and many other cases we have explored, the
RMS of charge scales as L� where the critical exponent �
is nearly 0.5, in agreement with expectations. Furthermore,
the exponent is independent of the map pixelization
NSIDE.2 However, we find that the exponent slightly
2It is important to use NSIDE large enough to capture the
resolution of the map and avoid pixel effects. This corresponds
to NSIDE> ‘max=4.
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FIG. 5 (color online). Histogram of the distance from any
given singularity to the nearest neighbor of the same charge
(black-solid) and opposite charge (red-dashed). Note the effects
of repulsion between charges of the same sign, and attraction of
charges of the opposite sign.
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FIG. 4 (color online). Top panel: Root mean square of the total
charge per ring as a function of the ring’s length L. The two data
sets correspond to polarization maps with resolution ‘max � 100
(bottom) and ‘max � 500 (top), while the dashed curves denote
the linear fit in the log-log coordinates. The distributions are
consistent with ��q�L		 / L� with 0:45 & � & 0:55. Bottom
panel: The dependence of � on the maximum resolution of the
map ‘max (‘max is the maximum multipole where the map has
power).
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decreases with map resolution, moving from � 0:55 for
‘max � 100 to � 0:45 for ‘max � 500; see the bottom
panel of Fig. 4. In all cases the error in the exponent is
about 0:01.

C. Distance to the nearest neighbor

Another statistic that we explore is the distance to the
nearest neighbor from any given singularity. The histogram
of the distances to the nearest neighbor is shown in Fig. 5,
where for computational convenience we have assumed a
map with ‘max � 100 which has a total of about 6000
singularities. The average distance to the nearest neighbor
is slightly above 2� and can be roughly predicted from the
total number of singularities ( 
 6000 singularities in

40 000 degrees on the sky). However, the histograms of
the nearest neighbor of the same charge and that of the
opposite charge are different, and show that opposite
charges attract and similar charges repel. For example,
the mean distance to the nearest neighbor of the same
043004
charge is �3:24� 0:01	�, while distance to the neighbor
of the opposite charge is �2:69� 0:01	�.

D. Angular power spectrum of singularities

The third characterization of the singularity distribution
we suggest and explore is the angular two-point correlation
function w��	. The angular two-point function is simply
the excess probability, on top of expectation due to random
distribution, of finding one singularity at an angular loca-
tion ~�1 and another one at location ~�2

dP� ~�1; ~�2	 � dP� ~�1	dP� ~�2	�1� w� ~�1 � ~�2		; (4)

� dP� ~�1	dP� ~�2	�1� w��		; (5)

where � � j ~�1 � ~�2j and the second line assumes statisti-
cal isotropy. In addition to the angular correlation function
for all singularities, we can find individual w��	 for singu-
larities of positive (or negative) charge in a similar way.

The angular correlation function is one of the standard
tools to describe the angular clustering of galaxies, and has
been thoroughly explored and used during the past three
decades. Computing w��	 for the galaxy distribution, how-
ever, typically involves various practical problems, most
important of which is the ‘‘selection function’’ of the
survey, having to do with magnitude cuts and imperfect
coverage across the field of view. The application we are
considering here is vastly simpler, since the singularities
are discrete, well-defined and easily computable features,
and unlike the galaxies they are located at the same radial
distance. Furthermore, we are simulating the polarization
pattern on full skies and do not need to worry about edge
effects due to incomplete sky coverage. Therefore, a sim-
ple estimator for w��	 will suffice. We adopt the Peebles-
Hauser [13] estimator
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w��	 �
Nrand

Nmap

�
DD��	
RR��	

� 1
�
; (6)
where DD��	 is the number of singularity pairs separated
by a distance larger than �� d� but smaller than �� d�,
RR��	 is the number of pairs from a uniformly distributed
map in the same distance interval, and Nmap and Nrand are
the total numbers of singularities in the two maps. In other
words, the angular correlation function measures the ex-
cess clustering over that predicted by random distribution
on any given scale. Here we use d� � 2�, which is larger
than our pixelization scale and thus avoids any edge effects
due to pixelization. We have tried several other values of
d� and obtained consistent results.

Figure 6 shows the angular two-point correlation func-
tion for the map with ‘max � 500. We found that coarse
pixelization can affect results at small scales, and to be safe
we adopt the NSIDE � 1024 pixelization. In each case we
compute w��	 for 9 statistically independent maps, and
plot the mean and standard deviation of measurements at
all angular scales. The error at very small and very large
angles is slightly increased because fewer defects are
separated by angles close to 0� or 180�.

We find that w��	 is remarkably consistent with zero at
all angular scales greater than about 1�. This implies that
the singularities are Poisson distributed over most angular
scales. We do find departures from zero at small angular
scales (� & 1�), and this is consistent with the fact that a
singularity is more likely to have an antisingularity as a
neighbor and vice versa. This effect is only significant
close to any given singularity and gets averaged out at
larger distances. We have repeated this analysis by varying
the maximum resolution of the map ‘max and found con-
sistent results: the behavior of w��	 is qualitatively similar,
while the error bars decrease with increasing ‘max due to
the increase in the number of singularities.
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FIG. 6 (color online). Angular correlation function of the distribut
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the detail at angles <2�. The overall distribution of singularities i
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IV. EXPLORING DEPARTURES FROM THE
STANDARD COSMOLOGICAL MODEL

It is important to determine how the singularity distri-
bution depends on the physical input such as the primordial
fluctuation spectrum, the cosmological parameters, or
Gaussianity of cosmological seed perturbations. In particu-
lar, previous work [7,8] emphasized that the distribution
and type of singularities may be a promising way of prob-
ing the Gaussianity of initial conditions.

With this in mind we have created mock maps of the
CMB polarization using several different cosmological
models and characterized the singularity distribution in
each. In particular, we have tried several extreme possibil-
ities, some of which are already ruled out by cosmological
observations:
(i) M
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aps based on primordial power spectrum with
very significant tensor modes (the ratio of tensor
to scalar perturbations at the CMB temperature
quadrupole of T=S � 10). Alternatively, we also
tried maps that have equal power in the E and B
modes.
(ii) M
aps with a strongly tilted primordial power spec-
trum with either less or more power on small
scales: we alternatively assumed a scalar spectral
index ns � 0 or ns � 2.
(iii) M
aps that are strongly non-Gaussian: we assumed
the real and imaginary parts of the coefficients
a�E;B	‘m to be sampled from an exponential distribu-
tion while keeping zero mean and variance equal to
C�E;B	
‘ =2. In other words, we have adopted a highly

skewed distribution of the coefficients a�E;B	‘m .

(iv) M
aps that strongly violate statistical isotropy. We

adopted a map where the only nonzero a�E;B	‘m co-
efficients are those with m � 0.
Remarkably we find that all statistics we considered,
except for the last one that grossly violates statistical
isotropy, are largely unaffected. The critical exponent is
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
θ (degrees)

all singularities
singularity-singularity
singularity-antisingularity

ngularities, showing the excess probability of clustering
lar correlation at all angles, while the right panel shows

tent with a uniform distribution, except at small scales
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unchanged within the errors, and so is its dependence on
‘max. The two-point correlation function w��	 is also un-
changed, being consistent with zero except on scales less
than 1�. The total number of singularities does change for
the alternative cosmological models (see Table I), which is
to be expected since the total power in the map is affected
each time. However, statistics of the distribution of singu-
larities are unchanged.

In particular, we find it very interesting that the results
are insensitive to the model for non-Gaussianity we as-
sumed. We have explored this for several classes of varia-
tions to the standard Gaussian/isotropic assumption, and
found deviations from the results described in Sec. III only
in cases where the statistics of the map were modified
enough that the statistical isotropy was grossly violated.
For example, maps where the only nonzero a�E;B	‘m coeffi-
cients were those with m � 0 showed deviation from re-
sults in Sec. III; however, inspection of polarization maps
in these cases indicate that such modifications lead to huge
violations of isotropy in the map that are easily detectable
with almost any reasonable statistical test. Conversely,
more subtle modifications of the power spectra (for ex-
ample, setting the quadrupole of temperature and polariza-
tion to zero) produced the same results as our fiducial
model. Therefore the characteristics of the singularity
distribution seem to be robust features that are insensitive
to the cosmological inputs at the last scattering surface.

The robustness of the singularity distribution holds ad-
vantages as well as disadvantages. One disadvantage is
that, by examining the distribution of the singularities in
the actual data, it is unlikely that we will uncover some-
thing about the physics of the primordial fluctuations (un-
less statistical isotropy is violated). The advantage is that
since the distribution is robust, any distortions in it must
come during propagation of the photons from the last
scattering surface to us. Hence the distribution can be
used as a probe of cosmology at redshifts smaller than
1000. For example, weak gravitational lensing could dis-
tort the Poissonian nature of the angular correlation func-
tions; however, this effect will operate only at small
angular scales, as lensing distortions are typically a few
arcminutes.

V. CONCLUSIONS

We have explored the statistics of the distribution of
singularities in the CMB polarization maps. The existence
of singularities are a generic prediction for a headless
vector field on a sphere. Their distribution, however, has
not been explored in the past except for some generic
scaling arguments. Here we have provided a quantitative
analysis of the distribution of singularities with positive
and negative charge, and argued that the singularities
provide an additional probe of the conditions at last scat-
tering, largely independent of the usual two-point correla-
tion functions of temperature.
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We found that the singularities are distributed randomly
everywhere except at small scales. The angular two-point
correlation function of singularities vanishes, while the
total charge within a closed path of length L scales as L�

with � ’ 0:5. On small scales ( & 1� for maps of resolution
‘max � 500), however, charges of the same sign repel
while those of opposite charge attract. The attraction and
repulsion are manifested both in the angular two-point
correlation function and in the distribution of the nearest-
neighbor distance.

Perhaps surprisingly, we found that the aforementioned
results are very robust with respect to variations in the
underlying cosmological model assumed to create the
mock maps. Changes in the tensor to scalar ratio, scalar
spectral index, and non-Gaussian distributions of the alm’s
all leave the singularity distribution unchanged. Only vio-
lations of statistical isotropy affected the distribution of
singularities. It is still possible that there are some other
forms of non-Gaussianity that can affect the singularity
distribution that we have not explored. While this is im-
possible to rule out, it seems more likely to us that the
distribution of singularities at the last scattering surface is
described precisely by the Poissonian distribution and
other characteristics we have found. This implies that any
observed deviations of the actual map from these distribu-
tions will have to be due to line of sight effects. Most
importantly, gravitational lensing of the CMB by the large-
scale structure can cause changes in the singularity distri-
bution. However, the lensing operates mostly on small
scales, with typical deflections of a few arcminutes and
coherence of <10�. Therefore, lensing may affect the
statistics of the singularity distribution only at small scales.
We hope to explore this signature in future work.
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APPENDIX A: CALCULATION OF THE WINDING
NUMBER

Here we will describe how the winding of polarization
around a contour ", i.e. net topological charge within ", is
calculated.

The polarization map specifies Q��;%	 and U��;%	,
where � and % are galactic latitude and longitude. From
Q and U we can determine the polarization angle �:

���;%	 �
1

2
tan�1

�
U
Q

�
: (A1)
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FIG. 7. To calculate the topological winding along a contour
"—here shown as a hexagon—we follow the phase �, always
choosing the shortest path on the � circle. �i denotes the value
of the phase at point i on ". The net change in �=2� as " is
traversed is the winding. In the figure, the change in � is ��
since we go around the � circle once in the counterclockwise
direction. Note that the full circle in � corresponds to an angle of
only �, not 2�. Hence the topological charge within " in the
drawn example is �1=2.
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Now we want to know the change in � as we go around the
closed contour ".

Any map of the CMB polarization will be pixelized.
Hence only an average value of � within each pixel will be
available to us. Then the change in � in going from pixel i
to a neighboring pixel i� 1 is given by

'�i � �i�1 � �i � (; (A2)

where ( is defined as follows:

( � 0; if j�i�1 � �ij � �=2 (A3)

( � ��; if �i�1 � �i <��=2 (A4)

( � ��; if �i�1 � �i >��=2: (A5)

In other words '� is the shortest path from �i to �i�1

around the circle defined by � 2 ���=2;��=2� (see
Fig. 7). Note that � � ��=2 yields the same Q and U
as � � ��=2 and hence these two points are identified.

The winding, $�, around the contour " is now simply

$� �
X
i

'�i; (A6)

where the sum is over all the discretized steps that define ".
The resulting topological charge is then $�=�2�	.

This scheme to find the windings has one small modifi-
cation since the sky is S2. In this case, since the polariza-
tion angle � is defined with respect to the lines of latitude
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and this definition breaks down at the North and South
poles, we need to modify the scheme for any contour that
contains the North (or the South) pole. In that case, 1 must
be added (per enclosed pole) to the net topological charge
within the contour. This also ensures that the total topo-
logical charge on the sky is �2 [9].
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