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ABSTRACT
We study the impact of systematic errors on planned weak-lensing surveys and compute the
requirements on their contributions so that they are not a dominant source of the cosmological
parameter error budget. The generic types of error we consider are multiplicative and additive
errors in measurements of shear, as well as photometric redshift errors. In general, more power-
ful surveys have stronger systematic requirements. For example, for a SuperNova/Acceleration
Probe (SNAP)-type survey the multiplicative error in shear needs to be smaller than 1 per cent
of the mean shear in any given redshift bin, while the centroids of photometric redshift bins
need to be known to be better than 0.003. With about a factor of 2 degradation in cosmological
parameter errors, future surveys can enter a self-calibration regime, where the mean systematic
biases are self-consistently determined from the survey and only higher order moments of the
systematics contribute. Interestingly, once the power-spectrum measurements are combined
with the bispectrum, the self-calibration regime in the variation of the equation of state of dark
energy wa is attained with only a 20–30 per cent error degradation.
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1 I N T RO D U C T I O N

There has been significant recent progress in the measurements of
weak gravitational lensing by large-scale structure. Only 5 yr after
the first detections made by several groups (Bacon, Refregier &
Ellis 2000; Kaiser, Wilson & Luppino 2000; van Waerbeke et al.
2000; Wittman et al. 2000), weak lensing already imposes strong
constraints on the matter density relative to critical �M and the
amplitude of mass fluctuations σ 8 (Hoekstra, Yee & Gladders 2002;
Jarvis et al. 2003; Heymans et al. 2004; Rhodes et al. 2004a; for a
review see Refregier 2003), as well as the first interesting constraints
on the equation of state of dark energy (Jarvis et al. 2005).

The main advantage of weak lensing is that it directly probes
the distribution of matter in the Universe. This makes weak lensing
a powerful probe of cosmological parameters, including those de-
scribing dark energy (Hu & Tegmark 1999; Huterer 2002; Heavens
2003; Hu 2003a; Refregier 2003; Benabed & Van Waerbeke 2004;
Ishak et al. 2004; Song & Knox 2004; Takada & Jain 2004; Takada
& White 2004; Ishak 2005). The weak-lensing constraints are espe-
cially effective when some redshift information is available for the
source galaxies; use of redshift tomography can improve the cos-
mological constraints by factors of a few (Hu 1999). Furthermore,
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measurements of the weak-lensing bispectrum (BS) (Takada & Jain
2004) and purely geometrical tests (Jain & Taylor 2003; Zhang, Hui
& Stebbins 2003; Bernstein & Jain 2004; Hu & Jain 2004; Song
& Knox 2004; Bernstein 2005) lead to significant improvements of
accuracy in measuring the cosmological parameters. When these
methods are combined, weak lensing by itself is expected to con-
strain the equation of state of dark energy w to a few per cent, and to
impose interesting constraints on the time variation of w. Ongoing
or planned surveys, such as the Canada–France–Hawaii Telescope
Legacy Survey1, the Dark Energy Survey2 (DES), PanSTARRS3 and
Visible and Infrared Survey Telescope for Astronomy (VISTA)4 are
expected to significantly extend lensing measurements, while the ul-
timate precision will be achieved with the SuperNova/Acceleration
Probe5 (SNAP; Aldering et al. 2004) and the Large Synoptic Survey
Telescope6 (LSST).

Powerful future surveys will have very small statistical uncer-
tainties due to the large sky coverage and huge number of galaxies,

1 http://www.cfht.hawaii.edu/Science/CFHLS.
2 http://cosmology.astro.uiuc.edu/DES.
3 http://pan-starrs.ifa.hawaii.edu.
4 http://www.vista.ac.uk.
5 http://snap.lbl.gov.
6 http://www.lsst.org.
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and therefore an understanding of the systematic error budget will
be crucial. However, so far the rosy weak-lensing parameter accu-
racy predictions that have appeared in literature have not allowed
for the presence of systematics [exceptions are Ishak et al. (2004)
and Knox et al. (2005) who consider a shear calibration error, and
Bernstein (2005) who does the same for the cross-correlation cos-
mography of weak lensing]. This is not surprising, as we are just
starting to understand and study the full budget of systematic errors
present in weak-lensing measurements. Nevertheless, some recent
work has addressed various aspects of the systematics, both experi-
mental and theoretical, and ways to correct for them. For example,
Vale et al. (2004) estimated the effects of extinction on the extracted
shear power spectrum (PS), while Hirata & Seljak (2003), Hoekstra
(2004) and Jarvis & Jain (2004) considered the errors in measure-
ments of shear. Several studies explored the effects of theoretical
uncertainties (Huterer et al. 2004; White 2004; Zhan & Knox 2005;
Hagan, Ma & Kravtsov 2005) and ways to protect against their ef-
fects (Huterer & White 2005; Huterer & Takada 2005). It has been
pointed out that second-order corrections in the shear predictions can
be important (Cooray & Hu 2002; Hamana et al. 2002; Schneider,
Van Waerbeke & Mellier 2002; Dodelson & Zhang 2005; Dodelson
et al. 2005; White 2005).

Despite these efforts, we are at an early stage in our understand-
ing of weak-lensing systematics. Realistic assessments of system-
atic errors are likely to impact strategies for measuring the weak-
lensing shear (Bernstein 2002; Bernstein & Jarvis 2002; Rhodes
et al. 2004b; Ishak & Hirata 2005; Mandelbaum et al. 2005). A
major effort to compare the different analysis techniques and their
associated systematics is already underway (the Shear Testing Pro-
gramme; Heymans et al. 2005). Eventually we would like to bring
weak lensing to the same level as cosmic microwave background
(CMB) anisotropies and type Ia supernovae, where the systematic
error budget is better understood and requirements for the control of
systematic precisely outlined (e.g. Tegmark et al. 2000; Hu, Hedman
& Zaldarriaga 2003; Kim et al. 2003; Linder & Miquel 2004).

The purpose of this paper is to introduce the framework for the
discussion of systematic errors in weak-lensing measurements and
outline requirements for several generic types of systematic error.
The reason that we do not consider specific sources of error (e.g.
temporal variations in the telescope optics or fluctuations in atmo-
spheric seeing) is that there are many of them, they strongly depend
on a particular survey considered, and they are often poorly known
before the survey has started collecting data. Instead we argue that,
at this early stage of our understanding of weak-lensing systemat-
ics, it is more practical and useful to consider three generic types
of error – multiplicative and additive errors in measurements of
shear, as well as redshift error. These generic errors are useful in-
termediate quantities that link actual experimental sources of error
to their impact on cosmological parameter accuracy. In fact, real-
istic systematic errors for any particular experiment can in general
be converted to these three generic systematics. Given the speci-
fications of a particular survey, one can then estimate how much
a given systematic degrades cosmological parameters. This can be
used to optimize the design of the experiment to minimize the ef-
fects of systematic errors on the accuracy of desired parameter. For
example, accurate photometric redshift requirements will lead to re-
quirements on the number of filters and their wavelength coverage.
Similarly, the requirements on multiplicative and additive errors in
shear will determine how accurate the sampling of the point spread
function needs to be.

The plan of this paper is as follows. In Section 2, we discuss the
survey specifications and cosmological parameters in this study. In

Section 3, we describe the parametrization of systematic errors. In
Sections 4–6, we present the requirements on the systematic errors
for the PS, while in Section 7 we study the requirements when
both the PS and the BS are used. We combine the redshift and
multiplicative errors and discuss trends in Section 8 and conclude
in Section 9.

2 M E T H O D O L O G Y, C O S M O L O G I C A L
PA R A M E T E R S A N D F I D U C I A L S U RV E Y S

We express the measured convergence PS as

Ĉκ
i j (�) = P̂κ

i j (�) + δi j

σ 2
γ

n̄i
, (1)

where P̂κ
i j (�) is the measured PS with systematics [see the next

section and equation (20) on how it is related to the no-systematic
PS Pκ

i j (�)], σ 2
γ is the variance of each component of the galaxy shear

and n̄i is the average number of resolved galaxies in the ith redshift
bin per steradian. The convergence PS at a fixed multipole � and for
the ith and jth redshift bins is given by

Pκ
i j (�) =

∫ ∞

0

dz
Wi (z) W j (z)

r (z)2 H (z)
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r (z)
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where r(z) is the comoving angular diameter distance and H(z) is
the Hubble parameter. The weights Wi are given by

Wi (χ ) = 3

2
�M H 2

0 gi (χ ) (1 + z), (3)

where gi (χ ) = r (χ )
∫ ∞

χ
dχsni (χs)r (χs −χ )/r (χs), χ is the comov-

ing radial distance and ni is the fraction of galaxies assigned to the
ith redshift bin. We employ the redshift distribution of galaxies of
the form

n(z) ∝ z2 exp(−z/z0), (4)

where z0 is survey-dependent and specified below. The cosmological
constraints can then be computed from the Fisher matrix

Fi j =
∑

�

(
∂C

∂pi

)T

Cov−1 ∂C

∂p j
, (5)

where C is the column vector of the observed power spectra and
Cov−1 is the inverse of the covariance matrix between the power
spectra whose elements are given by

Cov
[
Ĉκ

i j (�
′), Ĉκ

kl (�)
]

= δ��′

(2� + 1) fsky 	�

[
Ĉκ

ik(�)Ĉκ
jl (�) + Ĉκ

il (�)Ĉκ
jk(�)

]
. (6)

Here 	� is the bandwidth in multipole we use, and f sky is the frac-
tional sky coverage of the survey.

In addition to any nuisance parameters describing the systemat-
ics, we consider six or seven cosmological parameters and assume
a flat universe throughout. The six standard parameters are energy
density and equation of state of dark energy �DE and w, spectral
index n, matter and baryon physical densities �Mh2 and �Bh2, and
the amplitude of mass fluctuations σ 8. Note that w = constant pro-
vides useful information about the sensitivity of an arbitrary w(z),
since the best-measured mode of any w(z) is about as well measured
as w = constant and therefore is subject to similar degradations in
the presence of the systematics. It is this particular mode, being the
most sensitive to generic systematics, that will drive the accuracy re-
quirements – we explicitly illustrate this in Fig. 2. In addition to the
constant w case, we also consider a commonly used two-parameter
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Table 1. Fiducial sky coverage, density of source galaxies, variance
of (each component of) shear of one galaxy, and peak of the source
galaxy redshift distribution for the three surveys considered.

DES SNAP LSST

Area (deg2) 5000 1000 15 000
n (gal arcmin−2) 10 100 30

σ γ 0.16 0.22 0.22
zpeak 0.5 1.0 0.7

description of dark energy w(z) = w0 + wa z/(1 + z) (Chevallier &
Polarski 2001; Linder 2003) where wa becomes the seventh cosmo-
logical parameter in the analysis. Throughout we consider lensing
tomography with 7–10 equally spaced redshift bins (see below), and
we use the lensing power spectra on scales 50 � � � 3000. We hold
the total neutrino mass fixed at 0.1 eV; the results are somewhat
dependent on the fiducial mass. We compute the linear PS using
the fitting formulae of Eisenstein & Hu (1999). We generalize the
formulae to w �= −1 by replacing the Lambda cold dark matter
(
CDM) growth function of density perturbations with that for a
general w(z); the latter is obtained by integrating the growth equa-
tion directly (e.g. equation 1 in Cooray, Huterer & Baumann 2004).
To complete the calculation of the full non-linear PS we use the
fitting formulae of Smith et al. (2003).

The fiducial surveys, with parameters listed in Table 1, are: the
Dark Energy Survey; SNAP and LSST. Note that there is some
ambiguity in the definition of the number density of galaxies ng;
it is the quantity σ 2

γ /ng that determines the shear measurement
noise level, where σγ is the intrinsic shape noise of each galaxy.
Galaxies implicitly assumed for the DES shear measurements are
those with the largest angular sizes, and therefore they have corre-
spondingly smaller intrinsic shape noise than the SNAP and LSST
galaxies. The surveys are assumed to have the source galaxy dis-
tribution of the form in equation (4) which peaks at zpeak = 2z0.
For the fiducial SNAP and LSST surveys, we assume tomography
with 10 redshift bins equally spaced out to z = 3, as future pho-
tometric redshift accuracy will enable relatively fine slicing in red-
shift. For the DES, we assume a more modest seven redshift bins
out to z = 2.1, reflecting the shallower reach of the DES while
keeping the redshift bins equally wide (	z = 0.3) as in the other
two surveys. Finally, we do not use weak-lensing information be-
yond � = 3000 in order to avoid the effects of baryonic cooling
(Huterer et al. 2004; White 2004; Zhan & Knox 2004) and non-
Gaussianity (White & Hu 2000; Cooray & Hu 2001), both of which
contribute more significantly at smaller scales. While there may be
ways to extend the useful �-range to smaller scales without risking
bias in cosmological constraints (Huterer & White 2005), extending
the measurements to �max = 10 000 would improve the marginal-
ized errors on cosmological parameters by only about 30 per cent.7

The parameter fiducial values and accuracies are summarized in
Table 2. The fiducial values for the parameters not listed in Table 2
are �Mh2 = 0.147, �Bh2 = 0.021, n = 1.0, and m ν = 0.1 eV.

It is well known that measurements of the angular PS of the CMB,
such as those expected by the Planck experiment, can help weak
lensing to constrain the cosmological parameters. In particular, the
morphology of the peaks in the CMB angular PS contains useful

7 On the other hand, especially for the DES, the Gaussian covariance as-
sumption may be somewhat optimistic for the range 1000 < � < 3000 (e.g.
White & Hu 2000).

information on the physical matter and baryon densities, while the
locations of the peaks help to constrain the dark energy parameters.
However, we checked that, when the Planck prior added, all sys-
tematic requirements become weaker (relative to those with weak
lensing alone) since the Planck information is not degraded with
systematic errors even if weak-lensing information is. In order to be
conservative, we decided not to add the Planck CMB information.
Therefore, we consider the systematic requirements in weak-lensing
surveys alone, and note that the addition of complementary infor-
mation from other surveys typically weakens these requirements.

3 PA R A M E T R I Z AT I O N
O F T H E S Y S T E M AT I C S

As mentioned above, we consider three generic sources of error.
We believe that the parametrizations we propose, especially for the
redshift and multiplicative shear errors, are in general enough to
account for the salient effects of any generic systematic. The addi-
tive shear error is more model-dependent, and while we motivate a
parametrization we believe is reasonable at this time, further theoret-
ical and experimental work needs to be done to understand additive
errors.

We parametrize the redshift, multiplicative shear and additive
shear errors as follows.

3.1 Redshift errors

Measurements of galaxy redshifts are necessary not only for the
redshift tomography – which significantly improves the accuracy in
measuring dark energy parameters – but also to obtain the fiducial
distribution of galaxies in redshift, n(z). Therefore, understanding
and correcting for the redshift uncertainties is crucial, and compar-
ison studies between currently used photometric methods, such as
that initiated by Cunha et al. (in preparation), are of the highest
importance.

It is important to emphasize that statistical errors in photometric
redshifts do not contribute to the error budget if they are well char-
acterized. In other words, if we know precisely the distribution of
photometric redshift errors (i.e. all of its moments) at each redshift,
we can use the measured photometric distribution, np(zp), to recover
the original spectroscopic distribution, n(zs) very precisely. In prac-
tice, we will not know the redshift error distribution with arbitrary
precision, rather we will typically have some prior knowledge of
the mean bias and scatter at each redshift.

The quantity we consider in this paper is the uncalibrated redshift
bias, that is, the residual (after correcting for the estimated bias)
offset between the true mean redshift and the inferred mean pho-
tometric redshift at any given z. A more general description of the
redshift error would include the scatter in the redshift error at each z.
Such an analysis has recently been performed by Ma, Hu & Huterer
(2005) who found that, even though the scatter is important as well,
the mean bias in redshift is the dominant source of error.

Unlike Ma et al. (2005) who hold the overall distribution of galax-
ies in redshift n(z) fixed and only allow variations in the tomographic
bin subdivisions, we allow the redshift error to affect the overall n(z)
as well. At this time, it is not clear how the photometric error will
affect the source galaxy distribution n(z) as it depends on how the
source galaxy distribution will be determined. We assume that the
source galaxy distribution n(z) is obtained from the same photomet-
ric redshifts used to subdivide the galaxies into redshift bins. An
alternative possibility is that information about the overall distri-
bution of source galaxies is obtained from an independent source
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Table 2. Cosmological parameter errors without the systematics (numbers preceding the slash in each box) and with sample systematics (numbers following
the slash). For the systematics case we assumed redshift biases (described by Chebyshev polynomials) of 0.0005, together with the multiplicative errors of
0.005. The errors are shown for the PS tomography only, and for the PS and the BS combined. Errors in other cosmological parameters (�Mh2, �Bh2, n) are
not shown.

Parameter Fiducial value DES (PS) DES (PS plus BS) SNAP (PS) SNAP (PS plus BS) LSST (PS) LSST (PS plus BS)

�M 0.3 0.008/0.011 0.006/0.009 0.008/0.011 0.004/0.006 0.003/0.007 0.002/0.005
w −1.0 0.092/0.120 0.035/0.060 0.058/0.081 0.027/0.036 0.029/0.053 0.010/0.023
σ 8 0.9 0.010/0.012 0.006/0.008 0.008/0.011 0.005/0.008 0.004/0.006 0.003/0.004
w0 −1.0 0.33/0.40 0.18/0.20 0.28/0.35 0.09/0.12 0.13/0.20 0.06/0.07
wa 0 1.41/1.64 0.82/0.92 0.96/1.20 0.35/0.44 0.49/0.69 0.25/0.27

(say, another survey) while the internal photometric redshifts are
only used to subdivide the overall distribution into redshift bins.
The two approaches, ours and that of Ma et al. (2005), are therefore
complementary and both should be studied. It is reassuring that the
two approaches give consistent results.

We consider two alternative parametrizations of the redshift er-
ror: the centroids of redshift bins, and the Chebyshev polynomial
expansion of the mean bias in the zp–z s relation.

(i) Centroids of redshift bins. We first consider the centroid of
each photometric redshift bin as a parameter. Any scatter in galaxy
redshifts in a given tomographic bin will average out, to first order
leaving the effect of an overall bias in the centroid of this bin. (Recall,
the part of the bias that is uncalibrated and has not been subtracted
out is what we consider here.) As discussed by Huterer et al. (2004)
in the context of number-count surveys, this approach captures the
salient effects of the redshift distribution uncertainty. Note, however,
that the centroid shifts do not capture the ‘catastrophic’ errors where
a smaller fraction of redshifts are completely mis-estimated and
reside in a separate island in the zp–zs plane.

We therefore have B new parameters, where B is the number of
redshift bins. To compute the Fisher derivatives for these parameters,
we vary each centroid by some value dz, that is, we shift the whole
bin by dz. As mentioned above, this procedure not only allows for the
fact that the tomographic bin divisions are not perfectly measured,
but it also deforms the overall distribution of galaxies n(z).

(ii) Expansion of the redshift bias in Chebyshev polynomials.
While the required accuracy of redshift bin centroids provides use-
ful information, it is sometimes difficult to compare it with directly
observable quantities. In reality, an observer typically starts with
measurements of photometric redshifts which are not equal to the
true, spectroscopic ones: the quantity zp−z s may have a non-zero
value – the bias – and also non-zero scatter around the biased value.
Therefore, it is sometimes more useful to consider requirements on
the accuracy in the zp–z s relation.

Detailed forms of the bias and scatter are typically complicated
and depend on the photometric method used and how well we are
able to mimic the actual observations and correct for the biases.
We write the redshift bias as a sum of Ncheb smooth functions –
Chebyshev polynomials centred at zmax/2 and extending from z = 0
to zmax, where zmax (3.0 for SNAP and LSST, 2.1 for the DES) is the
extent of the distribution of galaxies in redshift. (We briefly review
the Chebyshev polynomials in Appendix A.) The relation between
the photometric and true, spectroscopic redshifts is then

zp = zs +
Ncheb∑
i=1

gi Ti

(
z∗

s

)
, (7)

where

z∗
s ≡ zs − zmax/2

zmax/2
, (8)

and gi are the coefficients that parametrize the bias. As with the
centroids of redshift bins, we do not model the scatter in the zp–z s

relation as one can show that the effect of uncalibrated bias is domi-
nant (Ma et al. 2005). The effect of imperfect redshift measurements
is to shift the distribution of galaxies away from the true distribution
n(zs) to a biased one np(zp). The biased distribution of galaxies then
propagates to bias the cosmological parameters. The photometric
distribution can then simply be obtained from the true distribution
as (e.g. Padmanabhan et al. 2005)

np(zp) =
∫ ∞

0

n(z)	(zp − z, z) dz, (9)

where 	(zp − z, z) is the probability that the galaxy at redshift z is
measured to be at redshift zp. Since we are not modelling the scatter
in the zp–z s relation, the probability is a delta function

	(zp − zs, zs) = δ

(
zp − zs −

Ncheb∑
i=1

gi Ti

(
z∗

s

))
. (10)

Since we will include the gi as additional parameters, with fidu-
cial values gi = 0, we will need to take derivatives with one
non-zero gi at a time and therefore we can assume 	(zp − z s,
z s) = δ(zp − z s − giTi(z∗

s )) for a single i. Using the fact that
δ(F(x)) = ∑

1/|F ′(x0)| δ(x − x0) for a function F(z), where the
sum runs over the roots of the equation F(x) = 0, and further using
a recursive formula for the derivative of the Chebyshev polynomial
(Arfken & Weber 2000, Section 13.3), we get

np(zp) =∑
a

n(za)∣∣1 + {
2gi/zmax

[
1 − (

z∗
a

)2]}[ − i za Ti

(
z∗

a

) + iTi−1

(
z∗

a

)]∣∣ ,
(11)

where the sum runs over all roots of the equation z + giTi(z∗) − zp =
0, with (recall) z∗

a ≡ (za − zmax/2)/(zmax/2). This is the expression
for the perturbed distribution of galaxies due to a single perturbation
mode.8 We use it, together with the original distribution n(z), to
compute the perturbed and unperturbed convergence power spectra
and thus take the derivative with respect to gi.

In Fig. 1, we show the photometric galaxy distributions np(zp)
for the selected three Chebyshev modes (first, second and seventh)
of perturbation to the distribution of galaxies n(z) corresponding
to Fig. A1, together with the original unperturbed distribution. The

8 Note that, for gi � 1, equation (11) simplifies to np(zp) = n[zp − giTi(z∗
p)].
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Figure 1. Select three modes (first, second and seventh) of perturbation to the distribution of galaxies n(z) for the DES (left-hand panel) and SNAP (right-hand
panel), shown together with the original unperturbed distribution (dashed curve in each panel). These three modes correspond to the modes of perturbation in
the zp–z s relation shown in Fig. A1 in Appendix A. Note that the fiducial n(z) of SNAP is broader, making the resulting wiggles in np(zp) less pronounced and
the weak-lensing measurements therefore less susceptible to the redshift biases. Note also that the allowed perturbations to n(z) are not only located near the
peak of the distribution, but can also have significant wiggles near the tails of the distribution.

distributions are shown for the DES and SNAP. Since the incorrect
assignment of photometric redshifts only redistributes the galaxies,
we always impose the requirement

∫ ∞
0

np(zp) dzp = 1 regardless of
the perturbation. Note that fiducial n(z) of SNAP is broader, mak-
ing the resulting wiggles in np(zp) less pronounced and helping the
weak-lensing measurements be less susceptible to the redshift bi-
ases. (As shown in Section 4.1, this effect is counteracted by the
smaller fiducial errors in the SNAP survey which lead to more sus-
ceptibility to biases.)

3.2 Multiplicative errors

The multiplicative error in measuring shear can be generated by a
variety of sources. For example, a circular point spread function
(PSF) of finite size is convolved with the true image of the galaxy
to produce the observed image, and in the process it introduces a
multiplicative error. Let γ̂ (zs,n) and γ (z s, n) be the estimated and
true shear of a galaxy at some true (spectroscopic) redshift zs and
direction n. Then the general multiplicative factor fi(θ ) acts as

γ̂ (zs,n) = γ (zs,n)[1 + fi (zs,n)], (12)

where fi is the multiplicative error in shear which is both direction-
dependent and time-dependent. We can write the error as a sum of its
mean (average over all directions and redshifts in that tomographic
bin) and a component with zero mean,

f (zs,i,n) = fi + ri (n), (13)

where 〈 f (z s,i, n)〉 = fi and 〈ri(n)〉 = 0 and the averages are taken
over angle and over redshift within the ith redshift bin. Then we can
write

〈γ̂ (zs,i,n) γ̂ (zs,j,n + dn)〉
= 〈γ (zs,i,n) γ (zs,j,n + dn) (1 + f (zs,i,n)) (1 + f (zs, j ,n))〉 (14)

� 〈γ (zs,i ,n)γ (zs, j ,n + dn)〉(1 + fi + f j ), (15)

where we dropped terms of order 〈γ γ fi fj〉. Since the random com-
ponent of the multiplicative error is uncorrelated with shear, all terms
of the form 〈γ γ r〉 are zero. Finally, terms of the form 〈γ γ rr〉 are
taken to be small, thus requiring that 〈ri (n) r j (n + dn)〉 is smaller

than fi and fj (Guzik & Bernstein 2005). Therefore,

P̂κ
i j (�) = Pκ

i j (�)[1 + fi + f j ], (16)

where again we emphasize that fi is the irreducible part of the mul-
tiplicative error in the ith redshift bin (i.e. its average over all direc-
tions and the ith redshift slab). It is clear that multiplicative errors
are potentially dangerous, since they lead to an error that goes as fi

and not f 2
i . Finally, note that shear calibration is likely to depend on

the size of the galaxy, so that the mean error fi is the error averaged
over all galaxy sizes in bin i.

3.3 Additive errors

Additive error in shear is generated, for example, by the anisotropy
of the PSF. We define the additive error via

γ̂ (zs,n) = γ (zs,n) + γadd(zs,n). (17)

Let us assume that the additive error is uncorrelated with the true
shears so that the term 〈γ (n)γ add(n)〉 is zero. Furthermore, let the
Legendre transform of the term 〈γ add(n)γ add(n)〉 be Pκ

add(�). Then
we can write

P̂κ
i j (�) = Pκ

i j (�) + Pκ
add(�). (18)

We now have to specify the additive systematic power Pκ
add (�).

Consider some known sources of additive error: for example, the
additive error induced due to a non-circular PSF is roughly R ePSF

where ePSF is the ellipticity of the PSF and R ≡ (sPSF/sgal)2 is the
ratio of squares of the PSF and galaxy size (E. Sheldon private
communication); galaxies that are smaller therefore have a larger
additive error. Of course, the observer needs to correct the overall
trend in the error, leaving only a smaller residual, and the impact
of this residual is what we are interested in. It should be clear from
this discussion that the additive error in shear can be described by a
part that depends on the average size of a galaxy at a given redshift
multiplied by a random component that depends on the part of the
sky observed. Therefore, we write the additive shear asγ add(z s,i,n)=
bir(n) where bi is the characteristic additive shear amplitude in the
ith redshift bin and r(n)is a random fluctuation.

In multipole space, the two-point function can then be expressed
as bibj times the angular part which only depends on |ni −n j |. Note
that the additive error for two galaxies at different redshifts (i.e.
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when i �= j) is not zero, although it may in principle be suppressed
relative to the additive error for the auto-power spectra (when i = j).
Motivated by such considerations, we assume the additive system-
atic in multipole space of the form

Pκ
add,i j (�) = ρ bi b j

(
�

�∗

)α

, (19)

where the correlation coefficient ρ describes correlations between
bins. The coefficient ρ is always set to unity for i = j, and for i �= j
it is fixed to some fiducial value (not taken as a parameter in the
Fisher matrix). While the discussion above would imply that ρ = 1
for all i and j, we allow for the possibility that the additive errors are
not perfectly correlated across redshift bins. In the extreme case of
uncorrelated additive errors in different z bins, the cross-power spec-
tra are not affected, ρ = δ i j . We will see that the results are weakly
dependent on the fiducial value of ρ unless if ρ = 1 identically.

For the multipole dependence of Pκ
add we assume a power-law

form, and marginalize over the index α. We choose �∗ = 1000, near
the ‘sweet spot’ of weak-lensing surveys, but note that this choice is
arbitrary and made solely for our convenience since �∗ is degenerate
with the parameters bi. Our a priori expectation for the value of α

is uncertain, and we try several possibilities but find (as discussed
later) that the results are insensitive to the value of α. We therefore
have a total of B + 1 nuisance parameters for the additive error
(B parameters bi, plus α).

In practice there is no particular reason why an additive systematic
would be expected to conform to a power law, so in the future we
should consider an additive systematic with more freedom in its
spatial behaviour. The current treatment is optimistic: fixing the
systematic to a power law gives it an identifying characteristic that
allows us to distinguish it from cosmological signals. Without such
a characteristic, the systematic could be much more damaging.

3.4 Putting the systematics together

With the systematic errors we consider, the resulting theoretical
convergence PS is

P̂κ
i j (�) ≡ P̂κ

[
�, z(i)

s , z( j)
s

]
= Pκ

(
�, z(i)

s + δz(i)
p , z( j)

s + δz( j)
p

)
[1 + fi + f j ] + ρ bi b j

(
�

�∗

)α

.

(20)

The derivatives with respect to the multiplicative and additive
parameters are trivial since they enter as linear (or power-law) coef-
ficients, while the derivatives with respect to the redshift parameters
δz(k)

p (really, parameters gi defined in equation 7) need to be taken
numerically.

4 R E S U LT S : R E D S H I F T S Y S T E M AT I C S

4.1 Centroids of redshift bins

We have a total of N + B parameters, and we marginalize over the
B redshift bin centroids by giving them identical Gaussian priors.
While the actual redshift accuracy may be better in some redshift
ranges than in others, the required accuracy that we obtain in our
approach will pertain to the redshift bins where observations are
most sensitive (i.e. at intermediate redshifts z ∼ 0.5–1).

Fig. 2 shows the degradation in �M, σ 8 and w = constant, and
also w0 and wa, accuracies as a function of our prior knowledge
of the redshift bin centroids. Here in Fig. 2 and in the subsequent

two figures, the plots are shown separately for each of the three sur-
veys (DES, SNAP and LSST). Since we are using the Fisher matrix
formalism without external priors on cosmological parameters, the
cosmological parameter degradations (as well as accuracies) clearly
remain unchanged for an arbitrary f sky if we also scale the priors on
the nuisance parameters by f −1/2

sky . In these and subsequent plots we
show the degradations for fiducial values of the sky coverage for
each survey f sky,fid, where f sky,fid = f 5000, f 1000 and f15 000 for DES,
SNAP and LSST, respectively, while indicating that the requirements
scale as ( f sky/ f sky,fid)−1/2.

We generally find that the degradations in different cosmolog-
ical parameters are comparable. To have less than ∼50 per cent
degradation, for example, we need to control the redshift centroid
bias to about 0.003( f sky/ f sky,fid)−1/2 for the DES and SNAP and to
about 0.0015( f sky/ f sky,fid)−1/2 for the LSST. The current statistical
accuracy in individual galaxy redshifts is of the order of 0.02–0.05.
Averaging the large number of galaxies in a given redshift bin, it
may be that we are already close to the aforementioned requirement
on the centroid bias, but this will of course depend on the control of
systematics in the photometric procedure.

As mentioned in the Introduction, the accurately determined com-
bination of w0 and wa , F(w0, wa) ≈ w0 + 0.3wa , is degraded in
nearly the same way as constant w; this is illustrated by a thick
dashed line in each panel of Fig. 2. In the rest of this paper we do
not repeat plotting the curves corresponding to F(w0, wa) which
nearly overlap those corresponding to w = constant. Finally, we
show the degradations for w0 and wa separately. Since these two
parameters are determined to a substantially lower accuracy than
w = constant (see Table 2), it is not surprising that the degradations
in these two parameters are substantially smaller.

4.2 Chebyshev expansion in zp–zs

Fig. 3 shows the degradation in the �M, σ 8 and w, and also w0

and wa, as we marginalize over a large number (Ncheb = 30) of
Chebyshev coefficients gi each with the given prior. We checked
that, when only N � 5 modes are allowed to vary, all parameters gi

can be self-consistently solved from the survey – this is an example
of self-calibration. However, with a larger number of Chebyshev
modes the self-calibration regime is lost. Since we are interested
in the most general form of the redshift bias, this is the regime we
would like to explore. We have also checked that, as we let the
number of coefficients increase further, the errors in cosmological
parameters do not increase indefinitely, as the rapid fluctuations in
the zp − z s are not degenerate with cosmology. In fact we found
that the degradations have asymptoted to their final values once we
include 20–30 Chebyshev polynomials; therefore, fluctuations in
redshift on scales smaller than 	z ∼ 0.1 are not degenerate with
cosmological parameters. The choice of N cheb = 30 coefficients is
therefore conservative.

Fig. 3 shows that the photometric redshift bias in each Chebyshev
mode, for the DES and SNAP, should be controlled to about
0.001( f sky/ f sky,fid)−1/2 or less. For LSST, the requirement is more
severe and we could tolerate biases no larger than about 0.0005
( f sky/ f sky,fid)−1/2. These are fairly stringent requirements, in rough
agreement with results found by Ma et al. (2005).

It might seem a bit surprising that the SNAP and DES require-
ments are comparable, given that the fiducial SNAP survey is more
powerful than the DES (see Table 2) and hence would need better
control of the systematics. However, there is another effect at play
here: a narrow distribution of galaxies in redshift, such as that from
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Figure 2. Degradation in the cosmological parameter accuracies as a function of our prior knowledge of δz ≡ zp − z s. We assume equal Gaussian priors to
each redshift bin centroid, shown on the x-axis. For example, to have less than ∼50 per cent degradation in �M, σ 8 or w, we need to control the redshift bias to
about 0.003 ( f sky/ f sky,fid)−1/2 or better for the DES and SNAP, and to about 0.0015 ( f sky/ f sky,fid)−1/2 or better for the LSST. For the varying equation-of-state
parametrization, the requirements for the best-measured combination of w0 and wa (F(w0, wa) ≈ w0 + 0.3wa) are identical to those for w = constant, while
the requirements on w0 and wa individually are somewhat less stringent.

the DES, is more strongly subjected to fluctuations in zp − z s than a
wide distribution, such as that from SNAP; (see Fig. 1). Therefore,
surveys with wide leverage in redshift have an advantage in beating
down the effect of redshift error, just as in the case of cluster count
surveys (Huterer et al. 2004).

We now confirm the results by computing the bias in the cos-
mological parameters due to the bias in one of the redshift bias
coefficients, dgi. The bias in the cosmological parameter pα can be
computed as

δ pα = F−1
αβ

∑
�

[
Ĉκ

i (�) − Cκ
i (�)

]
Cov−1

[
Cκ

i (�), Cκ
j (�)

] ∂C j (�)κ

∂pβ

,

(21)

where the summations over β, i and j were implicitly assumed
and the covariance of the cross-power spectra is given in equa-
tion (6). The source of the bias in the observed shear covariance,
Ĉκ

i (�) − Cκ
i (�), is assumed to be the excursion of dgm = 0.001 in

the mth coefficient of the Chebyshev expansion, others being held
to their fiducial values of zero. We then compare this error to the
1σ marginalized error on the parameter pα . For a range of 1 � m �
30 we find that the biases in the cosmological parameters are en-
tirely consistent with statistical degradations shown in Fig. 3. We

also find that the degradations due to higher modes (m � 10–20)
are progressively suppressed, illustrating again that smooth biases
in redshift are the most important sources of degeneracy with cos-
mological parameters, and need the most attention when calibrating
the photometric redshifts.

Finally, let us note that in this analysis we have not attempted to
model more complicated redshift dependences of bias, the presence
of abrupt degradations in redshift etc. Such an analysis is beyond
the scope of this work, but can be done using similar tools once the
details about the performance of a given photometric method are
known.

5 R E S U LT S : M U LT I P L I C AT I V E E R RO R

As explained in Section 3.2, we adopt the multiplicative error of the
form

P̂κ
i j (�) = Pκ

i j (�)[1 + fi + f j ], (22)

where P̂κ
i j (�) and Pκ

i j (�) are estimated and true convergence power,
respectively. In other words, the multiplicative error we consider
can be thought of as an irreducible but perfectly coherent bias in the
calibration of shear in any given redshift bin.
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Figure 3. Degradation in marginalized errors in �M, σ 8 and w = constant, as well as w0 and wa, as a function of our prior knowledge of the redshift bias
coefficients gi for the DES, SNAP and LSST. We use N cheb = 30 parameters gi that describe the bias in redshift and give equal prior to each of them, shown on
the x-axis. For the DES and SNAP, knowledge of gi to better than 0.001( f sky/ f sky,fid)−1/2, corresponding to redshift bias of |zp − z s| � 0.001( f sky/ f sky,fid)−1/2

for each Chebyshev mode, is desired as it leads to error degradations of about 50 per cent or less. For LSST the requirement is about a factor of 2 stronger.
These results are corroborated by computing the bias in cosmological parameters as discussed in the text.

First, note that a tomographic measurement with B redshift bins
can determine at most B multiplicative parameters fi (this is true
either if they are just step-wise excursions as assumed here or co-
efficients of Chebyshev polynomials described in the Appendix A).
For, if we had more than B multiplicative parameters, at least one bin
would have two or more parameters, and there would be an infinite
degeneracy between them. In contrast, the survey can in principle
determine a much larger number of cosmological parameters since
they enter the observables in a more complicated way. We choose to
use exactly N mult = B multiplicative parameters (so N mult = 10 for
SNAP and LSST and N mult = 7 for the DES) since we would expect
the shear calibration to be different within each redshift bin.

Fig. 4 shows the degradation in error in measuring three cos-
mological parameters as a function of our prior knowledge of the
multiplicative factors; we give equal prior to all multiplicative fac-
tors. For the DES and SNAP, control of multiplicative error of
0.01(f sky/f sky,fid)−1/2 (or 1 per cent in shear for the fiducial sky cov-
erages) leads to a 50 per cent increase in the cosmological error
bars, and is therefore about the largest error tolerable. For LSST, the
requirement is about a factor of 2 more stringent.

In general, it is interesting to consider whether the weak-lensing
survey can ‘self-calibrate’, that is, determine both the cosmological

and the nuisance parameters concurrently. This is partly motivated
by the self-calibration of cluster count surveys, where it has been
shown that one can determine the cosmological parameters and the
evolution of the mass-observable relation – provided that the latter
takes a relatively simple deterministic form (e.g. Levine, Schulz
& White 2002; Hu 2003b; Majumdar & Mohr 2003; Lima & Hu
2004). Fig. 4 shows that the fiducial DES and SNAP surveys can
self-calibrate with about a 100 per cent degradation in cosmological
parameter errors (and LSST with about a 150 per cent degradation).
While doubling the error in cosmological parameters is a somewhat
steep price to pay, it is very encouraging that all surveys enter a
self-calibrating regime where only the higher-order moments of the
error contribute to the total error budget. In Section 7, we show
that the inclusion of BS information can significantly improve the
self-calibration regime.

6 R E S U LT S : A D D I T I V E E R RO R

As explained in Section 3.3, we adopt the additive error of the form

Pκ
add,i j (�) = ρbi b j

(
�

�∗

)α

, (23)
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Figure 4. Degradation in marginalized errors in �M, σ 8 and w = constant, as well as w0 and wa, as a function of our prior knowledge of the shear
multiplicative factors. We give equal prior to multiplicative factors in all redshift bins, and show results for the DES, SNAP and LSST. For example, existence
of the multiplicative error of 0.01( f sky/ f sky,fid)−1/2 (or 1 per cent in shear for the fiducial sky coverages) in each redshift bin leads to 50 per cent increase in
error bars on �M, σ 8 and w for the DES and SNAP, and about a 100 per cent degradation for LSST.

which adds that amount of noise to the convergence power spectra.
The coefficient ρ is always 1 for i = j, and its (fixed) value for
i �= j controls how much additive error leaks into the cross-power
spectra. We weigh the fiducial value of bi by the inverse square of
the average galaxy size in the ith redshift bin (or, by the square of
the angular diameter distance to the ith bin).9

Fig. 5 shows the degradations in the equation-of-state w as a
function of the fiducial bi at redshift z = 0.75 where, very roughly,
most galaxies are found (recall, the other bi are equal to this value
modulo order-unity weighting by the square of the angular diameter
distance to their corresponding redshift). The solid line in the figure
shows results for our fiducial SNAP survey, assuming no contribution
to the cross-power spectra (i.e. ρ = δ i j ). The coefficients bi need
to be controlled to ∼2 × 10−5, corresponding to shear variance
of �(� + 1)Pκ

add,i j (�)/(2π) ∼ 10−4 on scales of ∼10 arcmin (� ∼
1000) where most constraining power of weak lensing resides. The
observed degradation in cosmological parameters is clearly due to
the increased sample variance that the additional power puts on to
the measurement of the PS. When ρ = 1, this sample variance is

9 For bi = 0, the Fisher derivatives with respect to bi are zero and no infor-
mation about these parameters can formally be extracted.

confined to a single mode of the shear covariance matrix, so that
the maximum damage is limited and we observe the self-calibration
plateau in Fig. 5.10

We have tried varying a number of other details.

(i) Using different values of the coefficient ρ for i �= j in the range
0 � ρ < 1;

(ii) changing the fiducial value of the exponent α from 0 to +3
or −3;

(iii) adding a 10 per cent prior to the bi (rather than no prior);
(iv) using the redshift-independent fiducial values of the coeffi-

cients bi and
(v) considering the degradation in the other cosmological

parameters.

Interestingly, we find that the overall requirements are very
weakly dependent on any of the above variations, and the

10 One could in principle also have a worst-case limit with additive errors
whose functional form makes them strongly degenerate with the effect of
varying the cosmological parameters, where the accuracy in cosmological
constraints degrades as soon as the additive power becomes comparable to
the measurement uncertainties in the PS (and not the PS itself, as above).
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Figure 5. Degradation in the cosmological parameter accuracies as a func-
tion of the fiducial value of the additive shear errors bi, assuming no prior
on the bi. We show results for SNAP and for several values of the cor-
relation coefficients between different bins, ρ, and marginalizing over the
spatial power-law exponent α which has fiducial value α = 0. The results
are insensitive to various details, as discussed in the text, and the only ex-
ception is the possibility that the additive effect on the cross-power spectra
is negligibly suppressed (i.e. the cross-power correlation is close to 100
per cent). We conclude that the mean additive shear will need to be known
to about ∼2 × 10−5, corresponding to shear variance of ∼10−4 on scales
of ∼10 arcmin.

requirements almost always look roughly like those in Fig. 5. In
particular, the results are essentially insensitive to reasonable priors
of any of the nuisance parameters, since the bi can be determined
internally to an accuracy much better than bi for all but the smallest
(�10−7) fiducial values of these parameters. Therefore, the domi-
nant effect by far is the fiducial value of bi and the increased sample
variance that it introduces.

The only interesting exception to this insensitivity is allowing
the i �= j value of the coefficient ρ to be very close to unity. In the
extreme case when ρ = 1 for i �= j, the degradation asymptotes
to ∼150 per cent even with very large bi since in that case the
additive errors add a huge contribution to all power spectra, and one
can mathematically show that the resulting errors in cosmological
parameters do not change more than ∼100 per cent irrespective
of the systematic error. In practice, however, ρ � 0.99 for i �= j
is needed to see an appreciable difference (see the other curves
in Fig. 5), and it is reasonable to believe that the actual errors in
the cross-power spectra will be suppressed by much more than a
per cent, resulting in the degradations as shown by the solid curve
in Fig. 5.

While our model for the additive errors is admittedly crude, it is
very difficult to parametrize these errors more accurately without
end-to-end simulations that describe various systematic effects and
estimate their contribution to the additive errors (such simulations
are now being planned or carried out by several research groups).
Moreover, additive errors cannot be self-calibrated unless we can
identify a functional dependence, which is distinct from the cosmo-
logical dependence of the PS, that it must have. Finally, we note
that space-based surveys, such as SNAP, are expected to have a
more accurate characterization of the additive error, primarily from
the absence of atmospheric effects in the characterization of the
PSF.

7 S Y S T E M AT I C S W I T H T H E B I S P E C T RU M

We now extend the calculations to the BS of weak gravitational lens-
ing. The BS is the Fourier counterpart of the three-point correlation
function, and it describes the non-Gaussianity of mass distribution
in the large-scale structure that is induced by gravitational insta-
bility from the primordial Gaussian perturbations that the simplest
inflationary models predict. The redshift evolution and configura-
tion dependence of the mass BS can be accurately predicted using
a suite of high-resolution N-body simulations (see e.g. Bernardeau
et al. 2002, for a comprehensive review). The BS of lensing shear
arises from the line-of-sight integration of products of the mass BS
and the lensing geometrical factor (see equation 18 in Takada &
Jain 2004). Following Jain & Seljak (1997), we roughly estimate
how the lensing PS and BS scale with cosmological parameters by
perturbing around the fiducial 
CDM model:

Pκ ∝ �−3.5
DE σ 2.9

8 z1.6
s |w|0.31, Bκ ∝ �−6.1

DE σ 5.9
8 z1.6

s |w|0.19, (24)

where we have considered multipole mode of l = 1000, equilat-
eral triangle configurations in multipole space, redshift of all source
galaxies zs = 1 (no tomography), and constant equation-of-state pa-
rameter w. We adopt the model described in Takada & Jain (2004) to
compute the lensing BS. Equation (24) illustrates that the PS and the
BS depend upon specific combinations of cosmological parameters.
For example, the PS (and more generally any two-point statistics of
choice) depends on �DE and σ 8 through the combination �−1.2

DE σ8

(or equivalently �0.5
M σ 8). Furthermore, the cosmological parameter

dependences are strongly degenerate with source redshift (zs) un-
less accurate redshift information is available. Importantly, the PS
and BS have substantially different dependences on the parameters,
suggesting that combining the two can be a powerful way of break-
ing the parameter degeneracies. For example, it is well known that
a combination of B/P2, motivated from the hierarchical clustering
ansatz, depends mainly on �DE, with rather weak dependence on
σ 8, so that roughly B/P2 ∝ �0.9

DEσ−0.1
8 (Bernardeau, Van Waerbeke

& Mellier 1997; Hui 1999; Takada & Jain 2004). As another ex-
ample, the BS amplitude increases with the mean source redshift zs

more slowly than P2 because the non-Gaussianity of structure for-
mation becomes suppressed at higher redshifts. It is therefore clear
that photometric redshift errors of source galaxies will affect the
PS and BS differently. Likewise, it is natural to expect that other
systematics that we have considered affect the PS and the BS in a
different way.

For the PS plus BS systematic analysis, we consider the redshift
and multiplicative errors but not the additives. For the redshift errors
we adopt the parametrization of redshift bin centroids, now applied
to tomographic bins of both PS and BS. The multiplicative error is
modelled similarly as in Section 3.2: the observed BS with tomo-
graphic redshift bins i, j and k, B̂i jk(l1, l2, l3), is related to the true
BS Bijk(l 1, l 2, l 3) via

B̂i jk(l1, l2, l3) = Bi jk(l1, l2, l3)[1 + fi + f j + fk]. (25)

Based on the considerations above, we study how combining
the PS with the BS allows us to break parameter degeneracies not
only in cosmological parameter space but also those induced by
the presence of the nuisance systematic parameters. We include
all triangle configurations, and compute the bispectra constructed
using five redshift bins up to l max = 3000. Note that, for a given
triangle configuration, there are 53 tomographic bispectra; the large
amount of time necessary to compute them is the reason why we
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Figure 6. Degradation in w0 and wa accuracies expected for SNAP as a function of our prior knowledge of the multiplicative error in shear (left-hand panel)
and redshift centroids (right-hand panel). The priors on the multiplicative or redshift parameters are shown on the x-axis. While the PS and BS individually
enter a self-calibration regime with ∼100 per cent degradation in cosmological parameter errors, combining the two leads to self-calibration with only a
20–30 per cent degradation. This improvement in the self-calibration limit is in addition to the already smaller no-systematic error bars with PS plus BS as
compared to either PS or BS alone.

use five tomographic bins instead of the original 7–10.11 Note too
that we have assumed that the PS and BS are uncorrelated and
simply added their Fisher matrices when combining them. While
they are strictly uncorrelated in linear theory, non-linear structure
formation will introduce the correlation between the two, and the full
information content will be smaller than our estimate.12 Correlation
between the PS and BS has not been accurately estimated to date,
and such a project is well beyond the scope of our paper. However,
our main emphasis here is not to accurately estimate the resulting
cosmological error bars but rather to study the overall effect of the
systematics when different weak-lensing probes are combined. We
expect the qualitative trends (discussed below) to be unchanged in
cases when we add information from cross-correlation cosmography
or cluster counts to the PS.

Fig. 6 shows how the multiplicative errors (left-hand panel) and
redshift centroid errors (right-hand panel) degrade constraints on w0

and wa expected for SNAP. Each panel shows the degradation in the
parameter measurement due to the PS, BS, and the two combined.
The most remarkable fact seen in Fig. 6 is that the degradation
in the parameter accuracies is smaller with PS and BS combined
as opposed to either one separately. This is because dependences of
BS on cosmological parameters as well as the model systematics are
complementary to those from PS. Therefore, combining the PS and
BS has a very beneficial effect of protecting against the systematics
by more than a factor of 2 than either statistic alone.

However, the drastic improvement in self-calibration does not
hold up for parameters that are more accurately measured, such as
w = constant. Fig. 7 shows the degradation in the w = constant
case for the multiplicative errors (left-hand panel) and redshift er-
rors (right-hand panel), again for SNAP. It is clear that the low self-
calibration asymptote seen in Fig. 6 is no longer present, and even
the cases when PS and BS are combined lead to appreciable degrada-
tions. Therefore, w = constant does not benefit from self-calibration

11 For the same reason, the PM curves in Figs 6 and 7 do not exactly match
those in Figs 2 and 4.
12 We thank Martin White for drawing our attention to this issue.

as much as w0 and wa. More generally, self-calibration with PS plus
BS works much better when applied to poorly determined combina-
tions of cosmological parameters than to the accurately determined
ones; we have explicitly checked this by diagonalizing the full Fisher
matrix and finding the degradations in all of its eigenvectors.

8 C O M B I N I N G T H E S Y S T E M AT I C E R RO R S

In Table 2, we now show the principal cosmological parameters
with their fiducial values, and their errors for the PS only and PS
plus BS cases. In each case we show the error without any system-
atics, and the error after adding sample systematic errors. For the
systematics, we assume redshift biases (described by Chebyshev
polynomials) with priors of 0.0005, together with the multiplicative
errors of 0.005. The errors have been marginalized over the other
cosmological parameters, and the systematic-case errors have fur-
ther been marginalized over the 30 redshift and 10 multiplicative
nuisance parameters with the aforementioned priors. While the sys-
tematics used are a guess – and they are likely to remain uncertain
well into the planning phase of each survey – our goal here is to see
how the errors degrade. While the errors in the strongest fiducial sur-
veys get degraded the most, we find that strongest surveys remain in
that position even after adding the systematics. For example, fidu-
cial error of LSST on w was a factor of 2 better than that of SNAP
before adding the systematics, and is 50 per cent better after adding
them. Note, however, that we have added equal systematic errors
to all three surveys in this example; in reality, a space-based survey
like SNAP is expected to have a better control of the systematics
than the ground-based surveys (see e.g. Rhodes et al. 2004b).

In Fig. 8, we show the contours of constant degradation in the
equation of state of dark energy w (for the PS case only) with both
redshift and multiplicative errors included. The x-axis and y-axis
intercepts of degradation values in this figure correspond to the case
of redshift centroid errors only (as in Fig. 2) and multiplicative errors
only (as in Fig. 4), respectively, but the rest of the plane allows for the
simultaneous presence of both types of error. Note that the contours
become progressively more vertical at larger values of the redshift
error – therefore, the results are weakly affected by the multiplicative
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Figure 7. Degradation in w = constant expected for SNAP for the multiplicative errors (left-hand panel) and redshift errors (right-hand panel). Note that the
low self-calibration asymptote seen in Fig. 6 is not seen any more, and even the cases when PS plus BS are combined lead to appreciable degradations. We
conclude that w = constant [or more generally any accurately measured combination of w(z)] does not benefit from self-calibration much, but w0 and wa

individually do as shown in Fig. 6.

Figure 8. Contours of constant degradation in equation of state of dark energy w (for the PS case only) with both redshift and multiplicative errors included
and for the SNAP fiducial survey (left-hand panel) and LSST (right-hand panel). As before, the degradations are unchanged for a different survey area if we let
both errors scale as f −1/2

sky . Note that the contours become progressively more vertical at larger values of the redshift error – therefore, the results are weakly
affected by the multiplicative errors once the redshift errors become substantial.

errors once the redshift errors become substantial. However, we
would ideally like to be in the regime where the degradation is
smaller than ∼50 per cent, and in that case both types of errors (as
well as the additives) need to be controlled to a correspondingly
good accuracy as discussed in Sections 4.1 and 5.

9 C O N C L U S I O N S

We considered three generic types of systematic errors that can affect
a weak-lensing survey: measurements of source galaxy redshifts,
and multiplicative and additive errors in the measurements of shear.
We considered three representative future wide-field surveys (DES,
SNAP and LSST) and used weak-lensing tomography with either
PS alone, or PS and BS combined.

The most important (and difficult) part is to parametrize the sys-
tematic errors. We are solely interested in the part of the systemat-
ics that has not been corrected for in the data analysis, as that part

can lead to errors in the estimated cosmological parameters. For
the redshift error we adopt two alternative parametrizations both of
which should be useful in calibrating photometric redshift methods.
Multiplicative errors in shear measurement are described by one pa-
rameter for the error in shear in each given redshift bin. The additive
errors are most difficult to parametrize, as both their redshift depen-
dence and spatial coherence need to be specified; our treatment of
the additive errors, while robust with respect to various details of
the model, is only a first step and can be improved upon with further
simulation of realistic systematics.

In general, higher fiducial accuracy in the cosmological parame-
ters leads to more stringent requirements on the systematics. There-
fore, LSST typically has the most stringent requirements, followed
by SNAP and then the DES (at their fiducial f sky). We note that
the accurately determined combinations of dark energy parameters
typically are more sensitive to systematics than the poorly deter-
mined combinations. At this point one could ask, which is the
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important quantity: the individual parameters (say, w0 and wa), or
their linear combination that is well measured by the survey? We
argue that both are needed: the former to understand the behaviour
of dark energy at any given redshift, and the latter to maximize the
constraining power of weak lensing when combining it with other
cosmological probes.

For a SNAP-type survey with ∼100 gal arcmin−2, we find that
the centroids of redshift bins (of width 	z = 0.3) need to be
known to about 0.003 ( f sky/ f 1000)−1/2 in order not to lead to pa-
rameter degradations larger than ∼50 per cent. For the LSST-type
survey the requirements are about a factor of 2 more stringent,
that is, 0.0015 ( f sky/ f 15000)−1/2. These numbers correspond to con-
trolling each Chebyshev mode of smooth variations in zp − z s to
about 0.001( f sky/ f 1000)−1/2 and 0.0005 ( f sky/ f 15000)−1/2, respec-
tively. These requirements would easily be satisfied by planned sur-
veys if the biases were due to residual statistical errors, since these
surveys will have well over a million galaxies per redshift bin. But
it remains a challenge to control the systematic biases to this level,
presumably by using the spectroscopic training sets.

The multiplicative errors need to be determined to about
0.01( f sky/ f sky,fid)−1/2 (or 1 per cent of average shear in a given to-
mographic redshift bin, for the fiducial sky coverages) for the DES
and SNAP. The requirements are about a factor of 2 more stringent
for the LSST. The actual multiplicative error will depend on the
galaxy size and shape, and might have spatial dependence as well.
The numbers we quote here refer to the post-correction systematic
error, averaged over all galaxies and directions in the sky.

The additive errors in shear require more detailed modelling than
the multiplicatives, and in particular, they require specifying its two-
point correlation function (and the three-point function if we are to
consider the BS measurements). We constructed a simple model
that includes the redshift and angular dependence of the additive
power and a coefficient that specifies the effect on the cross-power
spectra relative to that on the auto-spectra. In most cases the additive
error in each redshift bin needs to be controlled to a few times of
10−5, which corresponds to shear variance of ∼10−4 on scales of
∼10 arcmin (� ∼ 1000). Note too that the additive error cannot
be self-calibrated unless we can identify a functional dependence
that it must have. Our parametrization of the additive errors is a
first step, and improvements can be made once the sources of the
additive error are studied in more detail both from the data and via
ray-tracing simulations for given telescope designs.

While the systematic requirements are not stringent beyond what
one can reasonably hope to achieve with upcoming surveys, perhaps
the most encouraging aspect that we highlighted is the possibility of
self-calibration of a part of the systematics. In this scheme, weak-
lensing data are used to concurrently determine both the systematic
and the cosmological parameters. The effects of the parametrized
systematics can then be marginalized out without the need to know
their values (but at the expense of increasing the cosmological pa-
rameter errors), leaving only the subtler systematic effects that were
effectively not taken into account with the assumed parametriza-
tion. We find that PS measurements can lead to self-calibration with
∼100 per cent error degradation in most cases. A promising result is
that combining the PS and BS measurements leads to self-calibration
with 20–30 per cent degradation, at least for the more poorly con-
strained combinations of parameters. Therefore, not only are the
fiducial constraints of PS plus BS better than those with PS alone,
but also the degradations relative to their fiducial constraints are
smaller in the PS plus BS case, simply because the combined PS
plus BS are more effective in breaking the degeneracies between
the systematic and cosmological parameters than the PS or the BS

alone. However, we also found that the self-calibration with PS plus
BS is not nearly as effective if we consider w = constant (or the
best-determined combination of w0 and wa). More generally, the
accurately measured principal component of w(z) does not benefit
from self-calibration as much as its poorly measured components.
Finally, we only considered the constraints from the PS and BS,
without using information from cross-correlation cosmography or
cluster counts. Including the latter two methods, which we plan to
do in the near future, could further improve the prospects for self-
calibration of systematic errors.
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A P P E N D I X A : C H E B Y S H E V P O LY N O M I A L S

We would like to parametrize the bias between the photometric and
spectroscopic redshifts, δz ≡ zp − z s, as a function of zs. This
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Figure A1. Select three modes (first, second and seventh) of perturbation
to the relation between the photometric and spectroscopic redshift using the
Chebyshev polynomials out to zmax = 3.

function is expected to be relatively smooth, and one promising
way to parametrize it is to use Chebyshev polynomials. Chebyshev
polynomials of the first kind Ti(x) (i = 0, 1, 2, . . . ) are smooth
functions, orthonormal in the interval x = [−1, 1], and take values
from −1 to 1. The first two are T 0(x) = 1 and T 1(x) = x .

One can represent the redshift uncertainty in terms of the first M
Chebyshev polynomials as

δz ≡ zp − zs =
M∑

i=1

gi Ti

(
zs − zmax/2

zmax/2

)
, (A1)

where zmax is the maximum extent of the galaxy distribution in
redshift. For convenience, the fiducial values for the extra parameters
are taken to be gi = 0 (i = 0, 1, 2, . . . , M − 1). Then the derivatives
with respect to the nuisance parameters can be computed via d/dgk =
[d/dzp] [dzp/dgk].

Fig. A1 shows the select three modes (first, second and seventh)
of perturbation to the relation between the photometric and spectro-
scopic redshift.
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