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We perform parametric tests of the consistency of the standard wCDM model in the framework of
general relativity by carefully separating information between the geometry and growth of structure.
We replace each late-Universe parameter that describes the behavior of dark energy with two parameters:
one describing geometrical information in cosmological probes, and the other controlling the growth of
structure. We use data from all principal cosmological probes; of these, Type Ia supernovae, baryon
acoustic oscillations, and the peak locations in the cosmic microwave background angular power spectrum
constrain the geometry, while the redshift space distortions, weak gravitational lensing, and abundance of
galaxy clusters constrain both geometry and growth. Both geometry and growth separately favor the
ΛCDM cosmology with the matter density relative to critical ΩM ≃ 0.3. When the equation of state is
allowed to vary separately for probes of growth and geometry, we find again a good agreement with the
ΛCDM value (w≃ −1), with the major exception of redshift-space distortions which favor less growth than
in ΛCDM at 3-σ confidence, favoring the equation of state wgrow ≃ −0.8. The anomalous growth favored
by redshift space distortions has been noted earlier, and is common to all Redshift space distortions data
sets, but may well be caused by systematics, or be explained by the sum of the neutrino masses higher than
that expected from the simplest mass hierarchies,mν ≃ 0.45 eV. On thewhole, the constraints are tight even
in the new, larger parameter space due to impressive complementarity of different cosmological probes.
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I. INTRODUCTION

The discovery of the acceleration of the Universe’s
expansion [1,2] has brought about one of the most
interesting and important questions in modern physics:
what is the nature of dark energy responsible for the
acceleration? Arguably the simplest and certainly the most
popular candidate is vacuum energy, responsible for the
cosmological constant term in Einstein’s equations. The
cosmological constant-dominated Universe (ΛCDM),
where the energy density today is dominated by ∼75%
dark energy and ∼25% matter, is well fit by essentially all
current data. Nevertheless, many alternatives to vacuum
energy have been discussed over the past 15 years or so.
Some of these alternatives involve scalar fields or other
light degrees of freedom which obey the standard equations
of general relativity but lead to a richer dynamics and a
different expansion rate and growth of structure than
ΛCDM and, therefore, can in principle be distinguished
from the latter. Nevertheless, in all such explanations
the growth of linear structures (matter density contrast
δ≡ δρM=ρM ≪ 1) evolves independently of the spatial
scale k and can be obtained, well within the Hubble radius,
by solving the equation

δ̈þ 2H _δ − 4πGρMδ ¼ 0; ð1Þ

where H is the Hubble parameter and dots are derivatives
with respect to time. For a review of dark energy obser-
vations and theory, see e.g. Frieman et al. [3].
A very different class of explanations fall in the category

of modified gravity (for an excellent review, see [4]). Here
the acceleration of the Universe is caused by the corrections
to general relativity at large scales. These corrections
obviously have to be suppressed at Solar-System-size
and perhaps galactic-size scales, and there are several
known mechanisms that do just that. Because the gravity
theory is truly modified, the growth is generally not given
by Eq. (1), and moreover the growth is not necessarily scale
independent any more. Therefore, for a fixed expansion
rate HðtÞ—or for that matter the comoving distance as a
function of redshift rðzÞ or any other geometric quantity—
the growth of linear structures is different in standard and
modified gravity. Moreover, the time dependence of δ is in
general k dependent in modified gravity.
Comparing the geometrical quantities to the growth of

structure is, therefore, an excellent way to test the con-
sistency of the fiducial standard-gravity cosmological
model; this was pointed out soon after the discovery of
the accelerating Universe [5–10]. The idea is to separately
measure the redshift evolution of the geometrical quantities
such as distances on the one hand, and growth of structure
on the other, and test whether or not they are related by
Eq. (1). This approach is the same in spirit to a much
more extensive body of work on parametrizing the non-
relativistic and relativistic gravitational potentials, Φ and Ψ
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(which govern the motion of matter and of light,
respectively), and testing in whether they are the same
or not [11–17]. In practice and implementation, however,
the two approaches are very complementary.
Our goal is to make a major step forward in developing

the first one of the aforementioned consistency tests—
testing the consistency of wCDM (the generalization of
ΛCDM where the dark energy equation of state w is
allowed to take constant values other than the ΛCDM
value of −1) by separately constraining the geometry and
growth in major cosmological probes of dark energy. This
program has been started very successfully by Wang et al.
[18] (see also [19–21] which contained very similar ideas),
who used data available at the time; the constraints however
were weak. Our overall philosophy and approach are
similar as those in Refs. [18–21], but we benefit enor-
mously from the new data and increased sophistication in
understanding and modeling them, as well as the avail-
ability of a few additional cosmological probes not
available in 2007.
The paper is divided as follows: we present the reasoning

behind our approach in Sec. II. In Sec. III we review the
cosmological probes used in the analysis. A review of the
analysis method is provided in Sec. IV, and we present our
constraints on parameters in Sec. V. We discuss these
results in Sec. VI and give final remarks in Sec. VII.

II. PHILOSOPHY OF OUR APPROACH

We would like to perform stringent but general consis-
tency tests of the currently favored ΛCDM cosmological
model with ∼25% dark plus baryonic matter and ∼75%
dark energy, as well as the more general wCDMmodel. The
ΛCDM model, favored since even before the direct dis-
covery of the accelerating Universe (e.g. [22]), is in
excellent agreement with essentially all cosmological data,
despite occasional mild warnings to the contrary ([23–26]).
There has been a huge amount of effort devoted to tests
alternative to wCDM—most notably, modified gravity
models where modifications to Einstein’s general theory
of relativity, imposed to become important at late times in
the evolution of the Universe and at large spatial scales,
make it appear as if the Universe is accelerating if
interpreted assuming standard general relativity.
Here we take a complementary approach and study the

internal consistency of the wCDM model itself, without
assuming any alternative model. We split the cosmological
information describing the late Universe into two classes:

(i) Geometry: expansion rate HðzÞ and the comoving
distance rðzÞ and associated derived quantities.

(ii) Growth: growth rate of density fluctuations in linear
(DðzÞ≡ δðzÞ=δð0Þ) and nonlinear regime.

Regardless of the parametric description of the geometry
and growth sectors, one thing is clear: in the standard model
that assumes general relativity with its usual relations
between the growth and distances, the split parameters

Xgeom
i and Xgrow

i have to agree—that is, be consistent with
each other at some statistically appropriate confidence
level. Any disagreement between the parameters in the
two sectors, barring unforeseen remaining systematic
errors, can be interpreted as the violation of the standard
cosmological model assumption.
The split parameter constraints provide very general, yet

powerful, tests of the dominant paradigm. They can be
compared to more specific parametrizations of departures
from general relativity—for example, the γ parametrization
[27], or the various schemes of the aforementioned com-
parison of the Newtonian potentials. Our approach is
complementary to these more specific parametrizations:
while perhaps not as powerful in specific instances, it is
equipped with more freedom to capture departures from the
standard model.
Most of the cosmological measurements involve large

amounts of raw data, and their information is often com-
pressed into a very small number of meta-parameters. For
example, weak lensing shows the two-point correlation
function, cluster number counts are given in mass bins,
while baryon acoustic oscillations, cosmic microwave
background, and redshift space distortion information is
often captured in a small number of meta-parameters which
are defined and presented below. (Type Ia supernovae are
somewhat of an exception, since we use individual magni-
tude measurements from each SN from the beginning.)
Given that in some cases one assumes the cosmological
model (often ΛCDM) to derive these intermediate param-
eters, the question is whether we should worry about using
the meta-parameters to constrain the wider class of cos-
mological models where growth history is decoupled from
geometry. Fortunately, in this particular case our constraints
are robust: certainly for surveys that specialize in either
geometry and growth alone, the meta-parameters are
de facto correct by construction and capture nearly all

TABLE I. Summary of cosmological probes that we used and
aspects of geometry and growth that they are sensitive to. The
assignments in the second and third column are necessarily
approximate given the short space in the table; more detail is
given in respective sections covering our use of these cosmo-
logical probes. Here rsðzdÞ refers to the sound horizon evaluated
at the baryon drag epoch zd.

Cosmological probe Geometry Growth

SN Ia H0DLðzÞ � � �
BAO

�
D2

AðzÞ
HðzÞ

�
1=3

=rsðzdÞ � � �

CMB peak loc. R ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

p
DAðz�Þ � � �

Cluster counts
dV
dz

dn
dM

Weak lens 2pt
r2ðzÞ
HðzÞWiðzÞWjðzÞ P

�
k ¼ l

rðzÞ
�

RSD FðzÞ ∝ DAðzÞHðzÞ fðzÞσ8ðzÞ

EDUARDO J. RUIZ AND DRAGAN HUTERER PHYSICAL REVIEW D 91, 063009 (2015)

063009-2



cosmological information of interest. For probes that are
sensitive to both growth and geometry, e.g. weak lensing
and cluster counts, the quantities used for the analysis—
correlation functions and number counts, respectively—
provide a general enough representation of the raw data that
one can relax the assumption that growth and geometry are
consistent without the loss of robustness and accuracy.

III. OBSERVATIONAL PROBES

We now discuss, in turn, the various cosmological probes
used in this work: Type Ia supernovae, the cosmic micro-
wave background fluctuation power spectrum, baryon
acoustic oscillations, cluster counts, weak gravitational
lensing, and redshift space distortions.
In Table I we summarize quantities or aspects of each

cosmological probe that are sensitive to geometry, and
those that depend on growth. In the following subsections,
we describe in more detail the cosmological probes, the
quantities that they measure, and the data sets that we use.

A. Type Ia supernovae

Type Ia supernovae (SNIa) are the principal probes of
geometry of the Universe, as they directly measure the
luminosity distance. Thus SNIa are specialized in probing
the geometrical parameters.
Each SNIa provides an independent measurement of

the magnitude-redshift relation. The theoretically expected
apparent magnitude of the supernova at redshift z is

mthðzÞ ¼ 5log10ðH0DLðzÞÞ þM; ð2Þ

where M is a nuisance parameter combining the intrinsic
magnitude of the supernova with the Hubble parameter H0

[2]. Therefore, each SNIa constrains the luminosity dis-
tance DLðzÞ, with one overall nuisance parameter M to be
determined from the data as well.
There are several properties of supernovae that can

change the magnitude of a supernova; these must be
corrected for. The stretch (or broadness) of a supernova
light curve is correlated with its brightness. Similarly, the
color of a supernova is also correlated with its brightness—
the broader and bluer the supernova light curve, the brighter
that supernova will be. We correct for these effects by
writing the magnitude as [28,29]

m ¼ mth − αsðs − 1Þ þ βCC; ð3Þ

where s is the stretch and C the color of each SNIa, and αs
and βC are additional, global nuisance parameters.
In addition to the statistical errors for each supernova

measurement, we also include the correlated systematic
errors between each supernova measurement [28,29]. The
covariance matrix resulting from these correlations is also a
function of αs and βC. Finally, we take into account host-
galaxy effects in the value ofM [26,28] in our analysis. We
allow two values of M, one for supernovae in lower-mass
host galaxies and one for higher-mass galaxies. These two
M’s are then marginalized over analytically. See
Appendix C of Conley et al. [28] for details.
We use the Supernova Legacy Survey (SNLS) data

compilation from Conley et al. [28], which contains 472
supernovae from various surveys, including SNLS itself,
the Sloan Digital Sky Survey (SDSS), some high redshift
supernovae observed by the Hubble Space Telescope
(HST), and a selection of Low-z supernovae observed
by various ground-based telescopes, collectively named the
“Low-z” sample. Supernova observations are summarized
in Table 2.

B. CMB peak location

The hot and cold spots of the cosmic microwave back-
ground (CMB) anisotropies provide an excellent standard
ruler: their angular separation, combined with the sound
horizon distance that is independently well determined
(from the CMB peaks’ morphology), provides a single yet
accurate measurement of the angular diameter distance
DAðz�Þ to recombination. In addition to being very high-
redshift, this measurement of DAðz�Þ is unique in that the
physical matter density ΩMh2 is essentially fixed by the
CMB peaks’ height. This is why the CMB peak location
measurement traces out a very complementary degeneracy

FIG. 1 (color online). Plot showing the set of 472 supernovae
used in this work. Error bars are from diagonal-only statistical
errors. The black line shows the best-fit ΛCDM model with
parameter values from column 2 of Table VII.

TABLE II. Summary of SNIa observations included in this
analysis, showing the number of SN included from each survey
and the approximate redshift ranges.

Source NSN Redshift range

Low-z 123 0.01–0.1
SDSS 93 0.06–0.4
SNLS 242 0.08–1.05
HST 14 0.7–1.4
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direction in the ΩM-w plane to low-redshift measurements
of distance [30].
For simplicity and clarity, we only use the geometrical

measurement provided by the CMB acoustic peaks’ loca-
tions. The integrated Sachs-Wolfe (ISW) effect of dark
energy imprints on the CMB angular power spectrum on
very large scales adds very little to the information due to
large cosmic variance. CMB is also sensitive to the physics
at the last-scattering surface [31], but recall that we decided
to study the growth vs geometry only in the late Universe,
when dark energy becomes significant. Our use of the peaks’
location only obviates the use the numerical CMBcodes that
evaluate a full set of Einstein-Boltzmann equations, and
speeds on this aspect of computation by a factor ofOð100Þ.
Therefore, we use the aforementioned angular diameter

distance to last scattering with ΩMh2 fixed, which is
sometimes referred to as the “shift parameter” R, defined as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

q
ð1þ z�ÞDAðz�Þ: ð4Þ

To obtain a value of R, we use the Planck Collaboration’s
PlankþWP measurements of r� and θ� [32]; since
θ� ¼ r�=DAðz�Þ, we marginalize over these measurements
assuming the ΛCDM cosmological model, as in [32] to get
a value for DAðz�Þ. Combining this with the Planck values
of ΩMh2 and z�, we obtain

R ¼ 1.7502� 0.0073 ð5Þ
for their value of z� ¼ 1090.48. Being only sensitive to ΩM
and w, R presents a handy yet powerful constraint on the
late Universe. When using the CMB peak information
alone, measurement of parameter R in Eq. (5), therefore,
provides complete information—modulo the aforemen-
tioned small ISW contribution—about CMB’s constraint
on the late Universe.
Once we combine the CMB peaks information with that

of other cosmological probes and add the CMB early-
Universe prior (discussed further below in Sec. IVA),
simply including the R measurement would be inconsistent
as R is necessarily correlated with the early Universe
parameters, e.g. ΩMh2. To do it correctly, we first extract
the 5 × 5 covariance matrix from Planck which contains the
4 × 4 early Universe prior shown in Table VI, plus an
additional row and column corresponding to R. We than
use the 5 × 5 matrix as our early Universe prior that
automatically and consistently includes the CMB peaks
information. Other probes are then added straightfor-
wardly; see Sec. IV B for details.

C. Baryon acoustic oscillations

Baryonic acoustic oscillations (BAO) are features that
arise from the propagating sound waves in the early
Universe. The distance the sound wave can travel between

the big bang and decoupling—the sound horizon—
imprints a characteristic scale not only in the CMB
fluctuations, but also in the clustering two-point correlation
function of galaxies. Roughly speaking, the two-point
correlation function is enhanced by ∼10% at distances
of ∼100 h−1Mpc. This latter distance is, similarly to the
CMB case, well measured by the early-Universe parame-
ters (ΩMh2 and ΩBh2 principally), but where we observe it
is dependent on the expansion history of the Universe
between the time that light from the galaxies is emitted
and today.
Specifically, for two galaxies at the same redshift

separated by comoving distance r and seen with separation
angle θ, we have θ ¼ r=DAðzÞwhich enables measurement
of the angular diameter distance given known separation
between galaxies. Similarly, two galaxies at the same
angular location but separated by redshift difference Δz
are separated by comoving distance r, with the two
quantities related via Δz ¼ rHðzÞ. The information from
these transverse and radial sensitivities can be conveniently
combined into a single quantity, a generalized distance
DVðzeffÞ defined as [33]

DVðzÞ≡
�ð1þ zÞ2D2

AðzÞcz
HðzÞ

�
1=3

: ð6Þ

The BAO surveys measure rsðzdÞ=DVðzeffÞ (or its inverse),
where rsðzdÞ is the comoving sound horizon at the redshift
of the baryon drag epoch zd,

rsðzÞ ¼
1ffiffiffi
3

p
Z

1=ð1þzÞ

0

da0

a02Hða0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ρb=4ργ

p : ð7Þ

In addition to the late-Universe parameters, these BAO
observable quantities are only sensitive to the early-
Universe physics via a fixed single combination, the sound
horizon rsðzdÞ.
It is important to note that the radiation term must be

included in HðaÞ in Eq. (7). The radiation energy density
relative to critical is Ωr ¼ ΩMaeq, where aeq ¼ 1=ð1þ zeqÞ
is the scale factor at matter-radiation equality and

zeq ≈ 25000 ΩMh2
�
TCMB

2.7K

�
−4
: ð8Þ

The ratio of the baryonic density to the radiation density
can be approximated as

TABLE III. BAO data measurements used here, together with
the effective redshift for the corresponding galaxy sample.

Survey zeff Parameter Measurement

6dFGS [35] 0.106 rs=DV 0.336� 0.015
SDSS LRG [36] 0.35 DV=rs 8.88� 0.17
BOSS CMASS [37] 0.57 DV=rs 13.67� 0.22
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3ρb
4ργ

≈ 31500 ΩBh2
�
TCMB

2.7K

�
−4
a: ð9Þ

We assume a value of TCMB ¼ 2.7255K.
The redshift of the drag epoch can be approximated by

the fitting formula [34]

zd ¼
1291ðΩMh2Þ0.251

1þ 0.659ðΩMh2Þ0.828
½1þ b1ðΩBh2Þb2 �; ð10Þ

where

b1 ¼ 0.313ðΩMh2Þ−0.419½1þ 0.607ðΩMh2Þ0.674�;
b2 ¼ 0.238ðΩMh2Þ0.223: ð11Þ
We use three sources of data for BAO constraints: the

Six-degree-Field Galaxy Survey (6dFGS) [35], the SDSS
LuminousRedGalaxies (SDSSLRG) [36], and the SDSS-III
DR9BaryonOscillation Spectroscopic Survey (BOSS) [37].
These measurements and the corresponding redshift ranges
of their galaxy samples are summarized in Table III.

D. Cluster counts: MaxBCG

Counts of galaxy clusters are a particularly useful probe
for this work, as they probe both growth and geometry (for
a review see Allen et al. [38]). Cluster number density and
its dependence on the cosmological model are calibrated
from N-body simulations; they are determined by the
growth of structure. On the other hand, the volume is
purely a geometric quantity that is straightforwardly
calculated from first principles. Product of the number
density and volume gives the number of clusters in some
mass and redshift range, which can be compared to
measurements.
More specifically, the number of clusters within some

mass and redshift range is

N ¼
Z

dMdz
dn
dM

dV
dz

ψðMÞϕðzÞ; ð12Þ

where dn=dM is the halo mass function, dV=dz is the
comoving volume per unit redshift, and ψðMÞ and ϕðzÞ are
the top-hat functions that specify our binning in mass and
redshift, that is, ψðMÞ ¼ 1 ifM is in the mass bin of interest
and 0 otherwise, and likewise for ϕðzÞ.
Here we use the measurements from the MaxBCG

cluster catalog (Rozo et al. [39]), based on measurements
from the Sloan Digital Sky Survey [40]. A key proxy for
measuring cluster masses is “richness,” defined as the
number of galaxies in R200, the radius at which the average
density of the cluster is 200 times that of the critical density
of the Universe. The richness-mass relation has been
calibrated using weak gravitational lensing measurements
from Johnston et al. [41]. For clarity and completeness, we
give further details of the Rozo et al. [39] analysis that we
adopt in Appendix A.

Cluster mass and redshift are not directly observable, but
instead we rely on cluster richness-mass relation and photo-
metric redshift of cluster galaxy members, respectively. We
definePðN200jMÞ to be the probability that a cluster of mass
M has a richness N200, and PðzphotojzÞ to be the probability
that a cluster at redshift z is observed with a photometric
redshift zphoto.We redefine ψ ¼ ψðN200Þ andϕ ¼ ϕðzphotoÞ.
The expected number of clusters then becomes

hNi ¼
Z

dMdz
dn
dM

dV
dz

hψ jMihϕjzi; ð13Þ

where we introduce the probability weighting functions

hψ jMi ¼
Z

dN200PðN200jMÞψðN200Þ; ð14Þ

hϕjzi ¼
Z

dzphotoPðzphotojzÞϕðzphotoÞ: ð15Þ

Here PðzphotojzÞ is modeled as a Gaussian distribution as
discussed in Rozo et al. [39]. Meanwhile, PðN200jMÞ is
modeled as log-normal distribution, with the mean
hlnN200jMi assumed to vary linearly with mass, resulting
in two free parameters and an unknown variance which is
also treated as free parameter. These parameters are mar-
ginalized in the analysis; see Appendix A for details.
In a similar fashion, the expected total mass of clusters in

a richness bin is given by

hNM̄i ¼ β

Z
dMdz

dn
dM

dV
dz

hψ jMihϕjzi; ð16Þ

where another nuisance parameter β is introduced to take
into account the uncertainty in the overall calibration of
mass; M̄obs → βM̄obs. The comoving volume is simply

dV
dz

¼ Ωsky
r2ðzÞ
HðzÞ ; ð17Þ

where Ωsky ¼ 2.254 sr is the solid angle covered by SDSS
and rðzÞ is the comoving distance.
Finally, we use the Tinker mass function [42] for our

halo mass function dn=dM. The mass function requires the
matter power spectrum as input, and to speed up the code
we calculate PðkÞ semianalytically; for that purpose, we
use the Eisenstein and Hu transfer function [34]. We have
checked that our calculation leads to negligible differences
in the results compared to one using CAMB’s matter power
spectrum as input.

E. Weak lensing shear: CFHTLens

Recent measurements by the Canada-France Hawaii
Telescope Lensing Survey (CFHTLenS) provide a very
appealing test bed to apply our methodology and test the

TESTING THE DARK ENERGY CONSISTENCY WITH … PHYSICAL REVIEW D 91, 063009 (2015)

063009-5



consistency of the cosmological model, as weak lensing is
sensitive to both growth and distance.
The CFHTLenS survey [43,44] covered 154 square

degrees over a period of five years in five wavebands
(ugriz). The resolved galaxy density is 17=arcmin2. What is
particularly appealing for cosmological tests is that the
survey is very deep (mean redshift zmean ≃ 0.75), implying
that potentially strong constraints on the temporal evolution
of the effects of dark energy—and, therefore, the growth
and geometry parameters—can be achieved. A detailed
analysis by the CFHTLenS team made the shape measure-
ments and obtained the photometric redshift of galaxies, all
the while dealing with a host of observational and astro-
physical systematic errors. The results are publicly avail-
able at the survey web site.1 We use their BLU_SAMPLE

data, which were shown in [44] to have a negligible
intrinsic alignment signal. The data are given in six
tomographic redshift bins and presented at five different
angles, θ ¼ f1.7300; 3.7500.8.1300; 17.600; 37.900g. The data
are given for the two 2-point correlation functions ξþ
and ξ−, defined as

ξ�ij ¼
1

2π

Z
∞

0

dllPκ
ijðlÞJ�ðlθÞ; ð18Þ

where l is the multipole, and JþðxÞ≡ J0ðxÞ and
J−ðxÞ≡ J4ðxÞ. Here Pκ is the weak lensing convergence
power spectrum, that is, the two-point correlation function
of the convergence field on the sky, given as a function of
the multipole l. In the Limber approximation, which only
includes modes perpendicular to the line of sight and is an
excellent approximation at scales of interest, the conver-
gence power is given as

Pκ
ijðlÞ ¼

Z
dz

r2ðzÞ
HðzÞWiðzÞWjðzÞP

�
k ¼ l

rðzÞ
�
; ð19Þ

where rðzÞ andHðzÞ are the comoving distance and Hubble
parameter respectively, and the weight functions involve
the distribution of galaxies dN=dz in each redshift bin,

WiðzÞ ¼
3

2
ΩMH2

0giðzÞð1þ zÞ; ð20Þ

where the weight function is given in terms of the radial
distance χ ¼ R

dz=HðzÞ,

giðχðzÞÞ ¼ rðχÞ
Z

∞

χ
dχsniðχsÞ

rðχs − χÞ
rðχsÞ

⟶rðzÞ
Z

∞

z

dzs
HðzsÞ

niðzsÞ
rðzsÞ − rðzÞ

rðzsÞ
: ð21Þ

Here the second line holds in the special case of a flat
universe which we adopt in the paper, and where nðzsÞ is
the distribution of source galaxies in each redshift bin,
normalized to niðzsÞdzs ¼ 1, and provided by CFHTLenS
for each tomographic bin (see Fig. 1 of Heymans
et al. [44]).
Finally, special attention is required to modeling the

power spectrum PðkÞ, given that scales probed are small—
consider, for example, that the smallest angle θ ¼ 1.7300, at
the mean redshift of the survey z≃ 1 spans k≃ 1h Mpc−1,
which is in a regime of strongly nonlinear clustering. It is
imperative to have an accurate theoretical prediction for the
dark matter clustering at these scales which are a “sweet
spot” for sensitivity for weak lensing surveys [45]. Here we
adopt an updated version of the HALOFIT [46] prescription
for nonlinear clustering given by Samushia et al. [47]. This
fit has the same functional form as the original HALOFIT, but
with updated parameter values. The formula has been
optimized for the dark energy equation of state w≃ −1,
justifying its use in this analysis. We find that the Takahashi
et al. prescription makes a non-negligible difference
relative to the original; for example, the best-fit σ8 value,
in a simplified analysis we ran as a check, moves down-
wards by ∼0.03 relative to the original HALOFIT, returning
σ8 ≃ 0.74 (for a fixed ΩM ¼ 0.3), in agreement with
Heymans et al. [44].
We also checked the robustness of the data assumptions

by verifying that the BLUE and FULL data sets from
CFHTLens give very similar constraints.

F. Redshift space distortions

Redshift space distortions (RSD) refer to the effect of
how density modes affect velocity distribution of gal-
axies in their vicinity. Galaxies’ peculiar velocities are
imprinted in galaxy redshift surveys in which recessional
velocity is used as the line-of-sight coordinate for galaxy
positions, leading to an apparent compression of radial
clustering relative to transverse clustering on large spatial
scales (a few tens of Mpc). On smaller scales (a few
Mpc), one additionally observes the “finger-of-God”
elongation [48] due to nonlinear effects. The spatial
clustering of galaxies is affected on scales corresponding
to the size of the largest objects (galaxy clusters) and
larger, all the way up to ∼100 Mpc. Measuring the
clustering at these scales and at various redshifts provides
valuable information about the growth of structure across
cosmic history.
RSD measurements are uniquely sensitive to the combi-

nation of cosmological parameters fðaÞσ8ðaÞ (often just
referred to as fσ8) [49], where fðaÞ≡ d lnD=d ln a and
DðaÞ is the linear growth factor.
In addition to pure growth information, however, we

must take into account the geometrical aspect of the RSD
measurements, which comes about from the breaking of
underlying isotropy of galaxy clustering when observed in1http://www.cfhtlens.org/astronomers/content‑suitable‑astronomers
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redshift space. The effect is accurately captured by the
parameter which serves to compare clustering in the
radial and tangential directions [50–52], and which has
been motivated by the original analysis by Alcock and
Paczynski [53],

FðzÞ≡ ð1þ zÞHðzÞDAðzÞ=c; ð22Þ

where HðzÞ is the Hubble parameter and DAðzÞ is the
angular distance. Intuitively, the comoving diameter a
spherical object (or, more generally, a feature in the
clustering of galaxies) ds at redshift z is related to its
angular size on the skyΔθ by ds ¼ DAðzÞΔθ. The diameter
of the feature can also be related to its redshift extentΔz via
ds ¼ cΔz=½ð1þ zÞHðzÞ�. By comparing the angular and
redshift dimensions of the feature (i.e. measuring Δθ=Δz)
one can then determine the parameter combination given in
Eq. (22). Alternatively, the effect is captured by the separate
but correlated measurements of HðzÞ and DAðzÞ. These
parameters all measure geometric effects and thus grant
RSD the ability to test both geometry and growth.
We use a compilation of measurements of fσ8, FðzÞ,

HðzÞ, and DAðzÞ from a number of spectroscopic surveys;
these are summarized in Table IV and illustrated in Fig. 2.

IV. PARAMETERS AND ANALYSIS

A. Parameter space

We adopt the following set of fundamental cosmological
parameters

~pfund ¼ fΩM;ΩMh2;ΩBh2; w; 109A; nsg; ð23Þ

where ΩM and ΩB are the energy densities in matter and
baryons relative to critical density, w is the equation of state
of dark energy, A is the amplitude of the primordial
curvature power spectrum on scale of 0.05 Mpc−1, and
ns is the scalar spectral index of curvature perturbations.
We also include the nuisance parameters,

~pnuis ¼ fαs; βC; hlnNjM1i; hlnNjM2i; σNM; βg; ð24Þ

where αs and βC are the supernovae nuisance parameters,
while the others enter the cluster count analysis. Our
analysis also produces constraints on several derived
parameters,

~pderiv ¼ fσ8; h; σMNg: ð25Þ

Here, σMN is the scatter of the richness for a given mass
(opposed to σNM, which is the scatter of the mass for a
given richness), and is considered a derived nuisance
parameter.
Throughout we assume a constant equation of state

parameter w for analyses, as well as a flat universe
(ΩK ¼ 0). The latter assumption effectively assumes stan-
dard inflation, and also has a very practical benefit of
improving the convergence of the parameter constraints.
At any rate, in this paper we are interested in testing the
consistency of the dark energy sector, which is typically
unrelated to the flatness of the Universe. In addition, we set

FIG. 2 (color online). RSD data used in our analysis, shown in
the fσ8-F plane; more details can be found in Table IV. The black
line shows the best-fit ΛCDM model with our best-fit parameter
values given in the second column of Table VII. The low-redshift
6dFGS measurement does not have an associated value for FðzÞ,
and we, therefore, only show its horizontal error bar. The BOSS
constraint on F is obtained from the covariance of HðzÞ and
DAðzÞ; see Appendix B for details. The dashed error ellipse
corresponds to an alternative RSD measurement at z ¼ 0.57 from
Samushia et al. [54]; for details, see Sec. VI.

TABLE IV. RSD measurements from various surveys. Each
line shows the effective redshift associated with the data point, the
measured parameter, the value of that parameter with associated
diagonal error, and the data point’s associated survey. Measure-
ments from the same survey are correlated; [55–57]; for brevity
we show the diagonal errors (i.e. square roots of parameter
variances) here and the full covariance matrices in Appendix B.

z Parameter Measurement (diag) Survey

0.067 fσ8 0.42� 0.06 6dFGS [55]
0.32 HðzÞ 78.1� 7.1 BOSS Low-z [56]
0.32 DAðzÞ 950� 61 BOSS Low-z [56]
0.32 fσ8 0.38� 0.10 BOSS Low-z [56]
0.44 FðzÞ 0.48� 0.05 WiggleZ [57]
0.44 fσ8 0.41� 0.08 WiggleZ [57]
0.57 HðzÞ 97.1� 5.5 BOSS CMASS [56]
0.57 DAðzÞ 1351� 60 BOSS CMASS [56]
0.57 fσ8 0.38� 0.04 BOSS CMASS [56]
0.60 FðzÞ 0.65� 0.05 WiggleZ [57]
0.60 fσ8 0.39� 0.06 WiggleZ [57]
0.73 FðzÞ 0.87� 0.07 WiggleZ [57]
0.73 fσ8 0.44� 0.07 WiggleZ [57]
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the sum of neutrino masses to mν ¼ 0.06 eV, which is
consistent with atmospheric and solar data on neutrino
flavor oscillations and a normal hierarchy between indi-
vidual mass eigenstates [58]. Note that, in our extended
tests in Sec. VI, we also vary the neutrino mass mν. The
number of neutrino species is held fixed at Nν ¼ 3.046
throughout the analysis, as predicted by the stan-
dard model.
We adopt priors on ΩM, σNM, β, and σMN from Rozo

et al. [39]. In addition, we add very weak top-hat priors on
h, w and ns. See Table V for details.
We also impose a multidimensional Gaussian prior based

on Planck constraints on ΩMh2, ΩBh2, 109A, and ns; we
term this the early-Universe prior (“EU” for short in our
plots). While we would have ideally liked to run our
analyses without this prior, we find that the MCMC runs
without the prior have difficulty converging in the large
parameter space with split geometry and growth late-
Universe parameters. The early-Universe prior correlation
matrix is calculated from Planck ΛCDM (þ lowl) MCMC
chains [32]; see Table VI. The square roots of the diagonal
entries of the full covariance matrix prior—the unmargi-
nalized errors of the prior—are shown in Table V. We apply

this full prior covariance to RSD, WL, and clusters, and the
overall combined constraint. In the case of BAO, we apply
only information coming from the 2 × 2 subset of this
matrix containing ΩMh2 and ΩBh2, corresponding to the
sound horizon (“SH” in our plots). The Planck prior
changes very little if one assumes the underlying Planck
wCDM model instead of ΛCDM, as has been verified
explicitly by the authors, implying that it should represent
the early-Universe information with the sufficient accuracy
even when the late-Universe parameters have been split.

B. Likelihood

We assume that the likelihood is Gaussian in suitably
chosen meta-parameters for each cosmological probe.
We assign the individual likelihoods as follows:

(i) SNIa: the data vector consists of SN magnitudes,
and we calculate the full off-diagonal covariance
matrix that takes into account errors in magnitude,
stretch factor, color, redshift, and gravitational lens-
ing. See Appendix C of Conley et al. [28] for details.

(ii) CMB peak location: the data vector consists of the
single measurement of the “shift parameter” R; see
Eq. (4). In the combined-probe analysis, we account
for the correlation of R and the early-Universe
parameters, as explained near the end of Sec. III B.

(iii) BAO: data vector and corresponding (diagonal)
errors are quantities given in Table III. Because
the SDSS and BOSS CMASS samples cover differ-
ent redshift ranges, and the two are in the northern
hemisphere while 6dFGS is in the south, it is a good
approximation to ignore correlations between these
three surveys.

(iv) Clusters: following Rozo et al. [39], we utilize
both the number counts and number-weighted
mass counts in richness; details are explained in
Appendix A.

(v) Weak lensing (WL): data vector are the correlation
functions ξ�ijðθÞ given for six redshift bins

TABLE V. Parameters used in our analysis. The first seven
parameters lying above the horizontal line are the fundamental
quantities that we varied in the Markov chains. The next two
parameters are derived from the fundamental parameters. Those
in the final sections are nuisance parameters, again separated into
fundamental (six) and derived (one). In the “Priors” column,
notation ½a; b� indicates a flat prior between the end points a and
b, while c� d indicates a Gaussian prior with mean c and
standard deviation d. For the basic set of cosmological parameters
(i.e. the first six above), we include information about whether
they enter the geometry or growth in the final two columns. If a
parameter is found in both columns, it is necessarily a split
parameter.

Parameter Priors Geometry Growth

ΩM [0.05, 0.95] ✓ ✓

ΩMh2 0.1423� 0.0029a ✓

ΩBh2 0.02207� 0.00033a ✓

w [−2, 0] ✓ ✓

109A 2.215� 0.16a ✓

ns [0.9, 1.1], 0.9616� 0.0094a ✓

σ8 � � � derived par.
h [0.5, 1.0] derived par.
αs � � � nuisance par.
βC � � � nuisance par.
hlnNjM1i � � � nuisance par.
hlnNjM2i � � � nuisance par.
σNM [0.1, 1.5] nuisance par.
β [0.5, 1.5], 1.0� 0.06 nuisance par.
σMN 0.45� 0.1 der. nuis. par.

aThese errors are the diagonal parts of the full covariance
matrix prior. See Table VI for further details and the full
correlation matrix.

TABLE VI. Correlation matrix corresponding to our early-
Universe prior (labeled as “EU” in our plots). The correlation
matrix is calculated from Planck ΛCDM (þ lowl) MCMC chains
[32]. The square roots of the diagonal entries of the full
covariance matrix prior—the unmarginalized errors of the
prior—are shown in Table V. We apply this full prior covariance
to RSD, WL and clusters, and the overall combined constraint. In
the case of BAO, we apply only information coming from the
2 × 2 subset of this matrix containing ΩMh2 and ΩBh2, corre-
sponding to the sound horizon (“SH” in our plots).

ΩMh2 ΩBh2 109A ns

ΩMh2 1.00 −0.62 −0.51 −0.84
ΩBh2 � � � 1.00 0.56 0.70
109A � � � � � � 1.00 0.65
ns � � � � � � � � � 1.00
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(so i ≤ j ≤ 6) and for measurements at five values
of θ. The total length of the vector is, therefore,
2 × ð6 × 7=2Þ × 5 ¼ 210. The 210 × 210 covari-
ance matrix, calculated using numerical simulations,
is provided by the CFHTLens team [44].

(vi) RSD: data vector and corresponding (diagonal)
errors are quantities given in Table IV. The corre-
lation matrices for the off-diagonal errors between
data points can be found in Tables X and XI in
Appendix B.

The likelihood of the combined cosmological probes is
given by the product of individual likelihoods:

L ¼ LSNIaLCMBpeakLBAOLclusterLWLLRSDLprior: ð26Þ

The assumption that the individual likelihoods are inde-
pendent may well be questioned, but it is in practice well
justified by the nature of the data sets that we combine.
CMB peak location is decoupled from other probes, as it is
a much higher-redshift measurement. Similarly, cluster
counts are a 1-point correlation function, and as such only
weakly coupled to clustering. Weak lensing is expected to
be slightly correlated with SNIa, as the latter are also
weakly lensed, but the effect is very small for current data.
Perhaps the biggest worry is potential correlation

between the BAO and RSD, since these use the same
spatial scales (e.g. 32–100 Mpc for the BOSS CMASS
sample) and, in the case of both Wigglez and BOSS, the
same galaxies. This correlation occurs because the RSD are
partially sensitive to the Alcock-Paczynski parameter
combination FðzÞ ∝ HðzÞDAðzÞ; this in turn may be
slightly degenerate with BAO measurements, depending
on the treatment of the broadband clustering power in the
BAO analysis. Direct estimates indicate that the correlation
between the RSD and BAO measured quantities are at the
10% level (e.g. Table 2 of Blake et al. [57] and Tables 2, 4,
and 6 in Chuang et al. [56]). Therefore, simply multiplying
the BAO and RSD likelihoods is justified.
At face value, the Gaussian assumption for the like-

lihoods might seem risky and unrealistic. Certainly, the
exact likelihood in any given probe will not be precisely
Gaussian, even if evaluated in parameters that are well
measured by the cosmological probes (e.g. the apparent
magnitudes of SNIa). Nevertheless, in addition to making
the problem vastly more tractable, the assumption of
Gaussianity seems to be well justified at this stage: for
cosmological models that fit the data well, tails of the
distribution are not as important. Had our analysis been
oriented toward ruling out wCDM—using, for example,
Bayesian model-selection techniques—then the analysis
would have perhaps warranted a much more careful
accounting of the likelihood. This, in turn, would have
necessitated a vastly more complex data challenge—for
example, fitting theoretical models to the observed galaxy
clustering power spectrum, as opposed to the convenient

quantity DVðzÞ. In this work, instead, we follow a large
body of literature in simplifying our likelihood as Gaussian
in the derived parameters since it is expected to be a very
good approximation to the truth.

C. Parameter constraints

We use a Markov chain Monte Carlo (MCMC) algorithm
to place constraints on cosmological parameters. The
MCMC algorithm estimates the posterior distribution of
the cosmological, derived, and nuisance parameters by
sampling the parameter space and evaluating the likelihood
of each model with the data sets provided. Given the
likelihood LðxjpÞ of the data set x for the parameters p, the
posterior distribution is obtained using Bayes’ Theorem

PðpjxÞ ¼ LðxjpÞPðpÞR
dpLðxjpÞPðpÞ ð27Þ

where PðpÞ is the prior probability density. The MCMC
algorithm produces the posterior probability in the param-
eter space including the parameter mean values, covarian-
ces, and confidence intervals.
We analyze our models using an MCMC code that one of

us (E. R.) developed specifically for this purpose. We
initially generate an optimized parameter covariance matrix
calculated using several shorter MCMC runs to optimize
the MCMC step size and direction and to minimize the
overall runtime. The initial 10% of the chains are thrown
out, and the resulting chains are analyzed for convergence
using the Gelman-Rubin criteria [59], with a conservative
convergence requirement for the convergence parameter of
r < 1.03 across a minimum of six chains for each case.
Additionally, the step sizes in parameters are optimized so
that they have an acceptance rate of ∼35%. The resulting
chains are then binned and smoothed with a Gaussian filter
for plotting.

V. RESULTS

A. Unsplit case

Before splitting the late-Universe parameters into those
sensitive to geometry and growth, we first show the fiducial
constraints to make sure they are in reasonably good
agreement with similar recent constraints in the literature.
The left panel of Fig. 3 shows constraints on the ΩM-σ8
plane assuming w ¼ −1, while the right panel shows the
constraints in the ΩM-w plane. Note that these plots include
marginalization over four other cosmological parameters
(ΩMh2;ΩBh2; 109A, and ns), in addition to several SNIa
and cluster nuisance parameters; see Eqs. (23) and (24). We
can already see the complementarity of the various cos-
mological probes: SNIa, BAO and the CMB distance are
sensitive only to geometry, so they measureΩM and w quite
well, but are not sensitive to σ8. In contrast, WL, RSD and,
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to a smaller extent, cluster counts constrain (in the case of
w ¼ −1) the characteristic combinations

ðΩM=0.3Þ0.28σ8 ¼ 0.799� 0.018 ðWLÞ;
ðΩM=0.3Þ0.04σ8 ¼ 0.809� 0.022 ðRSDÞ;
ðΩM=0.3Þ0.27σ8 ¼ 0.837� 0.021 ðclustersÞ: ð28Þ

To obtain these best-constrained combinations of ΩM and
σ8, we simply varied the power α until the error in
ðΩM=0.3Þασ8 was minimized.
Note that WL constraints favor a somewhat lower value

of ΩM and a higher value of σ8 than those favored by the
combination of other data sets. This has been noted and
extensively explored in MacCrann et al. [60] who discuss
possible reasons for this parameter tension. Given that
weak lensing is currently less mature than most of the other
cosmological probes, and the fact that WL only weakly
contributes to our principal constraints to be discussed
below, we do not discuss this point further.
The final combined constraints on ΩM and w are

ΩM ¼ 0.299� 0.010

w ¼ −1.03� 0.05
ðunsplit caseÞ: ð29Þ

Constraints on all other parameters can be found in the third
column of Table VII. For completeness,we also show
constraints on the unsplit case with w ¼ −1 held fixed
in the second column of the same Table.
We next study constraints when the late-Universe

parameters are split into geometry and growth components.

B. Split case: ΩM alone

We now carry out the first of our analyses where the late-
Universe, dark-energy parameters have been split into those

governing geometry and growth. Recall, the parameter split
has been described at length in Sec. III and summarized in
Table I.
Fixing wgeom ¼ wgrow ¼ −1, we first split the matter

density alone into two separate parameters, Ωgrow
M and

Ωgeom
M . In addition to these two parameters, we assume

the usual set of four additional fundamental early-Universe
parameters fΩMh2;ΩBh2; 109A; nsg, plus the nuisance
parameters. Constraints are shown in Fig. 4 and in the
fourth column of Table VII. Here we learn the first
interesting lessons in how surveys complement in meas-
uring growth and distance.
Some trends are fully as expected:CMBdistance andBAO

are sensitive exclusively to the geometry, and both prefer
Ωgeom

M ≃ 0.30; recall that BAO requires the help of the sound
horizonprior, otherwise its constraints becomemuchweaker.
We do not add any priors to Type Ia supernovae, which are
able to constrainΩgeom

M , preferring however somewhat lower
values butwith errors large enough to encompass the value of
0.3 at 2-σ. On the other hand RSD, combined with the early-
Universe prior, is sensitive to both geometry and growth,
though it constrains either only weakly.
The first small surprise is that clusters are much more

sensitive to growth than geometry, despite the fact that they
probe both (recall the summary in Table I). This is excellent
news for consistency tests of wCDM, since growth is
typically more weakly probed than geometry and “needs
more help.” The cluster constraint, combined with
the early-Universe prior, is broadly consistent with
Ωgrow

M ≃ 0.25–0.30. Finally, weak lensing constrains both
geometry and growth about equally well, but the overall
constraint is rather weak and consistent with a wide range
of values of the two ΩMs.
On the whole, Fig. 4 shows an impressive complemen-

tarity between the different cosmological probes in how

FIG. 3 (color online). Fiducial constraints from cosmological probes before the geometry-growth parameter split. We show the 68%
and 95% confidence constraints in the ΩM-σ8 plane assuming w ¼ −1 held constant (left panel) and in the ΩM-w plane (right panel). In
the labels, “EU” refers to our early-Universe prior, while “SH” refers to the sound horizon prior; see Table VI for relevant details.

EDUARDO J. RUIZ AND DRAGAN HUTERER PHYSICAL REVIEW D 91, 063009 (2015)

063009-10



they constrain geometry and growth. It also shows the huge
progress in the field since similar constraints imposed by
Wang et al. [18] seven years ago. Because the constraints
are mutually consistent, it is reasonable to combine them;
the fully marginalized constraints on the matter energy
density relative to critical is

Ωgeom
M ¼ 0.302� 0.008

Ωgrow
M ¼ 0.321� 0.017

ðΩMsplit; w≡ −1Þ: ð30Þ

Clearly, in this w ¼ −1 split case, the geometry and growth
constraints are perfectly consistent with each other. The
geometry constraint is stronger, as expected.

C. Split case: ΩM and w

A much more challenging task is to constrain the
geometry and growth components of the dark energy
equation of state, since in that case one also has to split
the matter density and, therefore, deals with the dark energy
sector parameter space consisting of four parameters:
Ωgeom

M ;Ωgrow
M ; wgeom, and wgrow. Before we show the con-

straints, let us emphasize that, despite their relatively weak
individual constraints on the equation of state, all of the
cosmological probes are invaluable since in combination
they help break degeneracies in the full ∼ ten-dimensional
parameter space and lead to excellent combined constraints.
In Fig. 5, we show constraints on wgeom and wgrow,

marginalized (for each probe) over fΩgeom
M ;Ωgrow

M ;ΩMh2;
ΩBh2; 109A; nsg, plus the nuisance parameters as before.
As in the previous case when only the matter density
parameter was split, we find largely expected directions
probed in this plane. However, because we now fully
marginalize over the matter density parameters Ωgeom

M and
Ωgrow

M , the constraints on the equation of state are

TABLE VII. Constraints on the cosmological parameters from the combined probes. The second column shows constraints in the
unsplit ΛCDM (so w ¼ −1) model, while the third column also shows the standard unsplit case but allows w to vary. The fourth and fifth
columns are our main results, and show the split-parameter cases where ΩM is split and wgeom ¼ wgrow ¼ −1 is fixed (fourth column),
and finally where both ΩM and w are split and allowed to vary (fifth column). In cases of parameters that can be split, the constraints are
given either on the unsplit parameter (vertically centered number) or separate constraints on the geometry and growth split parameters
(vertically offset pair of numbers).

Parameter Unsplit, w ¼ −1 Unsplit, w free Split, w ¼ −1 Split, w free

ΩM

�
Ωgeom

M
Ωgrow

M

0.302� 0.008 0.283� 0.011
0.303� 0.008 0.299� 0.010

0.321� 0.017 0.311� 0.017
ΩMh2 0.140� 0.001 0.141� 0.002 0.140� 0.001 0.142� 0.002
ΩBh2 0.0221� 0.0002 0.0220� 0.0003 0.0221� 0.0002 0.0221� 0.0003

w

�
wgeom

wgrow

� � � −1.13� 0.06
� � � −1.03� 0.05

� � � −0.77� 0.08
109A 1.95� 0.09 1.91� 0.10 1.96� 0.09 2.17� 0.13
ns 0.961� 0.005 0.959� 0.006 0.962� 0.005 0.961� 0.006
σ8 0.786� 0.015 0.788� 0.016 0.782� 0.016 0.771� 0.017
h 0.680� 0.006 0.687� 0.012 0.661� 0.017 0.677� 0.018
αs 1.44� 0.11 1.44� 0.11 1.44� 0.11 1.44� 0.11
βc 3.26� 0.11 3.26� 0.11 3.26� 0.11 3.27� 0.11
lnðNjM1Þ 2.36� 0.06 2.37� 0.06 2.29� 0.08 2.33� 0.08
lnðNjM2Þ 4.15� 0.09 4.16� 0.09 4.09� 0.11 4.15� 0.11
σNM 0.359� 0.057 0.357� 0.057 0.378� 0.059 0.367� 0.060
β 1.041� 0.050 1.045� 0.051 1.018� 0.054 1.036� 0.055
σMN 0.462� 0.081 0.459� 0.082 0.486� 0.085 0.464� 0.084

FIG. 4 (color online). 68% and 95% confidence constraints in
the split ΩM plane with the equation of state held constant at the
ΛCDM value (wgeom ¼ wgrow ¼ −1). As in Fig. 3, “EU” refers to
our early-Universe prior, while “SH” refers to the sound horizon
prior.
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necessarily weaker. Nevertheless, BAO and SNIa still do an
admirable job in constraining the geometric w. The CMB
distance, being a single quantity, is subject to degeneracy
between Ωgeom

M and wgeom and, by itself, provides no
constraint on either parameter alone. Finally WL and
clusters also weakly constrain either equation of state
parameters due to partial degeneracies. All of the afore-
mentioned probes are broadly consistent with the ΛCDM
value wgeom ¼ wgrow ¼ −1. In addition, we want to check
that our constraints are comparable to those obtained
previously. To that effect, we get constraints using only
the combined CMB and weak lensing, and find that these
are similar to comparible constraints obtained Wang et al.
[18] and shown in Fig. 3 of that work.
The one significant outlier are the RSD; they alone,

combined with the Planck early-Universe prior, precisely
constrain the growth equation of state, but with the value

wgrow;RSD ¼ −0.760� 0.085; ð31Þ

which is clearly far from the ΛCDM value of −1.
The RSD data clearly pull the combined constraints

away from the wgeom ¼ wgrow line, as a simple visual
inspection of Fig. 5 shows. The fully marginalized com-
bined constraints from all cosmological probes, including
the discrepant RSD, are

Ωgeom
M ¼ 0.283� 0.011

Ωgrow
M ¼ 0.311� 0.017

wgeom ¼ −1.13� 0.06

wgrow ¼ −0.77� 0.08

ðΩM and w both splitÞ ð32Þ

and those on all other parameters can be found in the last
column of Table VII. Note also that the overall goodness of
fit with or without RSD is satisfactory: with RSD
χ2=dof ¼ 728=699 ¼ 1.04, while when the redshift space
distortions are removed, χ2=dof ¼ 719=686 ¼ 1.05.
We can easily quantify the significance of the pull away

from the wgeom ¼ wgrow line by calculating the fraction of
the likelihood for wgeom > wgrow, which is the p value
defined as

p ¼
R
wgeom>wgrow dwgeomdwgrowLðwgeom; wgrowÞR

dwgeomdwgrowLðwgeom; wgrowÞ : ð33Þ

The p value is 0.0010 for the combined constraints,
corresponding2 to an inconsistency with wCDM at 3.3σ.

VI. DISCUSSION

Let us consider possible reasons for the pull of redshift-
space distortions toward wgrow > −1. This result is quali-
tatively not new: a number of recent investigations have
already been established that the RSD data are in some
conflict withΛCDM, suggesting less growth at recent times
than predicted by the standard model [61]. For example,
Beutler et al. [62] have measured a >2-σ tension in
measurements of the growth index γ ¼ 0.772þ0.124

−0.097 relative
to the ΛCDM (and, for that matter, also wCDM) prediction
γ ≃ 0.55. Similarly, Samushia et al. [54], using DR11
CMASS sample, and the more precise results by Reid et al.
[63] that utilized smaller spatial scales by doing extensive
halo occupation distribution modeling, have obtained
similar results, indicating that growth is suppressed relative
to ΛCDM prediction at approximately the 2-σ level.
Moreover, Beutler et al. [64] find a ∼2.5σ evidence
for nonzero neutrino mass, again a signature of the
hints of the departure from the standard model. Finally,
Salvatelli et al. [65] utilize the combined cosmological
probes (including the RSD) in the context of a model
where vacuum energy interacts with dark matter, and
interpret the results as detection of nonzero interactions
between dark matter and dark energy—another possible
interpretation of the departure from the standard ΛCDM
model.
Degeneracy with optical depth may play an important

role here: our RSD measurement is combined with the
early-Universe prior, whose crucial input is the measure-
ment of the optical depth to reionization τ which has been
most accurately measured by WMAP’s polarization data.
The higher the τ, the higher the primordial fluctuation

FIG. 5 (color online). 68% and 95% confidence constraints in
the split w plane. Note that the combined 2-σ contour does not
pass through the wgeom ¼ wgrow line. As before, “EU” refers to
our early-Universe prior, while “SH” refers to the sound horizon
prior. Individual CMB results have been omitted due to the poor
constraints they provide in this plane, but they are included in the
combined constraint. See text for details.

2To convert this p value to “sigmas,” we assumed the p value
represents one tail of a two-sided Gaussian distribution: we would
have been equally surprised to obtain the opposite result, namely
wgeom > wgrow, and so this more conservative number of sigmas
seems appropriate.
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amplitude A or, roughly equivalently, amplitude of mass
fluctuations σ8 at low redshift, and thus the larger the
discrepancy. Recall from Fig. 2 that all RSD data, except
perhaps the higher-redshift WiggleZ measurement, pull
toward low values of fσ8 relative to those predicted by the
standard model. Therefore, the anomalous RSD resultsmay
perhaps partly be explained by a high WMAP-polarization
estimate of τ. Forthcoming Planck polarization measure-
ments will provide more accurate constraints on the optical
depth and should clarify this issue.
Perhaps of most interest is investigating how our results

depend on the choice of RSD analyses. Even within BOSS,
different analyses make different assumptions and give
somewhat different results; this is clearly shown for the
z ¼ 0.57 measurements shown in Fig. 2. We do our best to
avoid the a posteriori bias of hand-picking analyses that
give results that are closer, or further away, from the
concordance ΛCDM model. To that extent, we keep our
original choice of the RSD data from Fig. 2 and Table IVas
fiducial but, as an alternative, choose to investigate what
happens in the combined analysis when the measurement at
z ¼ 0.57, which clearly is most responsible for the dis-
crepancy with the standard model, is replaced by the
alternative analysis of the same data [54]. That alternative
determination of ðF; fσ8Þ at z ¼ 0.57 is less discrepant
with the ΛCDMmodel; see Fig. 2. The results are shown in
the left panel of Fig. 6. Clearly, the combined constraints
(RSDþ everything else) are now slightly closer to the
geometry ¼ growth line, but the p value is still small
(0.0020), indicating a 3.1-σ discrepancy with the standard
geometry ¼ growth assumption. The constraints on cos-
mological parameters with the alternate RSD z ¼ 0.57
measurement from BOSS are

Ωgeom ¼ 0.279� 0.011

Ωgrow ¼ 0.319� 0.021

wgeom ¼ −1.14� 0.06

wgrow ¼ −0.81� 0.08

ðw=alternate RSDÞ: ð34Þ

The goodness-of-fit for this case is also satisfactory,
χ2=dof ¼ 724=699 ¼ 1.04.
The RSD results are, therefore, reasonably stable with

respect to the choice of data. However, while the data in
the RSD analyses that we employed typically include
information from large scale (roughly 10-30h−1 Mpc≲ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2∥ þ r2⊥

q
≲ 150-200h−1 Mpc)—scales considered well

modeled by theory—some analyses are subject to contri-
butions from shorter scales perpendicular to the line of sight
(small r⊥), making those measurements subject to
increased theory systematics [66]. Therefore, it is prudent
to be cautious in interpreting the RSD observations at this
early stage.
We next investigate the implications of completely

removing the RSD in the combined constraints in the right
panel of Fig. 6. In this case, the combined constraints are
more consistent with the geometry ¼ growth expectations,
though the p value is still somewhat small at 0.0204,
corresponding to a discrepancy of 2.3σ. As mentioned
earlier, the goodness-of-fit is entirely satisfactory both with
and without the RSD data. Clearly, RSD currently provide
by far the strongest constraint on the growth of structure.
It is also interesting to study the effect of the neutrino

mass. So far, cosmology has provided rather stringent
upper limits to the sum of neutrino masses, roughly
mν ≲ 0.3 eV [e.g. [67]]. Recently several papers have

FIG. 6 (color online). Dependence of our results on the RSD data and their analyses. Left panel: Combined constraints for the case
where we replace the z ¼ 0.57 RSD measurement from [56] with the alternative BOSS measurement that uses the same raw data but a
different analysis [54]; see Fig. 2. The combined constraints are now only slightly less discrepant with the wgeom ¼ wgrow line. Right
panel: Combined constraints, but without the RSD data employed. The combined contour is now larger in the growth direction; however
it is still somewhat discrepant with the wgeom ¼ wgrow line, though less so than with the RSD data included. See text for details.
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claimed evidence for the positive neutrino mass in order to
alleviate the discrepancy between the RSD data and the
standard ΛCDM model [64], or the twin tensions between
the local measurements of the expansion history and Planck
data [68–71], and Planck and BICEP2 constraints on the
amplitude of gravitational waves [69,72].
To test the effect of neutrino mass sum on our combined

constraints (including RSD), we allow it to vary within the
range mν ∈ ½0; 1� eV. We compare the combined results to
our fiducial case of fixing the mass sum to mν ¼ 0.06 eV,
the results of which can be seen in the left panel of Fig. 7.
Allowing the combined masses of neutrinos to vary results
in a significant increase in the range of values allowed by
the combined data, and the constraints become fully
consistent with the growth ¼ geometry expectation:

Ωgeom
M ¼ 0.289� 0.012

Ωgrow
M ¼ 0.319� 0.018

wgeom ¼ −1.11� 0.06

wgrow ¼ −1.10� 0.28

ðmν marginalized overÞ: ð35Þ

Neutrino mass, therefore, relieves tension between
geometry and growth. It is then of particular interest to
report what neutrino mass sum is favored by the data. The
posterior probability on mν is shown in the right panel of
Fig. 7. In the case where both ΩM and w are split,
mν ¼ 0.45� 0.21 eV, higher than our fiducial, normal-
hierarchy value (which assumes the massless lightest-mass
eigenstate) of mν ¼ 0.06 eV by ∼2-σ. As a further test, we
place constraints on mν in the case of unsplit parameters
(i.e. enforcing Ωgeom

M ¼ Ωgrow
M and wgeom ¼ wgrow),

obtaining mν ¼ 0.45� 0.12 eV. Our results are in good
agreement with Beutler et al. [64] who favor similar
neutrino mass, mν ¼ 0.36� 0.10 eV, using the combined
BAOþ RSDþ Planck data.
From Fig. 5 and Eq. (32) we see that the geometric

equation of state is also somewhat incompatible with the
ΛCDM value, since the combined data mildly prefer a
value wgeom ¼ −1.13� 0.06. We find that most of the pull
toward such negative values is provided by the BAO. The
fact that wgrow > −1 while wgeom < −1 clearly exacerbates
the disagreement between geometry and growth, leading to
the 3.3σ incompatibility calculated above; growth however
clearly exhibits the more pronounced tension with the
standard value.
Finally, we investigate whether there is something about

the Planck early-Universe prior that pushes the combined
constraints away from the standard assumption that
geometry ¼ growth. To that effect, we replace the
Planck prior in Table VI with the equivalent based on
WMAP nine-year data [73]. Runs with this prior indicate
that wgeom ¼ −1.13� 0.06, wgrow ¼ −0.78� 0.08, with
wgrow > wgeom now favored at 3.1σ (p value ¼ 0.0017).
These constraints with WMAP9 are very similar to those
obtained with Planck, so differences between the two CMB
probes’ measurements are not responsible for the tensions
we observe.

VII. CONCLUSIONS

In this paper we have carried out a general, weakly
model-dependent test of the consistency of the wCDM
cosmological model using current cosmological data from
Type Ia supernovae, CMB peak location, baryon acoustic

FIG. 7 (color online). Left panel: The effects on the combined constraints when the sum of the neutrino masses mν is allowed to vary,
compared to our fiducial assumption of holding it fixed at 0.06 eV. The constraints are now fully consistent with the wgeom ¼ wgrow line.
Right panel: Posterior likelihood on mν for when ΩM and w are split (wider curve), and when growth ¼ geometry correspondence
(Ωgeom

M ¼ Ωgrow
M and wgeom ¼ wgrow) is enforced (narrower curve). In both cases a value ofmν ≃ 0.45 eV is preferred; see text for details.
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oscillations, redshift space distortions, cluster counts, and
weak lensing. We split each late-Universe parameter that
describes the effects of dark energy into two parameters,
one that comes from observed quantities that are governed
by geometry of the cosmological model, and one that is
determined by the growth of structure. Assuming a flat
universe, we first assume the dark energy equation of state
of −1 and constrain the parameters determining the matter
density relative to critical, Ωgeom

M and Ωgrow
M . We then

consider the case when, in addition to the matter density,
the equation of state of dark energy can vary and hence
wgeom and wgrow can be constrained. We marginalize over
five additional early-Universe parameters including the
neutrino mass, plus several nuisance parameters that are
specific to individual cosmological probes. As a check, we
show constraints projected on popular parameter combi-
nations ðΩM; σ8Þ and ðΩM; wÞ in Fig. 3.
The main results—constraints on the geometry and

growth components of ΩM and w—are shown in Figs. 4
and 5, respectively. The complementarity of various probes
is impressive; this is especially visually evident in the
Ωgeom

M −Ωgrow
M plane in Fig. 4 which shows that SNIa, BAO

and CMB peak location determine distance; the remaining
three probes are sensitive to both geometry and growth—
RSD and cluster counts are largely sensitive to growth,
while weak lensing mostly constrains the geometry. The
overall goodness of fit is satisfactory, and the constraints on
the late-Universe parameters of interest, given in Eqs. (30)
and (32) and summarized in Table I, are very tight.
One surprise are the redshift-space distortions, which are

in a ≃3-σ conflict with wCDM. The RSD prefer less
growth at late times than in the standard model; this
can visually be seen in the RSD data—Fig. 2 shows
preference for a lower fσ8 than in the standard Planck
ΛCDM model. The tension is most clearly seen in the
w-split plane, Fig. 5, which shows that RSD alone prefers
wgrow;RSD ¼ −0.760� 0.085, and in fact pulls the com-
bined constraint from all probes to wgrow ¼ −0.77� 0.08.
We quantify the tension with wCDM to be 3.3σ (p value of
wgeom ≥ wgrow is 0.0010). This tension brought about with
current RSD measurements has already been noticed and
discussed in the literature. In the Discussion section, we
demonstrate that the discrepancy remains at the still-
significant 3.1σ level once the most discrepant RSD
measurement is replaced by one from an alternative
analysis. The discrepancy may be resolved with a higher
value of the sum of the neutrino masses than what is
expected in the normal hierarchy between the mass
eigenstates with the lightest eigenstate being massless,
mν ¼ 0.45� 0.12 eV; see Fig. 7. However, systematics
may play a role in resolving the discrepancy; more work in
this area is needed to determine which of these effects is
responsible.
On the whole, our results demonstrate very explicitly

how the diverse cosmological probes complement each

other and not just break degeneracy in the multidimensional
parameter space, but also effectively specialize in con-
straining geometry, growth, or both. The resulting com-
bined constraints on the geometry and growth are
impressively tight. The next generation of surveys—
Stage III and IV in the language of the Dark Energy
Task Force—are sure to improve them further.
Over the past few years, as the cosmological constraints

improved, we and others hoped that nature will be kind
enough to provide hints for departure from the standard
ΛCDM model in order to help reveal the dynamics of dark
energy. We already see those hints, and it will be interesting
to see whether they are cracks in the cosmic egg3 or perhaps
systematics in data and observations.
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APPENDIX A: CLUSTER ANALYSIS DETAILS

Here we give more details regarding the cluster analysis,
which closely followed one given in the Rozo et al. [39]
MaxBCG cosmological constraints paper.
The analysis is based on assigning “richness” to each

cluster; this is defined as the number of galaxies in R200, the
radius at which the average density of the cluster is 200
times that of the critical density of the Universe. Moreover,
the mass is determined from richness via the richness-mass
relation which has been calibrated using weak gravitational
lensing measurements by Johnston et al. [41]. The cluster
numbers in each richness bin are shown in Table VIII, while
the clusters’ mean mass per bin is shown in Table IX and
in Fig. 8.
In addition to the data in Table VIII, there are also five

clusters which have N200 > 120. Due to the high richness
of these clusters, they are not analyzed with a standard χ2

approach, and are instead included in the analysis on an
individual basis.
As already implied, the overdensity of Δ ¼ 200 is

adopted to define cluster masses. In addition, the masses
measured have been assumed to be in cosmology with
ΩM ¼ 0.27. For other cosmologies, this leads to an over-
density of Δv ¼ 200ð0.27=ΩMÞ. To correctly account for
this, we rescale the quoted masses from Rozo et. al. for each
tested cosmology using the equations from Hu and
Kravtsov [74] for mass rescaling

3As expressed by Michael Turner, Aspen, summer 2014.
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Mh

Mv
¼ Δh

Δv

1

c3

�
rh
rs

�
3

; ðA1Þ

where r is the radius of the halo for a given overdensity, c
the concentration factor, and Δ is the overdensity. The ratio
of radii can be written as

rs
rh

¼ x

�
Δv

Δh
f

�
1

c

��
ðA2Þ

where

fðxÞ ¼ x3½lnð1þ x−1Þ − ð1þ xÞ−1� ðA3Þ

and its inverse can be approximated as

xðfÞ ¼
�
a1f2p þ

�
3

4

�
2
	
−1=2

þ 2f ðA4Þ

where p ¼ a2 þ a3 ln f þ a4ðln fÞ2, and ai ¼ f0.5116;
−0.4283;−3.13 × 10−3;−3.52 × 10−5g. Finally, the con-
centration can be expressed in terms of the mass as

cðMvÞ ¼ 9ð1þ zÞ−1ðMv=M�Þ−0.13; ðA5Þ

where M� is calculated at the present day.
As mentioned in Sec. III D, the probability weighting

functions are

hψ jMi ¼
Z

dN200PðN200jMÞψðN200Þ; ðA6Þ

hϕjzi ¼
Z

dzphotoPðzphotojzÞϕðzphotoÞ: ðA7Þ

Here PðN200jMÞ is a log-normal distribution with an
unknown variance σ2NM ¼ VarðlnN200jMÞ and an expected
value,

hlnN200jMi

¼
log10ðMM1

ÞhlnN200jM2i − log10ðMM2
ÞhlnN200jM1i

log10ðM2

M1
Þ ;

ðA8Þ

where M1 ¼ 1.3 × 1014M⊙, M2 ¼ 1.3 × 1015M⊙, and
hlnN200jM1i, hlnN200jM2i, and σ2NM are nuisance param-
eters, which are marginalized over during the analysis of
the cluster data. Likewise, the probability weighting
function PðzphotojzÞ is a Gaussian distribution with
standard deviation σz ¼ 0.008 and an expectation value
hzphotojzi ¼ z. ψðN200Þ and ϕðzphotoÞ are once again bin-
ning functions, where the zphoto bin is [0.1,0.3] from the
range of photometric data from the SDSS survey.

FIG. 8 (color online). Top: Number of galaxy clusters within a
given richness bin in the MaxBCG data set. Errors shown are the
diagonal parts of the covariance matrix. The step function shown
uses the parameter values from the best-fit ΛCDM model
(column 2 of Table VII). The data are summarized in Table VIII.
Bottom: Mean mass of galaxy clusters within the given richness
bin in the MaxBCG data set. The step function uses the same
parameter values as the top figure. The data are summarized in
Table IX.

TABLE VIII. The number of clusters with a richness within the
given bin.

Richness bin No. of Clusters

11–14 5167
14–18 2387
19–23 1504
24–29 765
30–38 533
39–48 230
49–61 134
62–78 59
79–120 31

TABLE IX. Mean mass (and their number) of clusters with a
richness within the given bin.

Richness bin No. of Clusters hM200bi½1014M⊙�
12–17 5651 1.298
18–25 2269 1.983
26–40 1021 3.846
41–70 353 5.475
71þ 55 13.03
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The cluster likelihood consists of two parts [39]; the
main part is defined via

−2 logLmain ¼ ΔxTC−1Δx; ðA9Þ

where Δx ¼ ðxdata − xtheoryÞ. The x vector of observables is

x ¼ fN1;…; N9; ðNM̄Þ1;…; ðNM̄Þ5g; ðA10Þ

where N1 though N9 are the cluster counts in the respective
richness bins, while ðNM̄Þ1 through ðNM̄Þ5 are the total
mass of clusters in bins.
The covariance C of the cluster data takes into account

uncertainties due to shot noise, sample variance, the
stochasticity of the mass-richness relation, measurement
error of the weak lensing masses, and uncertainties in the
purity and completeness of the sample. For more informa-
tion regarding these uncertainties, see Rozo et al. [39] from
which we adopt the prescription for calculating the covari-
ance matrix.
As previously stated, there are five clusters in the

MaxBCG data set which have N200 ¼ 126, 139, 156,
164, and 188. These clusters are added on a individual
basis to the analysis with the likelihood

logLtail ¼
X

N200>120

hNi −
X

NðN200Þ¼1

hNi þ loghNi; ðA11Þ

where the first sum is over all richnesses > 120, which is
subtracted by the second sum, which is for those richness
bins that contain a cluster. This additional piece is com-
bined with the main part to obtain the full likelihood of
observing a set of cluster counts and their masses

Lcluster ¼ LmainLtail: ðA12Þ

APPENDIX B: RSD ANALYSIS DETAILS

1. RSD correlation matrices

For completeness, in Tables X and XI we present the
correlation matrices for the BOSS Low-z, BOSS CMASS,
and WiggleZ measurements used for the analysis. The
square roots of the diagonal uncertainties for these mea-
surements can be found in Table IV.

2. From ðDA;HÞ covariance to error in F

In order to make the error bars in Fig. 2 for the two BOSS
samples (Low-z and CMASS), we need to project the 3 × 3
covariance matrix in fσ8, H and DA into the 2 × 2 space
ðfσ8; FÞ. Recall, F is defined in Eq. (22) and is essentially
proportional to the product of the Hubble parameter and the
angular diameter distance.
Doing this is a short exercise in statistics. First of all, note

that we only really need the variance in F, although

computing the covariance between fσ8 and F would be
equally straightforward.
Let us assume that we would like to calculate the

variance of the product of two Gaussian random variables
x and y. Let X and Y be the mean of these two variables,
and δx≡ x − X and δy≡ y − Y. Then,

VarðxyÞ ¼ Var½ðX þ δxÞðY þ δyÞ�
¼ Var½Xδyþ Yδxþ δxδy�; ðB1Þ

where we dropped the noncontributing variance of a
constant. Dropping the three-point correlations that vanish
for Gaussian variables, this evaluates to

VarðxyÞ ¼ X2VarðδyÞ þ Y2VarðδxÞ þ 2XYCovðδx; δyÞ
þ VarðδxδyÞ

¼ X2VarðδyÞ þ Y2VarðδxÞ þ 2XYCovðδx; δyÞ
þ VarðδxÞVarðδyÞ þ Covðδx; δyÞ2; ðB2Þ

where in the last expression we evaluated VarðδxδyÞ using
Wick’s theorem. This is the expression that we need.
Denoting for clarity DA and H to be the means, and DA
and H to be fluctuations around the mean in the angular
diameter distance and Hubble parameter, in our case we
have

TABLE X. Correlation matrices for the BOSS Low-z (left) and
CMASS (right) samples of our RSD data set.

z ¼ 0.32 HðzÞ DAðzÞ fσ8

HðzÞ 1.00 −0.32 0.35
DAðzÞ � � � 1.00 0.51
fσ8 � � � � � � 1.00

z ¼ 0.57 HðzÞ DAðzÞ fσ8

HðzÞ 1.00 −0.67 0.05
DAðzÞ � � � 1.00 0.40
fσ8 � � � � � � 1.00

TABLE XI. Correlation matrix for the WiggleZ sample of our
RSD data set. Terms with subscript a are values at z ¼ 0.44,
subscript b at z ¼ 0.60, and subscript c at z ¼ 0.73.

Fa Fb Fc ðfσ8Þa ðfσ8Þb ðfσ8Þc
Fa 1.00 0.52 0.00 0.73 0.35 0.00
Fb � � � 1.00 0.50 0.38 0.74 0.43
Fc � � � � � � 1.00 0.00 0.43 0.85
ðfσ8Þa � � � � � � � � � 1.00 0.51 0.00
ðfσ8Þb � � � � � � � � � � � � 1.00 0.56
ðfσ8Þc � � � � � � � � � � � � � � � 1.00
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ð1þzÞ−2VarðFÞ¼H2VarðDAÞþD2
AVarðHÞ

þ2HDACovðDA;HÞþVarðDAÞVarðHÞ
þCovðDA;HÞ2: ðB3Þ

With this equation we can evaluate the error in F, given the
covariance matrix in the angular diameter distance and
Hubble parameter.

APPENDIX C: PLOTS WITH SEPARATED
CONTOURS

In Figs. 9, 10, 11, and 12, we include alternate versions
of Figs. 3(a), 3(b), 4, and 5. Here, for clarity, each probe’s
constraints have been shown separately. In each case, the
combined constraint has also been shown.

FIG. 9. Same as the left panel of Fig. 3, but the various probes
have been separated for easier viewing. The smaller, dark set of
contours corresponds to all probes combined.

FIG. 11. Same as Fig. 4, but the various probes have been
separated for easier viewing. The smaller, dark set of contours
corresponds to all probes combined.

FIG. 10. Same as the right panel of Fig. 3, but the various
probes have been separated for easier viewing. The smaller, dark
set of contours corresponds to all probes combined.

FIG. 12. Same as Fig. 5, but the various probes have been
separated for easier viewing. The smaller, dark set of contours
corresponds to all probes combined.
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