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ABSTRACT
On large angular scales (& 60◦), the two-point angular correlation function of the temperature

of the cosmic microwave background (CMB), as measured (outside of the plane of the Galaxy) by
the Wilkinson Microwave Anisotropy Probe, shows significantly lower large-angle correlations than
expected from the standard inflationary cosmological model. Furthermore, when derived from the
full CMB sky, the two lowest cosmologically interesting multipoles, the quadrupole (` = 2) and
the octopole (` = 3), are unexpectedly aligned with each other. Using randomly generated full-sky
and cut-sky maps, we investigate whether these anomalies are correlated at a statistically significant
level. We conclusively demonstrate that, assuming Gaussian random and statistically isotropic CMB
anisotropies, there is no statistically significant correlation between the missing power on large angular
scales in the CMB and the alignment of the ` = 2 and ` = 3 multipoles. The chance to measure the
sky with both such a lack of large-angle correlation and such an alignment of the low multipoles is
thus quantified to be below 10−6.
Subject headings:

1. INTRODUCTION

Several anomalies in the cosmic microwave background
maps observed by the WMAP satellite (Bennett et al.
2003; Jarosik et al. 2010) have been recently observed and
much discussed in the literature. These include align-
ments of the lowest modes of CMB anisotropy with each
other, and with geometry and direction of motion of the
Solar System, as well as unusually low power at these
largest scales. Attempts to explain these anomalies in-
clude astrophysical, instrumental, cosmological causes,
as well as arguments that faulty data analysis or a pos-
teriori statistics are at work (for a review, see Copi,
Huterer, Schwarz, & Starkman (2010)). Two particu-
larly puzzling features at large angular scales are the
alignments of large-angle anisotropies (de Oliveira-Costa,
Tegmark, Zaldarriaga, & Hamilton 2004; Schwarz, Stark-
man, Huterer, & Copi 2004; Land & Magueijo 2005;
Copi, Huterer, Schwarz, & Starkman 2006), and the low
power at large scales (Spergel et al. 2003; Copi, Huterer,
Schwarz, & Starkman 2007); each of these anomalies are
� 1% likely. For reviews with differing points of view
see Bennett et al. (2010); Copi et al. (2010).

A natural question that arises is whether the align-
ments and low power at large scales are correlated.
Naively, the answer is negative, since the alignments are
defined by orientation of the multipoles, and are indepen-
dent of the total power. In the language of multipole vec-
tors, the normalization at each multipole defines power,
and is independent of the multipole vectors that define
orientations of multipoles. Such a conclusion has been
verified, for full sky maps, by Rakić & Schwarz (2007).

However, the answer for the cut-sky maps is less clear
a priori. Consider the case where the large-scale mul-
tipoles are largely planar (as is the case for our own
quadrupole and octopole), thus creating alignments. If

the sky cut happens to be parallel to this plane, then the
cut-sky power may be unusually low, and this may well
be happening more often than when the cut is applied
to unaligned (statistically isotropic) maps. Clearly, the
only safe way to investigate the correlation between the
low power and alignments in the presence of the realis-
tic sky cut is to perform Monte Carlo comparisons with
Gaussian random, statistically isotropic maps.

In this Letter we investigate the correlation between
the alignments and low power for the cut-sky as well as
full-sky maps assuming a Gaussian random, statistically
isotropic, cosmological model.

2. LARGE-SCALE ANOMALIES AND WMAP7

2.1. Low Power on Large Angular Scales
The temperature anisotropy in the ê [= (θ, φ)] direc-

tion of the microwave sky can be represented by a real
scalar function (∆T (θ, φ)) on a sphere, expanded in
terms of the multipole moments

∆T (ê) ≡ ∆T (θ, φ) =
∞∑

`=0

T`(θ, φ), (1)

where the `th multipole, T`(θ, φ), is expressed in terms
of the spherical harmonics, Y`m(θ, φ), as

T`(θ, φ) =
∑̀

m=−`

a`mY`m(θ, φ). (2)

The standard inflationary cosmological model predicts
that the fluctuations in the microwave sky can be thought
of as being sampled from a statistically isotropic, Gaus-
sian random field of zero mean. Gaussianity dictates
that the variances of these a`m would fully character-
ize the distribution and statistical isotropy implies that
these variances would depend only on `, allowing us
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to write the ensemble average of any pair of a`m as
〈a`ma∗`′m′〉 = C`δ``′δmm′ , where C` is the (ensemble av-
erage of) power in the `th multipole. In practice, it is
not possible to measure such an ensemble average as we
have only one realization of the universe. Instead, one
uses its observable estimator, Ĉ`, defined as

Ĉ` ≡
1

2` + 1

∑̀
m=−`

|a`m|2. (3)

In the case of statistical isotropy, this Ĉ`, known as
the angular power spectrum, is an unbiased estimator of
C`. Additionally, if one assumes Gaussianity, Ĉ` is the
best estimator of C` with cosmic variance: Var(Ĉ`) =
2Ĉ2

` /(2` + 1).
Instead of calculating the power in each multipole,

one can consider the (real space) two-point angular
correlation function of the CMB temperature fluctua-
tions. Assuming statistical isotropy, one can express
the angular correlation function as C(ê1, ê2) = C(θ) ≡
〈T (ê1)T (ê2)〉θ, where 〈·〉θ represents an ensemble aver-
age over the temperatures T (ê1) and T (ê2) in all pairs
of directions ê1 and ê2 separated by the angle θ. One
can get an unbiased estimator of C(θ) by replacing the
ensemble average with the sky average

Ĉ(θ) ≡ T (ê1)T (ê2)θ. (4)

Note that Ĉ` and Ĉ(θ) only contain precisely the same
information for full-sky data, and their analogues in the
ensemble are informationally equivalent only if the sky is
statistically isotropic. Thus, simultaneous measurements
of both Ĉ` and Ĉ(θ) can be used to probe the validity of
the assumption of statistical isotropy.

The two-point angular correlation function, Ĉ(θ), can
be directly measured as there is a very large number
of independently measured pixels on the WMAP sky.
In Fig. 1 we show Ĉ(θ) ≡ T (ê1)T (ê2)θ (computed in
pixel space, using SpICE (Szapudi, Prunet, & Colombi
2001) at NSIDE=512) for the WMAP 7-year coadded
data. The results are shown for four different maps of
WMAP7: the V and W bands masked with the 7-year
KQ75 mask (KQ75y7; henceforth), the ILC map (which
covers the full sky), and the cut-sky version of the ILC
map (using the same mask). For comparison, we also
show the full-sky ILC from the 5-year data. Finally, we
show the angular two-point correlation function for the
best-fit ΛCDM model for WMAP7 data, along with the
1σ cosmic variance band (in blue) around the best-fit.
The most striking feature of Ĉ(θ) for all the cut-sky maps
is that they are very close to zero for θ & 60◦, except for
some anti-correlation near 180◦.

To quantify this lack of correlation, we follow past work
(Spergel et al. 2003; Copi et al. 2007; Copi, Huterer,
Schwarz, & Starkman 2009) and adopt the S1/2 statistic
to test the total amount of correlation at angles above
60◦:

S1/2 ≡
∫ 1/2

−1

[
Ĉ(θ)

]2

d(cos θ). (5)

The calculation of S1/2 using Eq. (5) is susceptible to
small-scale fluctuations in Ĉ(θ). To avoid this we evaluate

Fig. 1.— The two point angular correlation function from the
WMAP 7-year coadded data. The long-dashed and the dot-dashed

lines show Ĉ(θ) ≡ T (ê1)T (ê2)θ for the V and W bands, respec-
tively, both masked with the KQ75y7 mask. The dashed line shows
the correlation function for the ILC7 map (which covers the full
sky). The solid line shows the same for ILC5 for comparison. The

Ĉ(θ) for the cut-sky version of the ILC7 map (using the same mask)
is shown by the dot-dot-dot-dashed line. Finally, we show the an-
gular two-point correlation function for the best-fit ΛCDM model
with the dotted line, the 1σ cosmic variance band around the best-
fit being shown in blue.

S1/2 via (Copi et al. 2009)

S1/2 =
1

(4π)2
∑
`,`′

(2` + 1)(2`′ + 1)Ĉ`I`,`′(1/2)Ĉ`′ , (6)

where I`,`′(x) =
∫ x

−1
P`(x′)P`′(x′)dx′ and Ĉ` is the Leg-

endre transform of Ĉ(θ)

Ĉ` ≡ 2π

∫ 1

−1

P`(cos θ)Ĉ(θ)d(cos θ). (7)

The S1/2 values, calculated using Eq. (6), for different
bands of WMAP 7-year (as well as 5-year, for compar-
ison) coadded data is shown in Table 1. Here we make
use of SpICE at NSIDE=64.

2.2. The Quadrupole-Octopole Alignment
To measure the level of alignments between the

quadrupole and octopole, we use two of the most com-
monly used statistics: one based on the multipole vec-
tors, and one based on the angular momentum opera-
tor. As expected, the two statistics are mutually highly
correlated (see Table 2 below); we include both for com-
pleteness.

Instead of expanding the temperature anisotropy of the
microwave sky in spherical harmonics, one can uniquely
describe the temperature anisotropy in the ê [= (θ, φ)]
direction as (Copi, Huterer, & Starkman 2004)

T`(θ, φ) = A(`)

[∏̀
i=1

(
v̂(`,i) · ê

)
− T`

]
, (8)

where A(`) is a scalar which depends only on the total
power in the `th multipole and {v̂(`,i)|i = 1, ..., `} are `
‘headless’ unit vectors, known as the “multipole vectors”.
Here T` is the sum of all possible traces of the first term
in the right hand side of the Eq. (8).
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TABLE 1
S1/2-statistic from WMAP 5-year and WMAP 7-year Data

Data V5 W5 ILC5
ILC5

V7 W7 ILC7
ILC7 Theory5 C` Theory7 C`

Source (KQ75y5) (KQ75y5) (KQ75y5) (KQ75y7) (KQ75y7) (KQ75y7)

S1/2 1242 1236 1054 8600 1312 1231 1141 8484 49040 46610
(µK4)

Note: The values of the S1/2-statistic are calculated for different bands of WMAP 5-year and WMAP 7-year coadded data. We have used

SpICE (Szapudi et al. 2001) at NSIDE=64 and calculated S1/2 using Eq. (6) with `max = 30. The values of S1/2 calculated from the
best-fit theory C` are also included for reference.

To test the planarity of the quadrupole and octopole,
for each multipole ` we form the `(`−1)/2 cross-products
(the “oriented area” vectors (Schwarz et al. 2004))

w(`;i,j) = v̂(`,i) × v̂(`,j), (9)

where the overall signs of the area vectors, w(`;i,j), are
unimportant. For the following discussion, let us con-
sider the lone area vector for the quadrupole, w(2;1,2),
and the three area vectors for the octopole: w(3;1,2),
w(3;2,3), and w(3;3,1).

To investigate the relative orientation of the quadrupo-
lar plane with the three octopolar planes, we can evaluate
the magnitudes of the dot products between w(2;1,2) and
w(3;i,j), given by

A1 {or 2 or 3} ≡
∣∣∣w(2;1,2) ·w(3;1,2) {or (3;2,3) or (3;3,1)}

∣∣∣ .

(10)
High values of Ai imply that the ` = 2 and ` = 3 planes
are aligned with each other. One can test the combined
planarity of the quadrupole and octopole by using the
statistic that takes the average of the dot products

S(3,q) ≡ 1
q

q∑
i=1

Ai. (11)

Using ILC7 and ILC5, we find S(3,3) = 0.736 and S(3,3) =
0.753, respectively. In the subsequent sections, to be
conservative, we use S(3,3) = 0.798 (Copi et al. 2007),
obtained using the cleaned full sky map of Tegmark, de
Oliveira-Costa, & Hamilton (2003) (TOH; henceforth).

An alternative statistic that tests the planarity is given
by the angular momentum dispersion (de Oliveira-Costa
et al. (2004)). For each `, an axis n̂` can be found, around
which the angular momentum dispersion〈

T`(n̂`)|(n̂` · L)2|T`(n̂`)
〉

=
∑̀

m=−`

m2|a`m(n̂`)|2 (12)

is maximized. Here L is the angular momentum operator
and a`m(n̂`) are the spherical harmonic coefficients of the
CMB map in coordinate system with its z-axis in the n̂`

direction. Note that this angular momentum axis distills
a limited amount of information from each multipole,
reducing the d.o.f. to just 2 from the 2` d.o.f. in v̂(`,i).

Copi et al. (2006) found that n̂2 · n̂3 = 0.962 for the
TOH map. The corresponding values obtained from the
analysis of the WMAP 7-year data is 0.937. The mea-
sured values of S(3,3) and n̂2 · n̂3 consistently indicate
that the quadrupole and the octopole are unexpectedly
aligned, both in the 5 and 7 year WMAP data.

3. IN SEARCH FOR A CORRELATION

We have just seen that WMAP7 confirms results from
its earlier data releases: at large angular scales (& 60◦),
the two-point correlation function of the temperature of
the CMB, as measured by WMAP, is significantly smaller
in magnitude than expected from the predictions of the
standard inflationary cosmological model; and in addi-
tion, the planes of the quadrupole (` = 2) and the oc-
topole (` = 3) are unexpectedly aligned with each other.
In this section, we investigate whether these anomalies
are correlated at a statistically significant level.

More specifically, we want to investigate a couple of
different scenarios:

• If the Gaussian random, statistically isotropic
CMB maps are constrained to have low angular
correlation on large angular scales, are they more
likely to exhibit planarity and alignment of the
quadrupole and octopole?

• If the Gaussian random, statistically isotropic
CMB maps are constrained to have aligned
quadrupole and octopole, are they more likely
to have low angular correlation on large angular
scales?

Although the answers to the above questions might
seem to be obvious for the full-sky case, there is no direct
reason why no such correlation should exist for the case
of cut-sky maps. In what follows, we attempt to address
each of these questions for both the full-sky and the cut-
sky cases.

3.1. Monte-Carlo Analysis
We first generate 100,000 constrained (low angular cor-

relation on large angular scales) realizations of the CMB
sky with selection criterion of S1/2 < 8583(µK)4 (i.e.
lower than the ILC5 full-sky S1/2 from Copi et al. (2009))
and the cut-sky S1/2 < 1152(µK)4 (i.e. lower than the
ILC5 cut-sky map).1 This is our sample of Gaussian ran-
dom, statistically isotropic maps that are constrained to
have low angular correlation on large scales, and we use
them to test the probability of alignments under this con-
straint, i.e., the probability of having S(3,3) > 0.798 for
these low-correlation maps. We also calculate the proba-
bility of these low–correlation maps to have aligned angu-
lar momentum dispersion axes, i.e., n̂2 · n̂3 > 0.962. We

1 It should be noted that these values of S1/2 are corresponding

to the WMAP 5-year ILC full sky (DQ corrected) and WMAP 5-
year ILC cut sky (using KQ75y5 mask, DQ corrected) maps, since
we started this analysis prior to WMAP 7-year data release. In
fact, these values are comparable to the corresponding values for
the WMAP 7-year results shown in Table 1.
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TABLE 2
Probabilities of having Low-Power on Large Angular
Scales and Quadrupole-Octopole Alignment for the

Unconstrained and Constrained Maps

Probabilities Unconstrained Constrained Maps
(in %) Maps Low Power Full-Sky Aligned

P
“
Sfull sky

1/2

”
7.0 — 6.9

P
“
Scut sky

1/2

”
0.05 — 0.07

P
`
S(3,3)

´
0.12 0.12 —

P (n̂2 · n̂3) 0.37 0.36 99.6

Note: The statistics S(3,3) and n̂2 · n̂3 are always evaluated on the
full sky. The cases with the dashes denote circular comparisons.

then compare these probabilities with the corresponding
ones for the unconstrained maps.

To test the probability of low angular correlation on
Gaussian random, statistically isotropic maps that are
constrained to be aligned, we generate 100,000 MC maps
constrained to have S(3,3) > 0.798, calculated using the
full sky as the cut sky alignments are extremely dif-
ficult to test (the errors in multipole vectors become
large for a cut larger than a few degrees). We then
evaluate the S1/2 statistic for these constrained maps
(with and without applying the WMAP 5-year KQ75
mask (KQ75y5)) and calculate the percentage of these
maps having S1/2 < 8583(µK)4 (for the full-sky case)
or S1/2 < 1152(µK)4 (for the case using KQ75y5). We
also calculate the probability of these constrained maps
to have n̂2 · n̂3 > 0.962. As discussed before, we then
compare these probabilities with the corresponding ones
for the unconstrained maps.

3.2. Results and Discussions
Our main results are summarized in Table 2. Using our

sample of 100,000 low-power maps, we find the probabil-
ity of these maps to have S(3,3) > 0.798 is 0.12%, which is
the same as the probability of completely unconstrained
maps to have quadrupole-octopole alignment (Copi et al.
2006). This shows that the low-power maps do not have
a higher probability to have an alignment of the ` = 2
and ` = 3 planes. The probability of these low-power
maps to have aligned angular momentum dispersion axes
(n̂2 · n̂3 > 0.962) is also very low (0.36%) and essentially
identical as that found for unconstrained maps (0.37%;
Copi et al. (2006)).

Using 100,000 maps constrained to be have
quadrupole-octopole alignment (S(3,3) > 0.798),
we find 6.9% probability for these maps to have
S1/2 < 8583(µK)4 for the full-sky case. Comparing

this with the probability (7.0%) of having low angular
correlation for completely unconstrained maps, we
find no correlation between alignment and low angular
correlation for the full-sky case.

For the cut-sky case (using the KQ75 mask), how-
ever, we find 0.07% probability for these maps to have
S1/2 < 1152(µK)4. This probability is slightly higher

(& 2σ with σ a Poisson error) than P
(
Scut sky

1/2

)
= 0.05%

for unconstrained maps. However, this difference is not
statistically significant to conclude any detectable corre-
lation between alignment and low power for cut skies.

4. CONCLUSION

Applying the multipole vector formalism to Gaussian
random and statistically isotropic realizations of CMB
maps (both full-sky and cut-sky) lacking correlation on
large angular scales, we find no increased probability for
alignment of the quadrupole and the octopole than ex-
pected in the case of unconstrained random maps. These
low-power maps also do not show higher angular mo-
mentum dispersion. On the flip side, we also find that
realizations of CMB maps (both full-sky and cut-sky),
constrained to have aligned quadrupole and octopole at
a level greater than that exhibited by WMAP, do not
have lower power on large scales than expected in the
case of unconstrained random realizations.

Our results conclusively demonstrate that, under the
standard Gaussian and isotropic model, there is no statis-
tically significant correlation between the missing power
on large angular scales in the CMB and the alignment
of the ` = 2 and ` = 3 multipoles. Therefore, in the
context of the standard model, their combined statisti-
cal significance is equal to the product of their individ-
ual significances. For example, simultaneous observation
of the missing large-angle correlations with probability
P (Scut sky

1/2 ) . 0.1% and alignments with the probabil-
ity P (S(3,3)) ' 0.1% is likely at the . 0.0001% level.
Given that both anomalies occur at the largest observ-
able scales and are correlated with special directions in
the sky (ecliptic and/or dipole), they clearly require a
causal explanation.
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