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Degree of scale invariance of inflationary perturbations
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Most inflationary models predict that the power-law index of the spectrum of density perturbations is close
to 1, though not precisely equal to 1,un21u;O(0.1), implying that the spectrum of density perturbations is
nearly, but not exactly, scale invariant. However, there are models wheren is significantly less than 1 (n
;0.7); a spectral index significantly greater than 1 is more difficult to achieve. Without recourse to specific
models, we show very generally and very explicitly thatn'1 is a consequence of the slow-roll conditions for
inflation and ‘‘naturalness,’’ and thus, that near scale invariance is a generic prediction of inflation and a test
of the inflationary framework. We derive the conditions needed to deviate significantly from scale invariance,
and then show, by explicit construction, the existence of smooth potentials that satisfy all the conditions for
successful inflation and given as large as 2.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Inflation generates adiabatic density perturbations that
seed the formation of structure in the Universe. They a
from quantum fluctuations in the field that drives inflatio
and are stretched to astrophysical size by the enorm
growth of the scale factor during inflation@1#. The magni-
tude of these perturbations was recognized early on to
important in constraining inflationary models. The nea
scale-invariant value for the scalar spectral index,n'1, is
considered to be one of the three principal predictions
inflation, and the deviation ofn from unity is an important
probe of the underlying dynamics of inflation@2#.

The advantage of scale-invariant primordial density p
turbations was first spelled out nearly three decades
@3,4#: any other spectrum, in the absence of a lon
wavelength or short-wavelength cutoff, will have excessiv
large perturbations on small scales or large scales.1 Even
though inflation provided the first realization of such a sp
trum, long before inflation many cosmologists considered
scale-invariant spectrum to be the only sensible one. For
reason, the inflationary prediction of a deviation from sc
invariance—even if small—becomes all the more importa
as it provides a test of the inflationary framework.

One of the pioneering papers on inflationary fluctuatio
@5# emphasized that the fluctuations were not precisely s
invariant; the first quantitative discussion followed a ye
later @6#. The Cosmic Background Explorer Differential M
crowave Radiometer~COBE DMR! detection of cosmic mi-
crowave background~CMB! anisotropy awakened the infla
tionary community to the testability of the inflationar

1Inflation provides a natural cutoff on comoving scales sma
than;1 km, the horizon size at the end of inflation; perturbatio
on scales larger than the present horizon will not be important u
long into the future. Thus, for inflation exact scale invariance is
necessary to avoid problems with excessively large perturbatio
0556-2821/2000/62~6!/063503~7!/$15.00 62 0635
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density-perturbation prediction. The connection betweenn
21) and the underlying inflationary potential was point
out soon thereafter@7,8#, and the possibility of reconstructin
the inflationary potential from measurements of CMB anis
ropy began being discussed@9#. It is now quite clear that the
degree of deviation from scalar invariance is an import
test and probe of inflation.

Particular inflationary potentials and the values ofn they
predict have been widely discussed in literature~see, e.g.,
Refs. @10,11#!. Lyth and Riotto@11#, for example, remark
that many inflationary potentials can be written in the fo
V(f)5V0(16mfp) ~in the interval relevant for inflation!,
and conclude that virtually all potentials of this form giv
0.84,n,0.98 or 1.04,n,1.16 ~also see Ref.@6#!. Experi-
mental limits onn, derived from CMB anisotropy measure
ments, are not yet very stringent, 0.7,n,1.2 @12,13#. Even
the stronger bound claimed by Bond and Jaffe@14#, n
50.9560.06, falls far short of the potential of future CMB
experiments@e.g., the Microwave Anisotropy Probe~MAP!
and Planck satellites#, sn;0.01 @15#.

It is our purpose here to address the issue of the devia
from scale invariance in full generality and without regard
specific models, and, in so doing, to show explicitly wh
scale invariance is a generic feature of inflation. We tak
very agnostic approach to models, both for purposes of g
erality and because our knowledge about the physics of
scalar sector and of the inflationary-energy scale is very l
ited. We note there are excellent reviews of specific partic
physics models of inflation and their motivations within fu
damental physics~see, e.g., Ref.@11#!. In addition, we limit
our analysis to standard, one-field inflation models. Wh
this encompasses the vast majority of the models discu
in the literature, there are other, nonstandard approache
inflation ~see, e.g., Refs.@16#!.

In the next section we show how the slow-roll conditio
for inflation and naturalness limit the deviation from sca
invariance. In Sec. III, to illustrate what must be done
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achieve significant deviation from scale invariance, we c
struct inflationary models based upon smooth potent
wheren is much smaller than and much larger than uni
We end with some concluding remarks in Sec. IV.

II. WHY INFLATIONARY PERTURBATIONS ARE
NEARLY SCALE INVARIANT

The equations governing inflation are well known@17#:

f̈13Hḟ1V8~f!50 ~1!

H2[S ȧ

a
D 2

5
8p

3mPL
2 FV~f!1

1

2
ḟ2G ~2!

N[ ln~af /ai !5E
f i

f f
Hdt ~3!

dH
2 ~k!.V3/V82}kn21 ~4!

where a(t) is the cosmic scale factor, derivatives with r
spect to the fieldf are denoted by a prime, and derivativ
with respect to time by an overdot. The quantitydH is the
post-inflation horizon-crossing amplitude of the density p
turbation, which, if the perturbations are not precisely sc
invariant is a function of comoving wave numberk ~i.e., n
51). (dH also corresponds to the dimensionless amplitu
of the fluctuations in the gravitational potential.!

In computing the density perturbations, the value of
potential and its first derivative are evaluated when the s
k crossed outside the horizon during inflation. Because b
V andV8 can vary,dH

2 }kn21 in general depends upon scal
For most models,dH

2 is not a true power law, but rathern
varies slowly with scale, typicallyudn/d ln ku<1023 @18#. In
fact, bothn and dn/d ln k are measurable cosmological p
rameters and can provide important information about
potential.

In the slow-roll approximation thef̈ term is neglected in
the equation of motion forf and the kinetic term is ne
glected in the Friedmann equation@6,17#:

ḟ.2
V8

3H
~5!

N.2
8p

mPL
E

f i

f f df

x~f!
. ~6!

The power-law indexn is given by@8,10#

~n21!52
x60

2

8p
1

mPLx608

4p
~7!

where

x~f![mPLV8~f!/V~f!

measures the steepness of the potential andx8[dx/df mea-
sures the change in steepness.~Higher-order corrections ar
discussed and the next correction is given in Ref.@19#.! The
06350
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subscript ‘‘60’’ indicates that these parameters are evalua
roughly 60 e-folds before the end of inflation, when t
scales relevant for structure formation crossed outside
horizon.

Deviation from scale invariance is a generic predicti
since the inflationary potential cannot be absolutely flat. I
controlled by the steepness of the potential and the chang
steepness. Significant deviation from scale invariance
quires a steep potential or one whose steepness change
idly. Further, Eq.~7! immediately hints that it is easier t
make models with a ‘‘red spectrum’’ (n,1), than with a
‘‘blue spectrum’’ (n.1), because the first term in Eq.~7! is
manifestly negative, while the second term can be of eit
sign. In addition,x60

2 /8p is usually larger in absolute valu
thanmPLx608 /4p.

The two conditions on the potential needed to ensure
validity of the slow-roll approximation are~see, e.g., Refs
@6,17#!

mPLV8/V5x&A48p ~8!

mPL
2 V9/V&24p. ~9!

Note that the first slow-roll condition constrains the first te
in the expression for (n21), x2/8p&6, and the second
slow-roll condition constrains the second term sin
mPLx8/4p5mPL

2 V9/(4pV)2x2/(4p).
A model that can given significantly less than 1 is power

law inflation @20,21# ~there are other models too@6,22#!. It
illustrates the tension between sufficient inflation and la
deviation from scale invariance. The potential for power-la
inflation is exponential,

V5V0exp~2bf/mPL!, ~10!

and the scale factor of the Universe evolves according t
power law

a~ t !}t16p/b2
[tp with p[16p/b2 ~11!

and

ḟ5A p

4p

mPL

t
. ~12!

Further,n can be calculated exactly in the case of power-l
inflation @23#:

~n21!5
2

12p
→2

2

p
~slow-roll limit!. ~13!

For this potentialx52b, x850 ~constant steepness!, and
the slow-roll constraint impliesubu&7, or p*1. This is not
very constraining asp.1 is required for the superlumina
expansion necessary for inflation@24#. The quantitative re-
quirement of sufficient inflation to solve the horizon proble
and a safe return to a radiation-dominated universe be
big-bang nucleosynthesis~reheat temperatureTRH@1 MeV
and reheat agetRH!1 sec) and baryogenesis (TRH.1 TeV
and tRH,10212 sec) restrictp more seriously.
3-2
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In particular, the amount of inflation depends upon wh
inflation ends:

N52
8p

mPL
E

f i

f f df

x~f!
5p ln~Hi /H f ! ~14!

whereHi5p/t i andH f5p/t f . The number of e-foldsN re-
quired to solve the horizon problem~i.e., expand a Hubble
sized patch at the beginning of inflation to comoving s
larger than the present Hubble volume! is approximately 60,
but depends uponHi andH f if p is not @1 ~see, e.g., Ref.
@17#!:

N.741 ln~Hi /H f !1
1

2
ln~H f /mPL!. ~15!

Bringing everything together, the constraint top is

p.11
74

ln~Hi /H f !
1

1

2

ln~H f /mPL!

ln~Hi /H f !
. ~16!

Based upon the gravity-wave contribution to CMB anis
ropy Hi must be less than about 1025mPL and the baryogen
esis constraint impliesH f*(1 TeV)2/mPL;10232mPL .
Since reheating is not expected to be very efficient a
baryogenesis may require a temperature much greater th
TeV ~if it involves GUT, rather than electroweak, physics!,
we can safely say thatH f@10232mPL . Thus, sufficient in-
flation and safe return to a radiation-dominated universe
fore baryogenesis requires

p@2 ~17!

~12n!!2. ~18!

Even insisting thatH f*(1013 GeV)2/mPL , a typical infla-
tion scale, only leads top*5 andn*0.5, which is still a
large deviation from scale invariance.

While the exponential potential allows a very large dev
tion from n51, it illustrates the tension between achievi
sufficient inflation and large deviation from scale invarian
because (12n)52/(p21), large deviation from scale in
variance implies a slow, prolonged inflation, ln(tf /ti).N(1
2n)/2, with the change in the inflaton field being many tim
the Planck mass,Df.NA(12n)/8pmPL@mPL . Other
models also exhibit this tension: For example, for the pot
tial V(f)5V02m2f2/21lf4/4, the lower limit ton is set
by the condition of sufficient inflation@6#.

Achieving n significantly greater 1 provides a differen
challenge. Since the first term in the equation for (n21) is
negative, all the work must be done by the change
steepness term,mPLx8/4p. To see the difficulty of doing so
let us assume that we can expand the slow-roll param
x(f) around a pointf* in the slow-roll region:

x~f!'x* 1x
*
8 ~f2f* !. ~19!

This expression holds for potentials whose steepness
not change much in the slow-roll region.N can now be
evaluated explicitly:
06350
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N52
8p

mPL
E

f i

f f df

x~f!
5

8p

x608 mPL

lnS xi

xf
D , ~20!

wherexi and xf are understood to have been evaluated
cording to expression~19!. Combining expressions~7! and
~20!, we get

n215
2

N
lnS xi

xf
D2

x60
2

8p
. ~21!

The difficulty of obtaining largen21 is now more trans-
parent. For example, to getn'1.5 with N>60 we need
ln(xi /xf).15—more, if x60

2 /8p is not negligible. Not only
does such a large change seem unnatural, but it prob
invalidates the expansion in Eq.~19!.

Note that Eq.~21! ~and others below! make it appear tha
(n21) depends directly upon the amount of inflation. This
not really the case, becauseN is the number of e-folds tha
occur during the timex evolves fromxi to xf . In relating
(n21) to properties of the potential it is probably most us
ful to setN560, the e-folds relevant to creating our prese
Hubble volume.

Now we further specialize to the casex60
2 /8p

!umPLx608 u/4p and ux60u@ux608 Dfu, where Df5f f2f i .
Here we have explicitly assumed that the change in
steepness of the potential is small. It now follows that

N.
8p

mPL
UDf

x60
U ~22!

~n21!.
2

NUDf

x60
Ux608 ,

2

N
~23!

~note thatDf andx60 are of opposite sign!. Thus, we get a
very strong constraint onn in this case, (n21),0.04, and
learn that to achieven significantly greater than unity, the
scalar field must change by much more thanmPL .

One well-known class of inflationary models that giv
n>1 is hybrid inflation@25#; in the slow-roll region,V(f)
.V0(11mf2). In these models,

N.
4p

mmPL
2

ln~f i /f f ! ~24!

~n21!.
mPLx8

4p
5

mmPL
2

2p
.

2

N
ln~f i /f f !. ~25!

Thus,n significantly larger than 1 can be achieved, albeit
the expense of an exponentially long roll,f i /f f5exp@N(n
21)/2#. However,f f may not be arbitrarily small here—in
fact, the smallest value it can take in the semi-classical
proximation is equal to the magnitude of quantum fluctu
tions of the field,H/2p ~this is further discussed in the nex
section!. This constraint, in combination with the other co
straints, limits the maximum value ofn in hybrid inflation
scenarios ton<1.2 @11#.
3-3
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FIG. 1. Two potentials withn'2. In each case inflation starts atf60 and ends atf f ; the potential has a point of approximate inflectio
at f5f1 and its minimum atf5fR . Top: V5V01M4@sinh@(f2f1)/f#1exp(2f/g)#. Bottom: V5V01M4@(f2f1)/ f 1@(f2f1)/ f #3

1exp(2f/f)#. Potential parameters are given in the text.
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To summarize this discussion, let us rewrite Eq.~21! by
expressingx60

2 /8p in terms ofN and Df by assuming that
x(f) does not change too much:

~n21!.
2

N
ln~xi /xf !2

8p

N2 S Df

mPL
D 2

. ~26!

As this equation illustrates, unlessDf/mPL is large or the
steepness changes significantly,un21u&2/N'0.04. This is
certainly borne out by inflationary model building: with
few notable exceptions all models predictun21u&O(0.1)
@11#.

III. MODELS WITH VERY BLUE SPECTRA

A. Constraints

The conditions for successful inflation were spelled ou
decade ago@6,17#. The règles de jeuare the following:

~i! Slow-roll conditions.
~ii ! Sufficient number of e-folds to solve the horizon pro

lem (N*60).
~iii ! Density perturbations of the correct amplitude

dH;V60
3/2/V608 ;1025. ~27!

~iv! The distance thatf rolls in a Hubble time must ex
ceed the size of quantum fluctuations, otherwise the se
classical approximation breaks down:

ḟH21@H/2p⇒V8@V3/2/mPL
3 . ~28!

This is automatically satisfied if the density perturbations
small. Additionally, no aspect of inflation should hinge up
f i or f f being smaller thanH/2p, the size of the quantum
fluctuations.

~v! ‘‘Graceful exit’’ from inflation. The potential should
have a stable minimum with zero energy around which
06350
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field oscillates at the stage of reheating. The reheat temp
ture must be sufficiently high to safely return the Universe
a radiation-dominated phase in time for baryogenesis and
bang nucleosynthesis~BBN!.

~vi! No overproduction of undesired relics such as ma
netic monopoles, gravitinos, or other nonrelativistic particl

There are additional constraints that the potential sho
obey in order to given@1:

~a! mPLx608 /4p has to be large and positive, whilex60
2 /8p

should be negligible.2 Therefore ux60u&O(1) and mPLx608
.4p(n21). In other words, at 60 e-folds before the end
inflation the potential should be nearly flat and starting
slope upwards.

~b! To obtain 60 e-folds of inflation, the potential shou
be nearly flat in some region during inflation. However, t
potential must not become too flat, since then density per
bations diverge (dH}1/V8). Therefore, the potential shoul
have a point of approximate inflection whereV8(f) is small
but not zero.

B. Example 1

A potential with the characteristics just mentioned is

V5V01M4FsinhS f2f1

f D1e2f/gG , ~29!

whereM, f, g, andf1 are constants with dimension of mas
The plot of the potential, with the parameters calculated
low, is shown in the top panel of Fig. 1. The hyperbolic si
was invoked to satisfy requirements~a! and ~b!, while the
exponential was used to produce a stable minimum.

2Of course,x60
2 /8p is not required to be negligible, but it is eve

more difficult to get large (n21) without this assumption.
3-4
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We make the following assumptions to make the analy
simpler ~later justified by our choice of parameters below!:

~1! V0 dominates the potential in the slow-roll region,

V0@M4sinhS f2f1

f D for f i.f.f f . ~30!

~2! f @g so that the factor exp(2f/g) can be completely
ignored in the slow-roll region.

~3! (f2f1)/ f is at least of the order of a few forf i
.f.f f , so that sinh@(f2f1)/f#@1.

~4! For simplicity we takef i5f60.
In terms of the dimensionless parameterK

[M4mPL /V0f :

x.K coshS f2f1

f D , ~31!

x8.
K

f
sinhS f2f1

f D2
K2

mPL
cosh2S f2f1

f D . ~32!

The condition thatx60&O(1) becomes

K coshS f602f1

f D&O~1!, ~33!

and the end of inflation occurs one of the slow-roll con
tions breaks down; in this casemPL

2 V9/V.24p or

mPLK

f
sinhS f f2f1

f D.24p. ~34!

We can now write

~n21!.
mPLK

4p f
sinhS f602f1

f D . ~35!

That inflation produces density perturbations of the c
rect magnitude implies

AV0'4.331026x60mPL
2 . ~36!

The expression for the number of e-folds can be calcula
analytically. Introducinga5(f2f1)/ f , we have

N52
8p

mPL
E

f i

f f df

x
52

8p f

KmPL
tan21@sinh~a!#ua i

a f'
8p2f

KmPL
.

~37!

In the last equality we used the fact that botha i andua f u are
at least of the order of a few, so that tan21@sinh(ai)#
'2tan21@sinh(af)#'p/2. This assumption will also be fully
justified with our choice of parameters below.

Finally, the potential should have a stable minimum~with
V50) at somef5fR . This implies thatV(fR)50 and
V8(fR)50.

Before proceeding, we must specifyn. We choose, some
what arbitrarily, n52. Of course, for such a largen we
should include terms beyond the lowest order, complicat
the analysis. But we are not looking for accuracy—ifn52 is
06350
is
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obtainable to first order, then one can certainly say than
@1 is obtainable.~In fact, for the two potentials chosen, th
second-order correction decreasesn21 only slightly.!

We now have to choose parametersV0 , M, f, g, f1 , f60,
f f and fR to satisfy Conditions~33!–~37!, as well as
V(fR)50 andV8(fR)50. The choice of these paramete
is by no means unique, however. Here is such a set:

V051.7310213mPL
4 f1

f
58.80

M451.3310217mPL
4 f f

f
54.10

f 57.631023mPL

f60

f
511.75

g5 f /5. ~38!

To verify our analytic results we integrated the equati
of motion for f numerically and computed the spectrum
density perturbations. We did so neglecting thef̈ in the
equation of motion forf and the kinetic energy of the field
~slow-roll approximation! and taking both these quantitie
into account~exact calculation!. The result is thatNslowroll
557.3 andNexact557.9. Thus, the field really rolls as pre
dicted by analytic methods (N'60), and the slow-roll ap-
proximation holds well for this potential.

The numerical results for the spectrum of density pert
bations did contain a surprise, shown in Fig. 2. While th
potential achieved largen, slightly smaller than 2, over a few
e-foldsn falls to a smaller value. Indeed, even restricting t

FIG. 2. The power-law indexn for the two inflationary poten-
tials constructed to given;2 as a function of lnk. The solid curve
corresponds to the hyperbolic sine potential and the upper da
curve to the cubic ‘‘f1f3’’ potential. While both potentials
achieven;2, neither has a very good power-law spectrum. A
shown is a cubic potential model withn.1.4 ~lower dashed curve!,
where the variation ofn is less severe. For comparison, the hyb
inflation model~dash-dotted curve! with n.1.2 is also shown; here
n is fairly constant over the astrophysically interesting range.
3-5
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spectrum to astrophysically interesting scales, 1 –104 Mpc,
the spectrum is not a good power law,udn/d ln ku;0.3, and
is reminiscent of the ‘‘designer spectra’’ with special fe
tures constructed in Ref.@26#. The reason is simple: in
achievingx8;1 an even larger value ofx9 was attained.

C. Example 2

Is there anything special about the hyperbolic sine?
really—for example, a potential of the form ‘‘f1f3’’ also
works. Consider the potential

V5V01M4F S f2f1

f D1S f2f1

f D 3

1e2f/gG . ~39!

Again, we assume thatV0 dominates during inflation, tha
f i5f60 and that exp(2f/g) can be ignored in the inflation
ary region. To evaluateN, we further assume thatu(f60
2f1)/ f u*1 andu(f f2f1)/ f u*1. All of these assumptions
are justified by the choice of parameters below.

The analysis of the inflationary constraints is similar. W
conclude that largen ~heren52) is possible, with the fol-
lowing parameters:

V051.09310212mPL
4 f1

f
513.54

M451.46310216mPL
4 f f

f
521.82

f 5g51.3331022mPL

f60

f
516.34. ~40!

This potential is shown in the bottom panel of Fig.
Numerical integration of the equation of motion shows th
our ‘‘60 e-folds’’ is actually Nslowroll555.0 and Nexact
556.0. Further, just as with the hyperbolic sine potentialn
;2 is achieved, but the spectrum of perturbations is no
good power law. Both potentials achieve a large change
steepness by having inflation occur near an approximate
flection point; however, the derivative of the change in ste
ness is also large, andn varies significantly. The change inn
can be mitigated at the expense of a smaller value ofn; see
Fig. 2.

IV. CONCLUSIONS

The deviation of inflationary density perturbations fro
exact scale invariance is controlled by the steepness of
potential and the change in steepness; cf. Eq.~7!. The steep-
ness of the potential also controls the relationship betw
the amount of inflation and change in the field driving infl
d
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tion, N;8p(Df/mPL)/x. A very ‘‘red spectrum’’ can be
achieved at the expense of a steep potential and prolon
inflation (t f /t i@1 andDf@mPL); the simplest example is
power-law inflation. A very ‘‘blue spectrum’’ can be
achieved at the expense of a large change in steepness
an inflection point in the potential and a poor power law.
both cases there appears to be a degree of unnaturalne

The robustness of the inflationary prediction of appro
mately scale-invariance density perturbations is expresse
Eq. ~26!:

~n21!.
2

N
ln~xi /xf !2

8p

N2 S Df

mPL
D 2

.

Unless the change in steepness of the potential is la
u ln(xf /xi)u@1, or the duration of inflation is very long,Df
@mPL , the deviation from scale invariance must be sm
un21u&O(2/N);0.1. Even for an extreme range inn, say
from n50.5 to n;1.5, the variation ofdH over astrophysi-
cally interesting scales,;1 Mpc to ;104 Mpc, is not es-
pecially large—a factor of 10 or so—but is easily meas
able.

Inflation also predicts a nearly scale-invariant spectrum
gravitational waves~tensor perturbations!. The deviation
from scale invariance is controlled solely by the first term
(n21) @8,10#, nT52x60

2 /8p. Thus, only a red spectrum i
possible, with the same remarks applying as for density~sca-
lar! perturbations withn!1. In addition, the relative ampli-
tude of the scalar and tensor perturbations is related to
deviation of the tensor perturbations from scale invarian
T/S.27nT (S andT are respectively the scalar and tens
contributions to the variance of the quadrupole anisotropy
the CMB!. Detection of the gravity-wave perturbations is a
important, but very challenging, test of inflation; if, in add
tion, the spectral index of the tensor perturbations can
measured, it provides a consistency test of inflation@27#.

The deviation ofn from unity is a key test of inflation and
provides valuable information about the underlying poten
@9#. Measurements of the anisotropy of the CMB and of t
power spectrum of inhomogeneity today which will be ma
over the next decade will probe the nature of the prime
density perturbations and determinen very precisely,sn
;0.01 @15#. By so doing they will provide a key test o
inflation and provide insight into the underlying dynamic
On the basis of our work here, as well as previous stud
~see, e.g., Ref.@11#!, one would expectu(n21)u;O(0.1),
but not precisely zero. A determination thatu(n21)u
;O(0.1) would be a confirmation of the basic inflationa
framework. On the other hand, a determination thatun21u
*O(0.2) would point to a handful of less generic potentia
Finally, in the context of inflation, it would be very surpris
ing to find thatn51.
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