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Most inflationary models predict that the power-law index of the spectrum of density perturbations is close
to 1, though not precisely equal to [h— 1|~ O(0.1), implying that the spectrum of density perturbations is
nearly, but not exactly, scale invariant. However, there are models wh&resignificantly less than 1n(
~0.7); a spectral index significantly greater than 1 is more difficult to achieve. Without recourse to specific
models, we show very generally and very explicitly that1 is a consequence of the slow-roll conditions for
inflation and “naturalness,” and thus, that near scale invariance is a generic prediction of inflation and a test
of the inflationary framework. We derive the conditions needed to deviate significantly from scale invariance,
and then show, by explicit construction, the existence of smooth potentials that satisfy all the conditions for
successful inflation and give as large as 2.

PACS numbes): 98.80.Cq

[. INTRODUCTION density-perturbation prediction. The connection between (
Inflation generates adiabatic density perturbations that car-1) and the underlying inflationary potential was pointed
seed the formation of structure in the Universe. They aris@ut soon thereaftdi7,8], and the possibility of reconstructing
from quantum fluctuations in the field that drives inflation the inflationary potential from measurements of CMB anisot-
and are stretched to astrophysical size by the enormougpy began being discussggl. It is now quite clear that the
growth of the scale factor during inflatidil]. The magni-  degree of deviation from scalar invariance is an important
tude of these perturbations was recognized early on to bgst and probe of inflation.
important in constraining inflationary models. The nearly  Particular inflationary potentials and the valuesnahey
scale-invariant value for the scalar spectral index1, is  predict have been widely discussed in literat(see, e.g.,
considered to be one of the three principal predictions oRefs.[10,11)). Lyth and Riotto[11], for example, remark
inflation, and the deviation ofi from unity is an important  that many inflationary potentials can be written in the form
probe of the underlying dynamics of inflati¢a]. V(¢)=Vo(1+ 1¢P) (in the interval relevant for inflation
The advantage of scale-invariant primordial density perand conclude that virtually all potentials of this form give
turbations was first spelled out nearly three decades ag9.84<n<0.98 or 1.04n<1.16(also see Ref6]). Experi-
[3,4]: any other spectrum, in the absence of a long-mental limits onn, derived from CMB anisotropy measure-
wavelength or short-wavelength cutoff, will have excessivelyments, are not yet very stringent, :A<1.2[12,13. Even
large perturbations on small scales or large scalEsen the stronger bound claimed by Bond and Jaffet], n
though inflation provided the first realization of such a spec-= .95+ 0.06, falls far short of the potential of future CMB
trum, |Ong before inflation many COanOlOgiStS considered th%xperiment{e.g_, the Microwave Anisotropy Prot(MAP)
scale-invariant spectrum to be the only sensible one. For thigng planck satellitdso,~0.01[15].
reason, the inflationary prediction of a deviation from scale |t is our purpose here to address the issue of the deviation
invariance—even if small—becomes all the more importantsrom scale invariance in full generality and without regard to
as it provides a test of the inflationary framework. specific models, and, in so doing, to show explicitly why
One of the pioneering papers on inflationary fluctuationsscale invariance is a generic feature of inflation. We take a
[5] emphasized that the fluctuations were not precisely scal@ery agnostic approach to models, both for purposes of gen-
invariant; the first quantitative discussion fo_IIowed.a Yearerality and because our knowledge about the physics of the
later[6]. The Cosmic Background Explorer Differential Mi- scalar sector and of the inflationary-energy scale is very lim-
crowave RadiometefCOBE DMR) detection of cosmic mi-  jted. We note there are excellent reviews of specific particle-
crowave backgroundCMB) anisotropy awakened the infla- physics models of inflation and their motivations within fun-
tionary community to the testability of the inflationary gamental physicésee, e.g., Ref11]). In addition, we limit
our analysis to standard, one-field inflation models. While
this encompasses the vast majority of the models discussed
Uinflation provides a natural cutoff on comoving scales smallerin the literature, there are other, nonstandard approaches to
than~1 km, the horizon size at the end of inflation; perturbationsinflation (see, e.g., Ref$16]).
on scales larger than the present horizon will not be important until  In the next section we show how the slow-roll conditions
long into the future. Thus, for inflation exact scale invariance is notfor inflation and naturalness limit the deviation from scale
necessary to avoid problems with excessively large perturbationsinvariance. In Sec. lll, to illustrate what must be done to
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achieve significant deviation from scale invariance, we consubscript “60” indicates that these parameters are evaluated
struct inflationary models based upon smooth potentialsoughly 60 e-folds before the end of inflation, when the
wheren is much smaller than and much larger than unity.scales relevant for structure formation crossed outside the

We end with some concluding remarks in Sec. IV.

II. WHY INFLATIONARY PERTURBATIONS ARE
NEARLY SCALE INVARIANT

The equations governing inflation are well knoyiv]:

d+3HP+V'($)=0 1)
H2=(é)2=8—w{w¢>+3¢2} @
o a 3m|23|_ 2
ot
NEIn(af/ai)zf Hdt (3
P
5|2_|(k)2V3/V’ZOCkn71 (4)

where a(t) is the cosmic scale factor, derivatives with re-
spect to the fieldp are denoted by a prime, and derivatives

with respect to time by an overdot. The quantdly is the

post-inflation horizon-crossing amplitude of the density per-
turbation, which, if the perturbations are not precisely scale

invariant is a function of comoving wave numbler(i.e., n

=1). (6y also corresponds to the dimensionless amplitudén

of the fluctuations in the gravitational potentjal.

In computing the density perturbations, the value of th
potential and its first derivative are evaluated when the scal
k crossed outside the horizon during inflation. Because bot
VandV’ can vary,5ﬁock”‘1 in general depends upon scale.

For most modelsg?, is not a true power law, but rather
varies slowly with scale, typicalljdn/d Ink|<102[18]. In

(S)

horizon.

Deviation from scale invariance is a generic prediction
since the inflationary potential cannot be absolutely flat. It is
controlled by the steepness of the potential and the change in
steepness. Significant deviation from scale invariance re-
quires a steep potential or one whose steepness changes rap-
idly. Further, Eq.(7) immediately hints that it is easier to
make models with a “red spectrum”n 1), than with a
“blue spectrum” (n>1), because the first term in E() is
manifestly negative, while the second term can be of either
sign. In additionx3,/8 is usually larger in absolute value
thanmp xg/4m.

The two conditions on the potential needed to ensure the
validity of the slow-roll approximation arésee, e.g., Refs.
[6,17))

mpLV,/V:XS \/487T (8)
m3, V"IV =< 24r. 9)

Note that the first slow-roll condition constrains the first term
in the expression forn(—1), x?/87=<6, and the second
Slow-roll condition constrains the second term since
pu X' 1Ar=m3 V" (47V) — X2/ (47).

A model that can give significantly less than 1 is power-
law inflation [20,21] (there are other models td6,22)). It

eviation from scale invariance. The potential for power-law
inflation is exponential,

V=Voexp — Bd/mp,),

élustrates the tension between sufficient inflation and large

(10

fact, bothn anddn/d Ink are measurable cosmological pa- and the scale factor of the Universe evolves according to a
rameters and can provide important information about thepower law

potential.

In the slow-roll approximation theé term is neglected in
the equation of motion forp and the kinetic term is ne-
glected in the Friedmann equatif®,17:

VI

b= 3H ®)

87 (¢r dop

 mp ¢iM' ©

The power-law index is given by[8,10]

2 ’
Xeo MpXgo
n—1)=— -2+
( ) 8w 4

(7)
where

X(p)=mp V' ()/IV()

measures the steepness of the potentiabdred x/d » mea-

sures the change in steepnegsigher-order corrections are

discussed and the next correction is given in R&$)].) The

a(t) ot F =P with p=16m/ 3> (11
and
o[ P Mp
¢= 47 t 12

Further,n can be calculated exactly in the case of power-law
inflation [23]:

2 2 o
(n=1)= ﬁ_) — 5 (slow-roll limit). (13

For this potentiak= — 3, x’ =0 (constant steepnesand
the slow-roll constraint implie§8|=<7, or p=1. This is not
very constraining ap>1 is required for the superluminal
expansion necessary for inflati¢@4]. The quantitative re-
quirement of sufficient inflation to solve the horizon problem
and a safe return to a radiation-dominated universe before
big-bang nucleosynthesiseheat temperaturé€g,>1 MeV
and reheat aggsy<1 sec) and baryogenesi$g,>1 TeV
andtgy<10 '? sec) restricp more seriously.
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In particular, the amount of inflation depends upon when 8w (¢ dob 8 X
inflation ends: N=——| —== —'), (20)
MpL) g X(P)  xggmp | Xt
87 (¢r do
=——| c—==pIn(Hi/Hy) (14 wherex; andx; are understood to have been evaluated ac-
Mp J ¢, X(¢)

cording to expressiof(19). Combining expression§&’) and

whereH;=p/t; andH=p/t;. The number of e-fold&l re-  (20), we get
quired to solve the horizon problefhe., expand a Hubble-

sized patch at the beginning of inflation to comoving size n_1— Eln(ﬁ) B X_ezso 21)
larger than the present Hubble volunig approximately 60, N \x;/ 87’
but depends upohl; andH; if pis not>1 (see, e.g., Ref.
[17)): The difficulty of obtaining largen—1 is now more trans-
1 parent. For example, tg get~1.5 with N=60 we need
' - In(x, /x)>15—more, if x§,/87 is not negligible. Not only
N=T74+In(HiTH) + ZIH(Hf/mPL)' @9 does such a large cha?woée seem unnatural, but it probably

o ) o invalidates the expansion in E(L9).
Bringing everything together, the constraintyias Note that Eq(21) (and others beloymake it appear that
74 1 In(H, /mp,) (n—1) depends directly upon the amount of inflation. This is
- L (16)  not really the case, becauseis the number of e-folds that
In(Hi/H¢) 2 In(H;/Hy) occur during the timex evolves fromx; to x;. In relating
(n—1) to properties of the potential it is probably most use-
ful to setN=60, the e-folds relevant to creating our present
Hubble volume.
Now we further specialize to the case3y/8m
|MpXgol/4m and [Xeo|>[XgoA [, where Agp=pi—d;.
ere we have explicity assumed that the change in the
steepness of the potential is small. It now follows that

p>1+

Based upon the gravity-wave contribution to CMB anisot-
ropy H; must be less than about 1%mp, and the baryogen-
esis constraint impliesH;=(1 TeV)?/mp ~10 *mp, .
Since reheating is not expected to be very efficient and
baryogenesis may require a temperature much greater tha
TeV (if it involves GUT, rather than electroweak, physics
we can safely say thatl;>10 3?mp, . Thus, sufficient in-
flation and safe return to a radiation-dominated universe be-

fore baryogenesis requires N= Sm 4¢ (22
Mp | X0
p>2 17
Lo 2del, 2 ’a
(1-n)<2. (18 (n— )—NX—GOXGO<N (23

Even insisting thaH ;= (10" GeV)?mp_, a typical infla-
tion scale, only leads tp=5 andn=0.5, which is still a
large deviation from scale invariance.

While the exponential potential allows a very large devia-
tion from n=1, it illustrates the tension between achieving
sufficient inflation and large deviation from scale invariance:
because (£ n)=2/(p—1), large deviation from scale in-
variance implies a slow, prolonged inflation, thi{)=N(1
—n)/2, with the change in the inflaton field being many times

(note thatA ¢ and xg are of opposite sign Thus, we get a
very strong constraint on in this case, i—1)<0.04, and
learn that to achieva significantly greater than unity, the
scalar field must change by much more tmag, .

One well-known class of inflationary models that gives
n=1 is hybrid inflation[25]; in the slow-roll region,V(¢)
=Vo(1+ ud?). In these models,

the Planck massA¢$=N(1—n)/8mmp >mp . Other N= am In( i/ ;) (24)
models also exhibit this tension: For example, for the poten- MmZPL o

tial V() =Vo—m2¢?/2+ \ ¢*/4, the lower limit ton is set
by the condition of sufficient inflatiofi6]. / m2

Achieving n significantly greater 1 provides a different (n—1)= MpLX - uzzm(d,i/(r/,f)_ (25)
challenge. Since the first term in the equation for(1) is 4m 2m N

negative, all the work must be done by the change-in- _— . .
steepness ternmp X’ /47, To see the difficulty of doing so, Thus, n significantly larger than 1 can be achieved, albeit at

let us assume that we can expand the slow-roll parametdf’® €xpense of an exponentially long rafl/ ;=exgN(n
x(¢) around a poini, in the slow-roll region: —1)/2]. However, ¢; may not be arb_ltranly sma}II herg—m
fact, the smallest value it can take in the semi-classical ap-

X(P) =X, + XL (d— by ). (19 proximation is equal to the magnitude of quantum fluctua-
tions of the fieldH/2# (this is further discussed in the next
This expression holds for potentials whose steepness dosection). This constraint, in combination with the other con-
not change much in the slow-roll regio can now be straints, limits the maximum value of in hybrid inflation
evaluated explicitly: scenarios tav<1.2[11].
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FIG. 1. Two potentials witm~2. In each case inflation starts @&, and ends at; ; the potential has a point of approximate inflection
at ¢= ¢, and its minimum atp= . Top: V=Vy+ M4 sint{(¢— ¢1)/f]+exp(— #/g)]. Bottom: V=Vy+M*[(p— ¢1)/T+[(p— $1)/f]3
+exp(—¢/f)]. Potential parameters are given in the text.

To summarize this discussion, let us rewrite E2{l) by  field oscillates at the stage of reheating. The reheat tempera-
expressingk/8 in terms of N and A¢ by assuming that ture must be sufficiently high to safely return the Universe to

x(¢) does not change too much: a radiation-dominated phase in time for baryogenesis and big
bang nucleosynthesi8BN).
2 8w A¢p)\? (vi) No overproduction of undesired relics such as mag-
(n=1)=gInGi /%) — 2 ( m_PL) (26) " netic monopoles, gravitinos, or other nonrelativistic particles.

There are additional constraints that the potential should
As this equation illustrates, unlegs¢/mp, is large or the obey in order to given>1:

steepness changes significantly— 1|<2/N~0.04. This is (8) mp Xgy/4m has to be large and positive, whigy/8m
certainly borne out by inflationary model building: with a should be negligiblé. Therefore|xg<O(1) and mp x,
few notable exceptions all models predjot—1|<0(0.1) =4m(n—1). In other words, at 60 e-folds before the end of
[11]. inflation the potential should be nearly flat and starting to
slope upwards.
lIl. MODELS WITH VERY BLUE SPECTRA (b) To obtain 60 e-folds of inflation, the potential should
' be nearly flat in some region during inflation. However, the
A. Constraints potential must not become too flat, since then density pertur-
The conditions for successful inflation were spelled out aPations diverge §,=1/V"). Therefore, the potential should
decade ag$6,17). Theregles de jetare the following: have a point of approximate inflection wheve(¢) is small
(i) Slow-roll conditions. but not zero.
(i) Sufficient number of e-folds to solve the horizon prob-
lem (N=60).

. . . B. Example 1
(iii) Density perturbations of the correct amplitude P

A potential with the characteristics just mentioned is

Sy~ VIIVE~1075. (27 oo
= 4l ginH 271 —¢lg
(iv) The distance tha# rolls in a Hubble time must ex- V=Vot+M sm)—( f te ' (29)
ceed the size of quantum fluctuations, otherwise the semi-
classical approximation breaks down: o .
whereM, f, g, and ¢, are constants with dimension of mass.
¢H*1>H/2w:V’>V3’2/m§,L. (28) The plot of the potential, with the parameters calculated be-

low, is shown in the top panel of Fig. 1. The hyperbolic sine
This is automatically satisfied if the density perturbations ardV@s invoked to satisfy requirements) and (b), while the
small. Additionally, no aspect of inflation should hinge upon &XPonential was used to produce a stable minimum.

¢; or ¢; being smaller thaid/27, the size of the quantum
fluctuations.

(v) “Graceful exit” from inflation. The potential should  20f course x2/8 is not required to be negligible, but it is even
have a stable minimum with zero energy around which themore difficult to get large f— 1) without this assumption.
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We make the following assumptions to make the analysis T

simpler (later justified by our choice of parameters beJow
(1) Vo dominates the potential in the slow-roll region,

vym%mr(%) for ¢>p>d. (30
(2) f>g so that the factor exp{¢/g) can be completely
ignored in the slow-roll region.

(3) (¢— 1)/ is at least of the order of a few fap;
>¢p> ¢, SO that sinf(¢p— py)/f]>1.

(4) For simplicity we takegp;= ¢g0.

In terms of the dimensionless parameteK
=M*mp, /V,f:
XZKcosr( ¢_f¢l), (31
LSS b= b1
X —Tsml—( : )— mPL\,osH — - (32
The condition thakgg<O(1) becomes
K cosl‘( ¢6°f ¢1) (1), (33

and the end of inflation occurs one of the slow-roll condi-

tions breaks down; in this cases, VV"/V =247 or

PHYSICAL REVIEW D62 063503
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FIG. 2. The power-law index for the two inflationary poten-
tials constructed to giva~2 as a function of Iik. The solid curve
corresponds to the hyperbolic sine potential and the upper dashed
curve to the cubic %+ ¢ potential. While both potentials
achieven~2, neither has a very good power-law spectrum. Also
shown is a cubic potential model with= 1.4 (lower dashed curye
where the variation of is less severe. For comparison, the hybrid
inflation model(dash-dotted curyewith n=1.2 is also shown; here
n is fairly constant over the astrophysically interesting range.

obtainable to first order, then one can certainly say that
>1 is obtainable(In fact, for the two potentials chosen, the

mPLK"inr( hi— ¢1) Py (34 second-order correction decreases1 only slightly)
> f ' We now have to choose paramet®ig M, f, g, ¢1, dso,
. ¢; and ¢r to satisfy Conditions(33)—(37), as well as
We can now write V(¢r)=0 andV’(¢g)=0. The choice of these parameters
is by no means unique, however. Here is such a set:
¢eo <!>1
(n— 1)— (35 ¢1
Vo=1.7x10"Bmp, =8.80
That inflation produces density perturbations of the cor-
rect magnitude implies ¢f
M4=1.3x10 ¥m}, —=4.10
Wo~4.3x 10" 8xggm3, . (36)
The expression for the number of e-folds can be calculated -3 $60
=7.6X —=11.
analytically. Introducinge=($— ¢,)/f, we have f=7.6x10"mp, = =1175
¢rd 8rrf 8m?f =f/5. 38
N=— m— f j’ — o —tan Ysinhe) ]|~ g 38)
PL/ 4 PL Pé?) To verify our analytic results we integrated the equation

In the last equality we used the fact that bathand|«;| are
at least of the order of a few, so that tapsinh()]
~—tan [ sinh(as)]~#/2. This assumption will also be fully
justified with our choice of parameters below.

Finally, the potential should have a stable minim(wmith
V=0) at some¢=¢pr. This implies thatV(¢g)=0 and
V'(¢$r)=0.

Before proceeding, we must specifyWe choose, some-
what arbitrarily, n=2. Of course, for such a large we

of motion for ¢ numerically and computed the spectrum of

density perturbations. We did so neglecting thein the
equation of motion forp and the kinetic energy of the field
(slow-roll approximatioh and taking both these quantities
into account(exact calculation The result is thalNggwron
=57.3 andNg,,.=57.9. Thus, the field really rolls as pre-
dicted by analytic methodsN=60), and the slow-roll ap-
proximation holds well for this potential.

The numerical results for the spectrum of density pertur-
bations did contain a surprise, shown in Fig. 2. While this

should include terms beyond the lowest order, complicatingootential achieved large slightly smaller than 2, over a few

the analysis. But we are not looking for accuracy-a+f 2 is

e-foldsn falls to a smaller value. Indeed, even restricting the
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spectrum to astrophysically interesting scales, ¥~Mpc,  tion, N~8m(A¢/mp)/x. A very “red spectrum” can be
the spectrum is not a good power la\ln/dInk|~0.3, and ~ achieved at the expense of a steep potential and prolonged
is reminiscent of the “designer spectra” with special fea-inflation (t¢/ti>1 andA¢>mp); the simplest example is
tures constructed in Ref26]. The reason is simple: in Power-law inflation. A very “blue spectrum” can be

achievingx’ ~1 an even larger value of was attained. ach_ieved_at the_ expense of a Iarge change in steepness near
an inflection point in the potential and a poor power law. In

both cases there appears to be a degree of unnaturalness.
The robustness of the inflationary prediction of approxi-
Is there anything special about the hyperbolic sine? Nomately scale-invariance density perturbations is expressed by
really—for example, a potential of the formg=+ ¢°” also  Eq. (26):
works. Consider the potential

b—d1| (b=
( f )*( i

C. Example 2

3
+e %0

2 87T(A¢)2
(n—l)—ﬁln(xi /Xf)— WQ‘ m_p|_ .

V=Vy+M* . (39

Unless the change in steepness of the potential is large,

Again, we assume thaf, dominates during inflation, that |In(¢/x)|>1, or the duration of inflation is very long\ ¢

&= e and that expf ¢/g) can be ignored in the inflation- > MeL the deviation from scale invariance must pe small,

ary region. To evaluatd\, we further assume thd(¢g, [N~ 1I=O(2/N)~0.1. Even for an extreme range im say

— 1)/ f|=1 and|(¢¢— ¢,)/f|=1. All of these assumptions from r1=0.5 tp n~1.5, the variation of,, over a;trophysr

are justified by the choice of parameters below. cally interesting scales; 1 Mpc to ~10" Mpc, is not es-
The analysis of the inflationary constraints is similar. wePecially large—a factor of 10 or so—but is easily measur-

conclude that large (heren=2) is possible, with the fol- able.

lowing parameters: Inflation also predicts a nearly scale-invariant spectrum of
gravitational waves(tensor perturbations The deviation
14 P from scale invariance is controlled solely by the first term in
Vo=1.09x10""mp, - =13.54 (n—1) [8,10], nt=—x3y/8. Thus, only a red spectrum is
possible, with the same remarks applying as for der{sitg-
. Cea O lar) perturbations witm<1. In addition, the relative ampli-
M?=1.46<10 “mp —=-1.82 tude of the scalar and tensor perturbations is related to the
deviation of the tensor perturbations from scale invariance,
beo T/S=—7n; (S andT are respectively the scalar and tensor
f=9=1.33x10 ?mp, —-=16.34. (40 contributions to the variance of the quadrupole anisotropy of

f the CMB). Detection of the gravity-wave perturbations is an
This potential is shown in the bottom panel of Fig. 1. important, but very challenging, test of inflation; if, in addi-
Numerical integration of the equation of motion shows thattion, the spectral index of the tensor perturbations can be
our “60 e-folds” is actually Ngguor=55.0 and Negae measured,_lt _prowdes a consistency test of mfla{@_ﬁ].
=56.0. Further, just as with the hyperbolic sine potential, The deviation oh from unity is a key test of inflation and
~2 is achieved, but the spectrum of perturbations is not rovides valuable information about the underlying potential
good power law. Both potentials achieve a large change i 9]. Measurements of the anisotropy of the CMB and of the

steepness by having inflation occur near an approximate iROWer spectrum of inhomogeneity today which will be made

flection point; however, the derivative of the change in steep®Ver the next decade will probe the nature of the primeval

ness is also large, amtvaries significantly. The change in ~ density perturbations and determimevery precisely, oy,

can be mitigated at the expense of a smaller valug;gee  ~0-01[15]. By so doing they will provide a key test of
Fig. 2. inflation and provide insight into the underlying dynamics.

On the basis of our work here, as well as previous studies
(see, e.g., Refl11]), one would expect(n—1)|~0(0.1),
but not precisely zero. A determination thitn—1)|

The deviation of inflationary density perturbations from ~©(0.1) would be a confirmation of the basic inflationary
exact scale invariance is controlled by the steepness of thieamework. On the other hand, a determination fmat 1|
potential and the change in steepness; cf.(Bg.The steep- =(0.2) would point to a handful of less generic potentials.
ness of the potential also controls the relationship betweeRinally, in the context of inflation, it would be very surpris-
the amount of inflation and change in the field driving infla- ing to find thatn=1.

IV. CONCLUSIONS
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