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We study the power of upcoming weak lensing surveys to probe dark energy. Dark energy modifies the
distance-redshift relation as well as the matter power spectrum, both of which affect the weak lensing conver-
gence power spectrum. Some dark-energy models predict additional clustering on very large scales, but this
probably cannot be detected by weak lensing alone due to cosmic variance. With reasonable prior information
on other cosmological parameters, we find that a survey covering 1000 sq deg down to a limiting magnitude
of R=27 can impose constraints comparable to those expected from upcoming type la supernova and number-
count surveys. This result, however, is contingent on the control of both observational and theoretical system-
atics. Concentrating on the latter, we find that timlinear power spectrum of matter perturbations and the
redshift distribution of source galaxies both need to be determined accurately in order for weak lensing to
achieve its full potential. Finally, we discuss the sensitivity of the three-point statistics to dark energy.
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I. INTRODUCTION area[12-17]. A unique property of WL is that it is sensitive
directly to the amount of mass in the universe, avoiding the
Recent direct evidence for acceleration of the universeéhorny issue of galaxy-to-mass bias. By measuring elliptici-
[1,2] has spurred considerable activity in finding ways toties of a large number of galaxies, one can in principle di-
probe the source of this acceleration, dark en¢8yy6] (for  rectly reconstruct the mass density field of an intervening
a review of dark energy see R¢¥]). Because dark energy massive objecf18]. Indeed, the mass reconstruction of gal-
varies with redshift more slowly than matter, it starts contrib-axy clusters has been successfully performed on a number of
uting significantly to the expansion of the universe only rela-clusters(for a review, see Ref.19]).
tively recently, atz=2. This component is believed to be  An exciting recent development, relevant to this work,
smooth (or nearly s9, and therefore detectable mainly was the discovery of weak lensing by large-scale structure,
through its effect on the expansion rate of the universe. Foannounced by four groufp20—-23. The results are in mutual
these reasons, it is generally believed that type la supernovagreement and consistent with theoretical expectations,
(SNe la and number-count surveys of galaxies and galaxywhich is remarkable given that they were obtained indepen-
clusters have the most leverage to probe dark energy, as thegntly. Although current data impose weak constraints on
probe the distance and volume in the desired redshift rangeosmology (e.g., rule out the Einstein—de Sitter Universe
[8]. Indeed, planned supernova survegsy., SNAB) and  with Qyu=1), future surveys with larger sky coverage and
number-count method®,10] are expected to impose tight improved systematics are expected to impose interesting
constraints on the smooth component, for exampl@y) constraints on cosmological parameters.
~0.05 from SNAP, assuming a flat universe. The goal of this work is to assess the power of weak
The program of weak gravitational lensitf@/L) is pri-  lensing to constrain dark energy. This analysis therefore
marily oriented toward mapping the distribution of matter in complements that of Huterer and Turri&i, where the effi-
the universe. The paths of photons emitted by distant objectsacy of SNe la and number-count surveys was considered.
and traveling toward us are perturbed due to the interveningve follow the standard practice of considering dark energy
mass. The weak lensing regime corresponds to the intervets be a smooth component parametrized by its energy density
ing surface density of matter being much smaller than soméscaled to critical x and equation-of-state ratiov=p/p
critical value; in that case the observed objdetg. galaxies  [24]. Dark energy modifies the WL observables by altering
are slightly distorted. The weak lensing distortions are smalthe distance-redshift relation and the growth of density
(roughly at the 1% levgland one needs a large sample of perturbations. As discussed in Sec. VI B, the nonlinear evo-
foreground galaxies in order to separate the lensing effedtition of perturbations also depends on dark energy; this
from the “noise” represented by random orientations of gal-dependence is much more difficult to calculate and needs
axies. Therefore, observations of lensed galaxies provide® be calibrated froniN-body simulations. Overall, the de-
information on the matter distribution in the universe, as wellpendence of WL on dark energy is somewhat indirect
as the growth of density perturbations. Although the potentiahnd expected to be weak, especially when degeneracy with
of WL has been recognized for around two decates. other cosmological parameters is taken into account. Never-
[11]), only in the 1990s was there a surge of interest in thigheless, we shall show that, provided systematic errors are
controlled and theoretical predictions sharpened, WL surveys
can be efficient probes of dark energy, comparable to SNe la
thttp://snap.lbl.gov and number-counts. Proposed deep wide-field surveys such
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as LSST: the aforementioned SNAP, and VISTAill at- ox$= A X! 3)

tempt to constrain dark energy through their WL programs,

maklng'our analysis particularly tlmely.. . whereéx are the displacement vectors in the two planes and
Previous work on parameter determination from WL cen-, . . . :

. .~~~ Alis the distortion matrix

tered mostly onQ)y, and og, the rms density fluctuation in

spheres of 8 h! Mpc[25,16]; hereH,=100h km/s/Mpc is

the Hubble parameter today. Hu and Tegma], however,

used the Fisher matrix formalism to account for all 8 param-

eters upon which WL depends, and assumed dark energy to

be the vacuum energyherefore, fixedv=— 1)_' We use the g geformation is described by the convergemand com-
same set of parameters, with two changes: wewddnd, oy shear ¢,,v,). We are interested in the weak lensing

guided by the ever-stronger evidence from the cosmic micronmit, where ||,/ y|<1. The convergence in any particular

wave backgrounde.g.,[27—-30), we assume a flat universe. . . AL ) )
To assess the accuracy of parameter determination, we t ref:tlon on the sky is given by the integral along the line
use the Fisher matrix machinery, which has proven to be afl sight,
extremely efficient and accurate way to forecast errors in
experiments where observables depend on many parameters. N , , ,

This paper is organized as follows. In Sec. Il we go over K(nx)= o W(x") 8(x") dx” ®)
the basic formalism and define the notation. In Secs. Ill and
IV we concentrate on the convergence power spectrum, and . : o .
discuss its dependence on dark energy. Section V discuss\t'a\@ere{S is the relative perturbation in matter energy density
the power of weak lensing surveys to probe dark energyz,ind
while Sec. VI addresses systematic errors that can lead to
biases in parameter estimation. In Sec. VII we discuss the
dependence of three-point statistics — bispectrum and skew-

ness of the convergence — on dark energy. We conclude in

1_ — —
( K—71 Y2 @

Y2 1-k+y)

3
W(x)=5QuHig(x)(1+2) ®

Sec. VIIl. is referred to as the weight function. Furthermore
Il. PRELIMINARIES " F(x' = x)
In this section we cover the basic formalism of weak 900 =r(x) L dx'n(x") (') @)
gravitational lensingfor detailed reviews, see Ref81,19).
We work in the Newtonian gauge, where the perturbed
Friedmann-Robertson-Walker metric reads . roOr(xs—x) ®)

r(xs)

ds?=—(1+2®)dt?>+a?(t)(1—2d)
2 o 2 5 wheren(y) is the distribution of source galaxies in redshift
X[dx*+r2(d6” +sifod$?)] @) [normalized so thafdz n(z) =1] and the second line holds

) ) ) ) only if all sources are at a single redshiff. We use the
where we have sat=1, y is the radial distanced is the distribution [20]

gravitational potential, anék=1,0,—1 for closed, flat and

open geometry respectively. We also use the coordinate dis- 2
tancer which is defined as n(z)= Z_3efz/zo )
2z,
(—K)"Y%sin{ (—=K)Y?x] if Qqor<l,
F(x)= Y it Qror=1, (2) with zo=?).5(,jwh|cr(1I peaks at%: 1 ar;]d |shshownf IT\ Flg_. 1._b
gy K 12 —— Our results depend very weakly on the shape of the distribu-
K in(K~x) ' TOT— -+ tion of source galaxie&@ssuming this distribution is known,

of course. In particular, ifall source galaxies are assumed to
whereK is the curvature{)ro7 is the total energy density be atz=1, the parameter uncertainties change by at most
relative to critical, andK = (Qror— 1)H3. ~30% percent. Similarly, the distribution given by E)
Gravitational lensing produces distortions of images ofwhich peaks az=1.5 would improve the parameter con-
background galaxies. These distortions can be described afaints by 20% or less.
mapping between the source plaf® and image planél) Some clarification is needed regarding observability vs.
[32] theoretical computability of WL quantities. The quantity that
is most easily determined from observations is shear, which
is directly related to the ellipticities of observed galaxigs
2http://dmtelescope.org the weak lensing limit, shear is equal to the average elliptic-
3http://www.vista.ac.uk ity). Shear is given by15]
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0.8 A
K|m=J dnk(n,x) Y,
06 | 1 The power spectrum of the convergerieg is then de-
fined by
Noal ] (Kim&irm') = 611, Om,m, PI"-
c

Using Limber’s approximation — the fact that the weight
functionW is much broader than the physical scale on which
02t 1 the perturbatior varies — the convergence power spectrum
can be written as

0 . : - - L [xs, WA(x)
] 1 2 3 4 5 P/= dy 5 P(/r(x),2) (12
z o rix)
FIG. 1. The assumed source galaxy distributiga). 272 (22 W2(2)r(2)
= |—3f ZwAZ(”I'(Z),Z) (13)
0

1
+iy,== — +i 10 . . .
T2 2((//*ll (EDORRLEL (10 where in the second line we assume a flat universe where

dx=dr. Here P(k,z) is the matter power spectrum as a
where ¢ is the projected Newtonian potentialy function of redshiftz, and
=—2[9(x) ® ;;dx, and commas denote derivatives with
respect to directions perpendicular to the line of sight. Un-
fortunately, this quantity is not easily related to the distribu-
tion of matter in the universe and the cosmological param-
eters. Convergence, on the other hand, is given by is power per unit logarithmic interval in wavenumber, which
we also refer to as the matter power spectrum.
1 Power spectrum of the convergence is displayed in the top
k=5 (Yt 2 (11)  panel of Fig. 2 for three values of)y,w) and down to
scales of about one arcminute<(10000). The uncertainty in
the observed weak lensing spectrum is giver] b¥,15°

k3P (k,2)

A(k2)=

(14)

which (in Limber’s approximationcan be directly related to
the distribution of matter through the Poisson equatsee 2 (72
Eq. (5], and is convenient for comparison with theory. How- AP{= A /—( P+ &) , (15)
ever, it is very difficult to measure the convergence itself, as (21+ D) fgy n
convergence depends on the magnification of galaxies which ) )
would somehow need to be meas[jlrmlthough there may Wherefsky:®277/129600 is the fraction of the Sky covered
be ways to do this; see RéB3]). Note also that computing by a survey of dimensiof and(y{,)"/?~0.4 is the intrinsic
the convergence from the measured shear is difficult in gerellipticity of galaxies. The first term corresponds to cosmic
eral, since the inversion kernel is broad and requires knowlvariance which dominates on large scales, and the second to
edge of shear everywhefd8]. In the weak lensing limit, Poisson noise which arises due to small number of galaxies
however, the problem is much easier, since the two-poinen small scales. Bottom panel of Fig. 2 shows the signal-to-
correlation functions of shear and convergence are identicanoise P{/AP|. It is apparent that the bulk of cosmological

In this work we use power spectrum of the convergenceconstraints comes from multipoles between several hundred
[defined in Eq.13) below] as the principal observable that and several thousand. Wider and deeper surveys widen the
will convey information from weak lensing. range of scales with high signal-to-noise. Note also that the
weak lensing power spectrum is relatively featureless be-
cause of the radial projectidicq. (13)]. It can be character-
ized by amplitudgnormalization, overall tilt, a “turnover”

The convergence can be transformed into multipole spacat | ~100 which is due to the turnover in the matter power
(see e.g. Ref.31]) spectrum, and a further increasel at1000 and flattening at

| ~10000 which are due to the nonlinear clustering of matter.

IIl. CONVERGENCE POWER SPECTRUM

“There are two competing effects due to magnification of galaxies:
(1) “Magnification bias,” the increase in the observed number of SStrictly speaking, Eq(15) holds for Gaussian convergence field
galaxies due to the fact that fainter ones can not be observed, ammhly. However, the non-Gaussianity of the convergence is milder
(2) increase in the apparent observed area on the sky due to lensintpan that of the matter due to the radial projection which makes this
which decreases the observed number density of galaxies. a good approximation, see Sec. VI C.
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1072 — which is the power in unit logarithmic interval evaluated at
—— Q,=0.70, w=—1.0 =1/ [here P! =1(1+1)/(27)P']. The tightest require-
—==- Q,=0.70, w=—0.5 ment is on scales of 1 arcmih~2000), where the fractional
10 —-=-- Q.=0.65, w=—1.0 e uncertainty in power per unit logarithmic interval is about
° = 1/200. Therefore the rms of shear on scéls given by
| =
= (P ()~8P, " (19
=3 N ] i (20
= 10° 2 pl=1e
/, «
! X 104X ! 21
0" - - =2 200 )
1 10 1(|)o 1000 10000
~2.5x10°° (22)
5
=<0.01V(»?(9)). (23

Therefore, the systematic error in individual shear mea-
surements should be less than 1% in order to be subdomi-
nant to statistical error—a very challenging requirement in-
deed.

PlK/APlK

IV. DEPENDENCE ON DARK ENERGY

The sensitivity of the convergence power spectrum to
dark energy can be divided into two parts. Dark eneg@y
modifies the background evolution of the universe, and con-
sequently the geometric factdV?(z)r(z)/H(z), and (b)
modifies the matter power spectrum. We now discuss each of
these dependencies.

FIG. 2. Top panel:The convergence power spectrum for three
pairs of (2x,w). The shaded region represents lincertainties A. The lensing weight function
(corresponding td)y=0.7w=—1 curve plotted at eacH. The . . .
uncertainties at low are dominated by cosmic variance, and those ~FunctionW(z) is bell-shaped, and has a maximumzat
at high! by Poisson(shod noise; see Eq(15). We also show the ~Zs/2, wherezg is redshift of lensed galaxies, indicating that
contribution toP{ from the linear matter power spectrum only. ensing is the most effective at distances halfway between
Bottom panel: P/AP[ (“signal-to-noise”) for the convergence the source and the observer. Sim¢g) andH(z) are varying
power spectrum for each individul with redshift monotonically and slowly, the function

W2(2)r(z)/H(z) will also be bell-shaped with maximum at

The systematic error in shear measurements ideally need@s=zJ/2. W(2),r(z) and 1H(2) all decrease with increasing
to be small enough so as not to exceed the statistical errav, and therefore the total weight decreases(sdecreases,
shown in Fig. 2. The maximum allowed systematic error carf (z) and 1H(z) decrease buV(z) increases, and the latter
be estimated using the following argumé&nthe shear vari- prevails; see Fig. 3. Therefore, changingQy) makes the
ance in circular aperture of opening anglean be written in  normalization and total weight change with the saimgpo-
terms of the convergence power spectrunj3ig site) sign, leading to largésmal) change inP/ on large
scales; see Fig. 2.

1 10 1(|J0 1000 10000

2
Jl(|9)) (16)

— ” |
<,y2(0)>—277f0 dl |PK< 10

=dl_ (31(10))\?
~(2w)2f0 l—PK< —ia ) (17)

B. The matter power spectrum

The matter power spectrum can be written as

D?(2)

3+n
A%(k,2)= 8% H_o) T2(k,z)mTNL(k,z) (24)

=P, (18 where 6y, is perturbation on Hubble scale toddy(k) is the
transfer functionD(z)/D(0) is the growth of perturbations
in linear theory relative to today, anty (k,z) is the pre-
SProposed by M. Turner. scription for nonlinear evolution of the power spectrum.
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FIG. 3. The weight functioW?(z)r(z)/H(z) for three pairs of
(Qyx,w). FIG. 4. The matter power spectrum &t 0 for three pairs of
(Q«,w). Linear power spectrum corresponding to the fiducial spec-

In the presence of dark energy, the matter power spectruﬁ’ium is shown by the thin solid curve. Vertical lines delimit the
will be modified as follows ' interval which contributes significantly to the WL convergence

The normalizations,, increases with increasin@y and power spectrum, roughly corresponding to #16<10000. It can
H X be seen that the ability to determine cosmological parameters will

decreasingv. This happens because the growth of structure o :
. . epend critically upon the knowledge of the nonlinear power spec-
is suppressed in the presence of dark energy, and the op-

served structure today can only be explained by a larger ini-

tial amount of perturbation. We choose to normalize the re-

sults to Cosmic Background Explorer (COBE) implemented by Peacock and Dodd®]; (PD), as W(_ell_as

measurement84], and adopt the fit to COBE data of Ma ~ Ma ([43]., heretofore MaA CDM). These two prescriptions

al. ([35], heretofore Ma QCDM were calibrated foA CDM models, although the PD formula
seems to adequately fit models with>—1 [M. White (pri-
vate communicatio. Ma QCDM prescription{35], on the

Sy=2X 10‘5a(0)‘1Q‘§/}+°2'”(0M) other hand, gives explicit formulas for the nonlinear power
) spectrum in the presence of dark enefgg., a component
xXexpgcg(n—1)+cy(n—1)7] (29 with w=—1). Unfortunately, we found that the PD and Ma

QCDM prescriptions agre€o ~15%) only at values ofv
wherec, 4 and a, are functions ofQy andw and are where Ma QCDM was tested. At other valueswthe maxi-

given in Ma QCDM. Since the COBE normalization for the MUM disagreement between the two is up to 50%, and it is
ACDM models is accurate to between 7% and (86,37 not clear which fitting function, if any, is to be used. We

we adopt the accuracy of 10% for the dark-energy case. f:hoose to use the PD prescription primgrily beca}use it is
The transfer function for cosmological models with neu-implemented for allw and therefore facilitates taking the

trinos and the cosmological constant is given by fits of Hyderivative with respect tav needed for the Fisher matrix. In

and Eisensteifi3g], which we adopt in our analysis. These S€C- VI B we explore the possible parameter biases due to
formulas are accurate to a few percent for the currently fal€ Uncertain calibration of the nonlinear power spectrum.
vored cosmology with low baryon abundance. Dark energy Figure 4 shows the matter power spectrumza{O for

will not directly modify the transfer function, except possibly €€ pairs of y,w). When(, orw are varied, the growth

on the largest observable sca{eﬁsize~H51), where dark gnd normalization change affecting all scales equally. Vary-

energy may cluster. This signature can be ignored, as !9 {!x @lso changes the transfer functiofat k

1 =1
shows up on scales too large to be probed by WL; we further 0-02 1~ Mpc). On smaller scalesE&0.2h* Mpc), the

discuss this in Sec. V G. non-linear power spectrum is further affected by dark energy.
The linear theory growth functio®(z) = 6(z)/5(0) can

models given in Ma QCDM, which generalizes thecDM

growth function formula of Carrolet al [39]. We use this

fitting function, noting that its high accuracy<2%) justi- ) :

fies avoiding the alternative of repeatedly evaluating the exP&aked at a single multipole

act expression for the growth functige.g.[40], p. 342. A2(K) = ( 82k S(k— Kk 26
The last, and most uncertain, piece of the puzzle is the (K)=(&%)ka 5 v (26)

prescription for the non-linear evolution of density perturba-

tions. This is given by the recipe of Hamilt@t al. [41] as  normalized so thaf A%(k)dIn k=(&%) (here(s?) is the auto-

To illustrate the correspondence between wave nuntbers
and multipoledl, let us assume the matter power spectrum
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e InL -

1=~ pmi ). (28
1 IP{ 9P/

:EI | | (29)

(APX)2 p; 0p;

wherelL is the likelihood of the observed data gagiven the
parameterp, . ..p,. The second line follows by assuming
that L is Gaussian in the observabR{’, which is a good
assumption for small departures around the maximum.

In practice we do not estimate the power spectrum at ev-
ery multipolel, but rather binP{ in 17 bins. We explicitly
checked that binning makes no significant difference in our
results(this is not surprising, as the convergence power spec-

FIG. 5. Power spectrum of the convergence assuming mattfum does not have features that would get washed out by

power spectrum is a delta-function let, shown for two different

moderate-resolution binningWe considered?* at 100<I|

values ofk,. This shows the correspondence between physical ang<10000, corresponding to angles between 1 arcmin and 2°

angular scale¢for z;=1 and our fiducialA CDM cosmology.

correlation function of density contrast in real spadehen,

on the sky. Variations in the minimum and maximuieho not
change any of our results, as very large and very small scales
are dominated by cosmic variance and Poisson noise respec-

assuming for simplicity that all sources are at a single redtively.

shift zg, we have

3

I I 2

for | <k;r(zs), and zero fol =k;r(zs). The plot of the con-

vergence power spectrum is given in Fig. 5 for two values of

k,. The multipole power peaks bt 3/5k,r (zg). Assuming a

Finally, we need to choose steps in parameter directions
when taking numerical derivatives. We choose the steps to be
5% of the parameter values, making sure to take two-sided
derivatives.

B. The fiducial cosmology and fiducial survey

Finally, we need to choose the fiducial survey, i.e. sky
coverage and depth of the survey. We do not consider any

survey withzg=1, the scale at which the non-linear effects single experiment in particular, but rather adopt numbers

become significant,k~0.2h ' Mpc, corresponds tol
~300. Our constraints mostly come from angular scéles
~1000, corresponding tek~1 h™! Mpc. The bulk of WL
constraints therefore comes from non-linear scales.

V. CONSTRAINTS ON DARK ENERGY

A. The Fisher matrix formalism

roughly consistent with proposed dedicated wide-field sur-

veys expected to become operational in several years. We
assume a survey covering 1000 sq deg down to a limiting

magnitudeR=27; dependence of the results upon these two

parameters is discussed in Sec. V F. Surveys of this power
are not yet operational, but are expected in the near future
with results perhaps by the end of this decade. To convert
from magnitudes to surface density of galaxies, we use the
correspondence from Herschel and Hubble Deep Fldés

The fact that the relatively featureleB$ depends upon a yich for our fiducial numbers implies 165 gal/arcrhiiWe
number of cosmological parameters directly leads to paramgssuyme that thenly sources of noise are statistical: cosmic
eter degeneracies and limits the power of weak lensing tQariance which dominates on large scales, and shot-noise

measure these parameters independently of other probegsminant on small scales. We discuss the effect of systemat-
even for the case of a full-sky survey. To estimate how acjcs in Sec. VI.

curately cosmological parameters can be measured, we use
the Fisher matrix formalisni44]. This method has already
been used to forecast the expected accuracies from CMB
surveyd 45,46, SNe 1a[47,8,4 and number coun{gt8] and Power spectrum of the convergence depends on 7 param-
was found to agree very well with direct Monte Carlo error €ters:Qy,w,Qyh? Qgh?,6,4,n, andm,, where(Qg is the
estimation. Its considerable advantage over Monte Carlo cagnergy density in baryorigelative to critical, n is the spec-
culation is that it does not require simulations and analysetfal index of scalar perturbations, and, the neutrino mass
of data sets, but only a single evaluation of a simple analytisummed over all species. In additid?y depends upon the
expression. Furthermore, the Fisher matrix formalism allowsedshift distribution of source galaxies. Throughout, we use a
easy inclusion of Bayesian priors and constraints from othefiducial model that fits well all experiments so fdpy=1
methods. —Quy=0.7 (flat universe assumgd h=0.650zh?

The Fisher matrix is defined as the second derivative of=0.019, n=1.0, anddy inferred from COBE measurements
the negative log-likelihood function as described in Sec. IV B. The mass of neutrino species is

C. Parameter space
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quite uncertain, but, according to solar neutrino experiments, For these reasons, we include Gaussian priors on cosmo-
likely to be between zero and a few eV, we adapt logical parametergother than(ly andw). We consider two
=0.1 eV. sets of priors, and call them “COBEphoto-z” and “Planck

We would like to get an insight in parameter degenera{T).” The former set of priors is a weak one: we only include
cies, in particular between the equation of state ratiand  the 10% uncertainty in COBE normalization and, as men-
other parameters. To do that, we compute the correlatiotioned above, knowledge of the distribution of background
betweenw and other parameters. The correlation coefficiengalaxies. The latter set is a moderate one, corresponding to

is given by the COBE*photo-z prior, plus the constraints expected from
the Planck mission with temperature information ofgble
B Cov(w,p;) 2 of Ref. [46)): o(InQyh?)=0.064, o(In Qgh?)=0.035,
p(W,p;)= JCovw.w)Covp, .p) (80 4(n)=0.04, ando(m,)=0.58" We note, however, that de-

tails of the second prior do not change the results much; for
example, using the considerably weaker assumptions corre-

where Cov;,p;) = Fijl is an element of the covariance ma- . i . )
trix. Because imposing priors would alter the covariance ma_spondlng to Microwave Arisotropy Prob@MAP) mission

trix and confuse its interpretation, at this point we add no(With temperature onlyinstead of PlanckT), errors "?Q.x
priors except for COBE nzrmalizaticmO% inp5 ) and per- andw degrade by only 10% and 5% respectively. Similarly,
fect knowledae of galaxy redshifts H using the very strong prior of Planck constraitsmpera-
The mosgta i ?ﬂfica);lt correlétions arg(w, ) = ture and polarizationcombined with those from Sloan Digi-
~0.96, p(w Qth)g: ~0.83, andp(w,m ):0_%)1_ Wexfind tal Sky Survey(SDSS$), the constraints improve only by

0 . .
that these and other correlations are typically very depender?tbOUt 20%. The reason for this weak dependence on the prior

on the fiducial model and the assumed prior. Finally, we’> Sasy to understand: by assuming the knowledge of the

) . . . distribution of source galaxies and adding other priors, we
examine the eigenvalues and eigenvectors of the Fisher MA- Ve broken the maior decenerac betwBenw and other
trix. The combination 0.6Qy+0.21w is determined to an ! 9 y

accuracy of about 0.03: this is the best-determined COr_nbin%arameters; further information on other parameters leads to
. y ol SR . mall improvements in the constraints on dark energy.

tion containing significant components &y and w direc-

tions. The least well determined combination of all is one

almost entirely in thew-direction: 0.9%w—0.210y; it is E. Results
determined to about 0.4. An example of the constraints that weak lensing can im-
pose on dark energy is shown in Fig. 6. Here we show the
D. Bayesian priors 68% constraint regions for our fiducial WL survé}000 sq

) L _ . deg down to 27th magwith several sets of priors on other
Without any prior information on cosmological param- harameters. The ellipse is oriented so that increase is

eters, weak lensing imposes very weak constrgints on dar, generate with increase &, , which is opposite of what
energy(and other parameters as wellhe reason is that the " \vould expect; this is due to the fact that we assume

power spectrum of the convergence is featureless, owing tgg|axy redshifts to be knowhTable | lists the uncertainties
the fact that it represents the radial projection of the dens'%sing two sets of priors. Weak lensing is potentially a strong

contrast. Unlike the CMB spectrum, it lacks bumps andy.ohe of dark energy: thedd uncertainties i), andw are
wiggles that would help break parameter degeneracies. CoN=504, and 20-40 % respectivelglepending on the set of

straints rapidly improve, however, if the redshift diStribUtiOHEI’iorS), which is somewhat weaker than statistical errors ex-

of source galaxies is known. We assume this to be the casgn ied from future SNe la and number-count surveys. We
indeed, photometric redshift techniques already show thalhhagize that these numbers are the best ones possible
distribution of source galaxies in weak lensing surveys will ;. o the survey specifications; systematic errors may
be determined independently of cosmologlcgl parameterg e axen the constraintsee Sec. VL It is also true, however,
(e.g..,[50]). Exact knowledge of the source d|str|but_|on IS that weak lensing tomography can significantiyprove
obviously a strong and perhaps unrealistic assumption, anﬂi1ese constraintémore on that in Sec. V)

in Sec. VI we explore what happens when the uncertainties | .4 panel of Fig. 7 shows the dependence of the uncer-

are incluo_led. . tainties inQ)x andw on the sky coverage, holding the depth
There is no reason to expect that any cosmological probe

alone should carry the burden of determining all cosmologi-

cal parameter's. Indeed, a nu.mber of cosmological p"’u’ameters’StrictIy speaking, the correct way to add the CMB priors would
are already pinned down quite accuratEIy. by other means. IBe to add the WL and CMB Fisher matrices. This procedure would
a_bout 10years, Wh_en powerfu_l weak lensing surveys we Co_rlforrectly account for breaking of the WL parameter degeneracies by
sider complete their observational programs, parameters fRe CMB. We opt, however, to just add the priors to the diagonal
ferred from the CMB(such as2\yh?,Qgh? andn) will be  glements of the WL Fisher matrix. This effectively assumes other

determined to an accuracy of several per¢dBl. The neu-  parameters to be constrained within some limits, regardless of what
trino mass, on the other hand, is pOOfly known tOday, but ||'bxperiment those constraints come from.

the near future it is likely to be constrained by a combination 8http://www.sdss.org
of CMB, Ly-« forest[51], as well as solar and atmospheric °In general, priors on other cosmological parameters will change
neutrino measurements. the orientation of the constraints in tlfg,-w plane.
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oL0F———mr——— 77— 7 TABLE |. Constraints on dark energy.
WL1COBE phat Prior
i L — + +pnhoto-z i
027 e WL+COBE-+photo—z+Planck(T) COBE + photo-z PlanckT)
a(Qy) 0.08 0.04
-04 | - a(w) 0.36 0.19
=
-0.6 rcugdi 7 F. Power spectrum tomography
e One way to extract more information out of the data
08 g would be to divide the lensed galaxies in several redshift
bins and measure the convergence power spectrum in each
bin, as well as the cross power spectrum between bins. This
-1.0 0 0.2 04 06 0|8 = procedure, the power spectrum tomography, should be fully
' ' Q ' ' feasible with upcoming surveys because redshifts of source
M galaxies are going to be known quite accurately through pho-

FIG. 6. 68% C.L. constraints oft,, andw for three different ~tOMetric techniques. Following the formalism of 2], we
priors on other parameters. We assume a survey of 1000 sq d&@MPute the parameter constraints when source galaxies are
down to 27th magnitude iR-band, and assume knowledge of the Separated in redshift. Of the several slicings in two bins we
distribution of source galaxies. The strength of the constraints doeiied, the most effective division was below and abave
not depend sensitively on the set of priors, but does depend on the 1.0 (Fig. 8, left panel. In this case, the constraints éhy
fiducial model(e.g., the neutrino massFor orientation, currenté  andw improve by a factor of 3 and 1.4 respectively, for a
constraints from 42 type la supernova are also shown. PlancKT) prior (Fig. 9. For the weaker COBEphoto-z

prior, the improvement is even more significant: a factor of 5
and 3 improvements ofdy andw respectively.
of the survey fixed at 27th mag. Right panel of the same We also consider an optimistic scenario where galaxies
figure shows dependence of the uncertainties on the depth ofin be separated in 10 redshift bi(fsig. 8, right panel
the survey, holding the sky coverage fixed at 1000 sq degiVhether or not and how accurately something like this can
The constraints omv depend quite strongly on the depth of be done using photometric redshift techniques is presently
the survey — for example, constraint @nwould improve  under investigatiofiEisenstein, Hu, and Huterén prepara-
by a factor of two by increasing the coverage of the survey tdion)]. The constraints o}, (or Qyx) and w further im-
5000 sq deg. The dependence on the depth is also significaqove: o(Qy) =0.012 ando(w)=0.07 (Fig. 9).
but probably complicated by some practical problems; for Subdividing the galaxy population in more than two red-
example, galaxy overlap. Therefore, future surveys with veryshift bins leads to fairly limited improvements in parameter
deep and/or wide sky coverage will be especially effectivedetermination; this is due to high correlations §0%) be-

probes of dark energy. tween the power spectra in different bifg2]. Nevertheless,

1.00 ——rr — —r 0.50

0.80 0.40

o(w) \\G(W
N\
0.60 0.30
\ \\
0.40 \\ 0.20 \\
\ \“\
0.20 0.10 e
o(Q) \T\ ]
———
0.00 —— 0.00

10 100 1000 5 10000 25 26 27 28 29
sky coverage (deg’) depth (R-band mag)

FIG. 7. Dependence af(Qy) ando(w) on the survey parameters. In each case we assume RI@ngkiors on other cosmological
parameters. Diamonds denote the fiducial valuef panel 1o uncertainties o)y andw as a function of sky coverage of the survey. We
assume a fixed depth of 27th magnitud&iband.Right panel 1o uncertainties oif)ly andw as a function of depth of the survey, assuming
a fixed sky coverage of 1000 sq deg.
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FIG. 8. The divisions of source galaxies in redshift we used in order to implement the tomodrefitpanel:A simple division in two
redshift bins.Right panel:A division in 10 redshift bins.

tomography clearly adds valuable information on cosmologi-above the Hubble radius scatg *. We ask: is it possible to

cal parameters and should be pursued with data from futurgetect this clustering in wide-field weak lensing surveys?
WL experiments. In order to accurately assess and optimize The clustering of quintessence is reflected in the increase
this technique, further study considering realistic accuracy ofy the transfer function on very large scales. The effect is
photometric redshifts is necessary. Using simplified assumpyore pronounced for largeR, and largerw, and explicit
tions (in particular, no “leakage” of _galaxies bet_wegn bins forms for To(k,z) are given in Refs[35] and[56]; hereTy

we have shown here that separation of galaxies in redshifl ¢ ransfer function that takes clustering into account.

easily leads to a factor of a few improvement in measuringClustering changes the matter power spectrum on large

{1x andw. . e . scales, which in turn alters the convergence power spectrum
We now discuss whether a specific signature of certair

. at lowest multipoles. In Fig. 10 we show an optimistic
dark-energy models can be detected with WL surveys. (-9 with w=— 1/3 with and without clustering taken

into account. We used exact formulas for the convergence
power spectrunj57], since Limber’'s approximation breaks
Evolving scalar fields, or quintessence, are a particulatiown at lowest multipoles. Even though the effect on the
class of candidates for dark energ.g.[53-59). One sig-  matter power spectrum is significaritT o(k,z)/T ,(k,z)
nature of quintessence is that it generally clusters around and o g atk~H, in this casé the convergence power spec-
trum changes noticeably only &t 1, and even there only by

G. Detecting the dark-energy clustering?

0.0 —— 71— ~30%. As this figure shows, the effect is buried deeply in
o the cosmic variance even for a full-sky WL survey. There-
1 redshift bin fore, it is unlikely that WL alone can detect the clustering of
-02 = 2bins T quintessence. However, cross correlation of WL and other
= 10bins methods(e.g. the CMB may be more promising; see Refs.
[58,59.
-04 | -
= VI. SYSTEMATICS AND BIASES
06 :

A. Observational issues

It is difficult to overemphasize the importance of control-
-0.8 . ling the various systematic errors that generically creep into
the WL observing process. These include shear recovery is-
sues, anisotropic point-spread function, the quality of seeing,
0 o2 04 08 o8 1 and instrumental noisgor a nice study of systematic effects,
Q see Ref[60Q]). There is also the effect of overlapping galax-
M ies, which is expected to be especially pronounced in very

FIG. 9. The improvement in the constraint B, andw due to ~ d€ep surveys, but might be overcome using the photometric
tomography. The 68% C.L. constraint regions correspond to 1, 2
and 10 divisions in redshiffargest to smallest ellip$eand are all
computed using the COBE photo-z prior. 1%n a sense that a more positiveleads to more clustering.
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10° = TABLE Il. Parameter biases.
i fSKY=1 Due to “wrong” NLPS Due to “wrong” n(z)
107 pi |biag |bias/ o (p;) |biag |bias/ o (p;)
Oy 0.09 25 0.04 1.2
w 0.92 4.8 0.57 3.0

b

I(1+1)P,"/(2m)

either PD or Ma QCDM fitting functions can be used. The

10°° ) latter was calibrated for quintessence models in a flat uni-
no clustering verse, and tested at=—2/3,—1/2 and—1/3 andQ,,=0.4
———- with clustering and 0.6.
107" B Even with this solution, the intrinsic uncertainty of
1 10 5-15% in the NLPS is significar{tecall, the transfer and

| growth functions are accurate to just a few pergeno il-

lustrate the importan f knowing the NLP rately, let
FIG. 10. The effect of clustering of quintessence on the conver-us ate the importance o owing the S accurately, le

g ; . us for the momenassumehat the true NLPS av=—1 is

gence power spectrum for a fiducial equation-of-state ratio .
: - that given by the formula of PD. Let us furthassumethat,
—1/3. The error bars correspond to the cosmic variance for a full- t K ina thi dobt the M CDM intion t
sky weak lensing survey. Clustering affects thel multipole the not knowing this, we adopt the Ma Q prescription to

most, but even there the effect is buried within cosmic variance. compute the theo_retlcal power spectra. WG_} n‘f)w comput”e the
bias in cosmological parameters due to this “erroneous” as-

o ) ) o ) sumption. Let us write the cosmological parameter values as
redshift informatio{ M. Joffre (private communication. Fi-

nally, the observed galaxies might be intrinsically aligned piZEJF op; (32)
due to coupling of their angular momenta or a similar
mechanism([61-63 and references therginthis has al- \yherep. is the true valuep; the measured value, ami, the

ready been observe64,65. These effects may masquerade jas que to using the “wrong” NLPS. Assuming that these
as the signal itself, and make the extraction of ellipticity i5ces are small_ it is easy to show thae]

correlations very difficult. In our analysis, we have assumed

that these problems will be resolved, and that the dominant 1 Jp*
uncertainty will be the cosmic variance on large scales and Spi=F;;t _(plx_EIK)_' (32)
Poisson noise on small scales. In that sense, our refuita RO Pr)? Ip;

given parameter space, set of priors, and fiducial survey

strategy may be optimistic. On the other hand, rapid ad-whereF;; is the ubiquitous Fisher matri;(p) is the “er-
vances in our understanding of weak lensing techniques, §3neous” (“true” ) power spectrum, and sum ovgiis im-
well as the prospects of powerful future surveys, indicate thag|ied. The results of this exercise are given in Table Il where
in a few years we can expect a much better understanding e consider our fiducial survey with Plan¢K) prior. The
the aforementioned problems. biases in(2y andw are 2.5 and 4.8 times thesluncertain-

ties in these parameters. Even though these numbers may not

be accurate because the approximatm<p necessary to
use EQq.(32) obviously did not hold, one can still conclude
In addition to observational systematics that need to béhat the biases are very significant. Therefore, we need a
controlled, theoretical prediction for the angular power specimore accurate knowledge of the NLPS.
trum of the convergence is also uncertain. Uncertainties in Fortunately, the NLPS obstacle is surmountable. It is a
the nonlinear matter power spectryMLPS) and in the red- matter of running powerfuN-body simulations that include
shift distribution of galaxies are especially significant, asdark energy, on a fine grid iw (andm, and other param-
they are difficult to quantify and were not included in our eters, if necessayy Because we are only interested in the
analysis. We now discuss these two ingredients in more denatter power spectrurnot galaxy power spectrum, which
tail. includes biag N-body simulations can in principle give the
As can be seen from Figs. 2 and 4, most of our constraint8lLPS to a very high accuracy. Once this is achieved, weak
come from nonlinear scales. Therefore, knowledge of théensing will regain much of its power to probe dark energy.
NLPS is crucial in order to compare experimental results Another quantity that may not be known to an extremely
with theory. However, this quantity is perhaps the most un-high accuracyalthough we assumed sis the redshift dis-
certain ingredient in the prediction for the power spectrum oftribution of source galaxies(z). Indeed, current photomet-
the convergence. The NLPS is traditionally obtained by run+ic redshift techniques can determine redshifts to an accuracy
ning N-body simulations for several cosmological modelsof ~0.1, depending on the redshit.g.,[50]), which leaves
and deriving a fitting function to the simulated nonlinear room for error, both statistical and systematic. To include the
power spectra. For the models with dark energy we consideyncertainty inn(z), some authorse.g.,[16,25,28) param-

B. Dependence upon nonlinear power spectrum
and galaxy distribution
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I1'2'3

etrized the redshift distribution by one parameter only. How- (21, +1)(2l,+ 1)(2|3+ 1)/ l, g
ever, the realistic uncertainty im(z) is much more difficult lo 0 o
to quantify. To assess the effect of an uncertainty in the red-
shift distribution, we assume that the true distribution is [W(X)]3 I I, I
given by Eq.(9) with z;=0.5, while we “erroneously” as- U dx 0 (r( IRl ),X”
sume the same form witl,= 0.55[recall, n(z) peaks atz rx X X X
=27,]. The biases i), andw are given in Table Il, and are (34

1.2 and 3.0 times the unbiased- Lincertainties in these pa- , , ! . , _
rameters, respectively. Just as in the case of the NLPS, wehe b_|spectrum is defined only if t_he following relations are
conclude that accurate knowledge of the redshift d|str|but|or7°“"‘t'5f'ed li=Nd=li=[lj+1 for {i,jk}e{1,2,3 andl,

of galaxies will be crucial if weak lensing is to achieve its *!2* 3 is even. The term in parentheses is the Wigngr 3
full potential. symbol, which is closely related to Clebsch-Gordan coeffi-

cients from quantum mechanif®r its properties, see Refs.
[69,70). W(x) is the weight function defined in Sec. II. To
compute the bispectrum of the convergence, therefore, we
Yet another important issue that we ignored so far is coneed to supply the matter bispectruBtk, ,k,,ks,z). The
variance of the convergence power spectrum. The sfegar |atter quantity can be calculated in linear thedtiyat is, on
convergencefield is expected to be non-Gaussian due tolarge scales but, just as in the case of the matter power
nonlinear gravitational processes. Therefore, measuremengpectrum, it needs to be calibrated frdfrbody simulations
of P/ are generally going to be correlated, implying a non-on nonlinear scales. Here we adopt the fitting formulas of
zero four-point functior{or its Fourier analogue, the trispec- Scoccimarro and Couchmdfv1]; heretofore SCwhich are
trum). The covariance will be especially pronounced at highbased on numerical simulations due to VIRGO collaboration
multipoles. For a survey down to a limiting magnitude of [72]. The matter bispectrum is defined only for closed-

R~25, the effect of power spectrum covariance appears tgjangle configurationsk; +k,+Kks=0) and is given by
be small: Cooray and Hi67] have used the dark-matter halo

approach to compute the power spectrum as well as the B(Ky,Ky,Ks) =2 Fo(Ky,Kp) P(kp)P(Ky) +cycl.  (35)
trispectrum, and found that the non-Gaussianity increases er-

rors on cosmological parameters by about 15%. AlthouglwhereP(k) is the matter power spectrum and
this effect is small enough to be ignored with current

C. Power spectrum covariance

datasets, it will be important to take it into account when 5 1Ky Ko (kg Ko

interpreting results from upcoming deep surveys because the Fg(kl,kz)— a(n ky) a(n, k2)+2 KoK e —+ k_)

covariance on small scales is likely to significantly degrade AR

the cosmological constraints. Restricting our analysigh X b(n,k;) b(n,k,)

COBE+photo-z prioj to multipoles| <3000 degrades the o

constraints oy andw by a factor of 5. Clearly, informa- 2(ky-ky

tion from small scales is important, and it will be necessary _< K, kz) c(n,ky) c(n,ky). (36)

to carefully assess the impact of power spectrum covariance

for deep WL surveys. n=dIn P/dink, and functionsa,b and c are given in SC.

Although not explicitly tested on models involving dark en-

VII. THREE-POINT STATISTICS AND DARK ENERGY ergy, the fitting formula depends on cosmology only through

the matter power spectrum; this weak dependence on cos-
mology is also borne out in high-order perturbation theory
75]. Therefore, we decide to use the SC formula to illustrate
e dependence of three-point statistics on dark energy.

n Fig. 11 we show the quantltyz\/T/(Zvr) [74] for

We now turn to three-point statistics of the weak lensing
convergence. Unlike the CMB temperature fluctuation
which may or may not be Gaussian, weak lensing conve
gence almost certainly does not obey Gaussian statistics. f
this section, we illustrate the dependence of the blspectrum ) P ) .
and skewness of the convergence on dark energy, and shofy~ ~1 andw=—0.5; hereBy, is the equilateral triangle

; : ; 2
that they present a promising avenue that can lead to the dafinfiguration of the bispectruM.Since roughlyB=P? and
componenisee also Ref68]). B has little other dependence on dark energy, we expect that

12\/BfS,/(27) varies withw similarly asP — and this is
correct(compare Figs. 2 and L1Therefore, the bispectrum
appears to be an excellent probe of dark energy. Things are
The bispectrum of the convergends, , is defined complicated, however, by the large cosmic variance of a
through the three-point correlation function of the conver-bispectrum. Although computing variance Bfinvolves a
gence in multipole space daunting task of evaluating the six-point correlation function
of the convergence, this quantity can be computed under an
assumption of small departures from Gaussiafitg,77).

A. Preliminaries

ERE PR

<KllleI2m2Kl3m3>_ m m, ms

)Blllzla (33
and can further be written as e setm,=0 in this section.
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FIG. 11. The quantity|?B}%(27), involving equilateral-
triangle configurations of the bispectrum in multipole space. We use FIG. 12. Skewness of the convergence for two valuesvof
this quantity to illustrate how the bispectrum depends on dark enEor bars are from simulations by White and i8] on scales
ergy. The variance iB,, is roughly two orders of magnitude larger they explore and for a field of 36 sq deg.

than the signal. o . 5 . .
with increasingw, the P term prevails — hence the scaling

For the equilateral triangle configuration of the bispectrum@f Ss With w. The error bars shown are those from White and
we show, this estimate indicates that the cosmic variance i§U [78] for their WL simulations corresponding to the
about two orders of magnitude larger than the bispectrund COM model, and for a field of 36 sq deg. Although the
signal itself, roughly independently of Therefore, it is un- ~dependence of skewness on dark energy is significant, there
likely that a single configuration of the bispectrum can be@ré several obstacles. As in the case of the matter power
used to probe dark energy. However, one should be able fgPeECtrum, the fitting formula f_or the bispectrum is accurate
find an optimal combination of configurations in order to Only to about 15%(rms deviation for ACDM models and
maximize the amount of information. We relegate this prob-not yet calibrated for dark energy models. More seriously,

lem to future work. the measurements of skewness are likely to be highly corre-
Next we discuss the dependence of skewness on dark elffed — in fact, van Waerbelet al. [73] find that correlation
ergy. Skewness is defined as between skewness measuremeffits the top-hat filter we
use is close to 100%.
(3(0)) In conclusion, our preliminary analysis indicates that the
S3(0)= W (37 three-point statistics of the weak lensing convergence are
K sensitive to the presence of dark energy, mainly through the

dependence of the matter power spectrum. More work is
needed, however, in order for the three-point statistic to be-
1 come an effective probe of the missing component. This will
<K2(0))=4— E (21 +1)P,"W|2( 6) (38 include sharpening the predictions for the three-point func-
Tl tion in the nonlinear regime, and finding optimal configura-
tions of the bispectrum to probe dark energy.

where

<K3(9)>=i » \/(2|1+1)(2|2+ 1)(213+1)
4, 4w VIIl. DISCUSSION AND CONCLUSIONS
N PR P Recent results coming from type la supernovae, CMB,
0 o o Bl (OW(OW,(6) and large-scale structure surveys make a strong case for the

existence of dark energy. It is therefore important to explore
(39 how upcoming and future surveys can be used to probe this
] component. In this work, we explore the power of weak
are the second and third moments of the map smoothed ovgfayitational lensing to probe dark energy via its measure-
some angle theta, and/(0) is the Fourier transform of the ents of the power spectrum of the convergence.
top-hat function: W,(0)=2J,(16)/(16). Skewness effec-  park energy modifies the convergence power spectrum by
tively combines many different bispectrum configurations,jtering the distance-redshift relation, as well as the matter
and its variance should be much smaller than thaBof,..  power spectrum. The dependence on dark energy is therefore
Its disadvantage is that measurements on different scales asemewhat indirect, and cannot be easily disentangled from
correlated. the effect of other parameter§(,h?,Qgh?,n,m,). Because
Figure 12 shows skewness for two valuesaofRoughly  of this, one would not expect WL to be an efficient way to

speaking S;«<B*/P?, and althougtB* and P2 both decrease probe dark energy. Nevertheless, we find that with the pro-
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posed very wide and deep surveys, WL can be an importargtrong dependence of the NLPS on cosmological parameters.
probe of dark energy, on a par with SNe la and number Predictions for the three-point statistics of WL are quite
counts. We consider a generic future survey covering 1000ncertain at present, especially for models involving dark
sq deg down to a limited magnitude &=27, cosmic- energy. This does not mean they will not become effective
variance limited on large scales and Poisson-noise limited oprobes of the missing component in the future. We estimate
small scales. With photometric redshift information and con-the equilateral bispectrum configuration, as well as skew-
straints on other parameters that would be expected from thaess, for two values oir and show that dependence wris
Planck experiment with temperature information only, wesignificant. Although these two quantities are plagued by
find that such a survey is able to constrddy andw to  large cosmic variance and highly correlated noise respec-
between a few percent and a few tens of percent, dependirityely, by clever choice of bispectrum configurations one
on the fiducial model and a chosen set of priors. The conmight be able to increase the signal-to-noise ratio and extract
straints are in general stronger for wider and deeper surveysseful information on dark energy.
and depend on the fiducial mode@l.g., the neutrino mags There are other ways to use weak lensing as a probe of
Accurate knowledge of the redshift distribution of sourcecosmology which we did not discuss. For example, one
galaxies will be crucial; we find that an error of only 0.05 in could use WL to identify clusters of galaxies at redshifts O
the peak of the redshift distribution can bias the results. <z=<3 [M. Joffre et al. (in preparation. Comparing the
There are important caveats to this result, however. Mosineasured number density of clusters to the prediction given
information from WL comes from nonlinear scales, whereby the formalism of Press and Schechf@®] gives con-
the evolution of density perturbations is difficult to track straints on cosmology. Another idea is to measure the angular
analytically and understood mostly throufjhbody simula-  power spectrum of clustefgletected through W)Lat differ-
tions (restricting the analysis d® only to linear scales with ~ent redshift80]; this gives a direct measure of the angular
| =100 would lead to extremely weak constraints on cosmodiameter distance as a function of redshift. The advantage of
logical parameters due to cosmic variancenhe nonlineari-  this approach is that only tHmear matter power spectrum is
ties potentially lead to at least two sources of systemati¢equired; furthermore, the mass function and profiles of clus-
error. First, the power spectrum measuremdtftsre likely — ters need not be known. These two methods will provide
to be strongly correlated at multipoles of several thousangonstraints complementary to those from the galaxy shear.
and higher. This is especially true for planned deep surveys Weak gravitational lensing is likely to provide a wealth of
(down to a limited magnitude d®~ 27 or highe}, and these information not only on the matter distribution in the uni-
correlations will likely degrade the constraints O andw. ~ Verse, but also on the amount and nature of dark energy. We
Second, although the nonlinear power spectrum has bed#ve considered the basic program of measuring the conver-
calibrated quite accurately foxCDM models, most notably gence power spectrum, and found that very wide and deep
through the PD formula, it remains poorly explored for mod-Surveys could provide information complementary and com-
els with general equation of state massive neutrinos, and Parable to that from other cosmological probes. Other statis-
significant baryon density. We explicitly showed that the lacktics (various bispectrum configurations, cross-correlation of
of knowledge of the dependence of the nonlinear poweML and the CMB, etd. are likely to further increase the
spectrum orw can easily bias the constraints 6 andw.  Power of weak lensing and make it an important probe of
Therefore, a better understanding and calibration of thélark energy.
NLPS is absolutely crucial in order to use WL as a tool of
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