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We use the recent Type Ia supernova, cosmic microwave background and large-scale structure data to

shed light on the temporal evolution of the dark energy equation of state wðzÞ out to redshift one. We

constrain the most flexible parametrization of dark energy to date, and include the dark energy per-

turbations consistently throughout. Interpreting our results via the principal component analysis, we find

no significant evidence for dynamical dark energy: the cosmological constant model is consistent with

data everywhere between redshift zero and one at 95% C.L.

DOI: 10.1103/PhysRevD.77.121302 PACS numbers: 95.36.+x, 98.80.Es

I. INTRODUCTION

It has been recognized for some time now that accurate
reconstruction of the expansion history of the Universe is a
crucial step toward understanding the physical mechanism
behind the accelerating universe. Early work on constrain-
ing the expansion history had concentrated on parametriz-
ing the equation of state (ratio of pressure to density) of
dark energy (DE) wðzÞ via one or two parameters and
measuring them together with the energy density relative
to critical !DE [1–5]. More recently, the program of re-
constructing the expansion history had been generalized to
adding more parameters [6] and decorrelating them [7–9].
Nevertheless, the data at the time only allowed only up to
three or four band powers of wðzÞ to be considered, leading
to ‘‘jagged’’ expansion history, especially in the range
0:5 & z & 1. In the future, a number of ‘‘principal compo-
nents’’ of dark energy—parameters forming a natural basis
in which the function wðzÞ can be expanded—will be
measured [10,11].

In this paper, we utilize a new variant of the nearly
model-independent approach to reconstruct wðzÞ of dark
energy with the latest astronomical observations including
Type Ia supernovae (SNe Ia), power spectra of the cosmic
microwave background (CMB) anisotropies and galaxy
distribution from the large-scale structure (LSS). We per-
form a full likelihood analysis using the Markov chain
Monte Carlo approach [12] and make sure to properly
take into account the dark energy perturbations [13]. Com-
pared with previous work, our parametrization of the ex-
pansion history is more flexible and, as we argue, robust
and easy to implement.

II. METHOD AND DATA

We consider the following cosmological parameter set

fwi;!b;!c;"s; !; ns; log½1010As$g; (1)

where!b % !bh
2 and!c % !ch

2 are the physical baryon
and cold dark matter densities relative to critical, "s is

100& the ratio of the sound horizon to the angular diameter
distance at decoupling, ! is the optical depth to reioniza-
tion, As and ns are the amplitude of the primordial spec-
trum and the spectral index, respectively.
The remaining parameters wiði ¼ 1; 2; . . . nÞ are the

equation-of-state values at n specific-fitting nodes fzig—
redshifts at which we vary these parameters independently.
We use a cubic spline to interpolate between these nodes
and obtain the full wðzÞ in the redshift range ½0; zmax$. We
set zmax ¼ 1:0, since the number and quality of SN Ia data,
and hence constraints on dark energy dramatically weaken
beyond this redshift. At z > zmax, we assume wðzÞ ¼ (1.
We have also tried allowing wðzmax ) z ) zCMBÞ to be a
single new parameter free to vary; we found that the
Markov chains do not converge because wðz > zmaxÞ is
difficult to constrain using current data. Comparing this
approach to setting this parameter as(1, we found that the
best "2 remains nearly unchanged. Thus, setting wðz >
zmaxÞ ¼ (1 is safe in the calculation. Overall, our parame-
trization of wðzÞ can be summarized as

wðzÞ ¼
8
<
:
(1; z > zmax;
wi; z ) zmax; z 2 fzig;
spline; z ) zmax; z =2 fzig:

(2)

For the basic results, we choose n ¼ 6 equation-of-state
parameters (we discuss later the sensitivity to varying n).
It is important to take account of dark energy perturba-

tions in the analysis, otherwise, the results may be biased
[3,14]. In the conformal Newtonian gauge, one can derive
the following perturbation equations [15]:

_# ¼ (ð1þ wÞð$( 3 _#Þ ( 3H ðc2s ( wÞ#; (3)

_$ ¼ (H ð1( 3wÞ$( _w

1þ w
$þ k2

!
c2s

1þ w
#þ$

"
;

(4)

where the over dot represents the derivative with respect to
conformal time, c2s % #P=#% is the sound speed, $ is the
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Newtonian potential, H is the (conformal time) Hubble
parameter, # is the density perturbation, and $ the velocity
perturbation. One easily sees that the perturbations # and $
are divergent when wðzÞ crosses (1 even if nothing in the
physical model should diverge. One way to solve this prob-
lem is based on the quintom model [16], which we adopt
here. In particular, we introduce a small positive constant &
to divide the full range of the allowed values ofw into three
regions: I) w>(1þ &; II) (1þ & + w + (1( &; and
III) w<(1( &. Neglecting the entropy perturbation
contributions, for the Regions I and III the equation of
state does not cross (1, and the perturbations are well
defined by solving Eq. (3) and (4). For Region II), the
density perturbation #, the velocity perturbation $, and
their derivatives are finite and continuous for the realistic
quintom dark energy models; therefore, we set matching
condi-
tions in Region II _# ¼ 0 and _$ ¼ 0. This is an approxi-
mate method to calculate DE perturbation during crossing
regime without introducing more parameters.1 The error in
this approximation is controllable and we have tested it in
our numerical calculations; with &, 10(5 we find that
our method is a very good approximation to the two-field
quintom dark energy model. For more details of this
method we refer the reader to Refs. [3,13].

In our calculations we take the total likelihood as the
products of the separate likelihoods (Li) of CMB, LSS,
and SN Ia, i.e. defining "2

i % (2 logLi, we use

"2
total ¼ "2

CMB þ "2
LSS þ "2

SNIa: (5)

For the CMB data, we use the three-year Wilkinson
Microwave Anisotropy Probe (WMAP3) temperature-
temperature and temperature-polarization power spectrum
with the routine for computing the likelihood supplied by
the WMAP team [18]. The LSS information we use con-
sists of the galaxy power spectrum from the Sloan Digital
Sky Survey (SDSS-gal [19]); the luminous red galaxy
power spectrum, also from the SDSS (SDSS-lrg [20]),
and the galaxy power spectrum from the 2dF Galaxy
Redshift Survey (2dFGRS-gal [21]). To be conservative,
for all galaxy data we have used only the information at
k ) 0:1h Mpc(1, corresponding to the linear regime. For
SN Ia data, we use two data sets: Riess sample of 182 SNe
[9] and ESSENCE sample of 192 SNe [22,23]. We con-
sider two data set combinations:

(I) Riess-182þWMAP3þ SDSS-galþ
2dFGRS-gal;

(II) ESSENCE-192þWMAP3þ SDSS-lrgþ
2dFGRS-gal.

In addition, for both data sets we also use the fol-
lowing information: Hubble Key Project measurement
H0 ¼ 72- 8 km s(1 Mpc(1ð1'Þ [24]; baryon density in-
formation from the big bang nucleosynthesis !bh

2 ¼
0:022- 0:002 (1') [25]; and a top-hat prior on the age
of the Universe 10 Gyr< t0 < 20 Gyr.
For the Markov chain Monte Carlo (MCMC) calcula-

tion, we run eight independent chains each originally with
Oð105Þ elements, then thinned by a factor of 4. The average
acceptance rate is about 50%. We ensure the convergence
of the chains by Gelman and Rubin criteria [26] and find
R( 1,Oð10(2Þ, which is more conservative than the
recommended value R( 1,Oð10(1Þ.

III. RESULTS

We first study how the results change as we vary the
number of and location of fitting nodes describing wðzÞ.
We start out by placing one fitting node each at z ¼ 0 and
z ¼ zmax ¼ 1, then increase n, adding fitting nodes so that
they are uniformly spaced in redshift; zi ¼ ði( 1Þ=ðn(
1Þ, (n + 2, n 2 N. For each n and using the Dataset II, we
calculate the improvement in "2 relative to the %CDM
model, &"2 ¼ "2

min ( "2
%CDM. As expected, we find that

n ¼ 2 already has a better fit than the %CDM model, and
the fit improves as n is increased. When n is greater than 6,
however, &"2 flattens off (see Panel F of Fig. 2). We
therefore conclude that the data we use have enough power
to constrain 6 equation-of-state parameters. Therefore, at
least when n ) 8 is considered, n ¼ 6 is the optimal
choice since a higher n does not improve the fit.2

We also test the prescription of how to place the fit-
ting nodes in redshift in the lower panel of Fig. 1. The
black points with error bars are for placement zi 2
f0; 0:1; 0:3; 0:5; 0:7; 1:0g; the red points with red curve are
for placement zi 2 f0; 0:2; 0:4; 0:6; 0:8; 1:0g. We see that
the red curve almost coincides with the black points,
namely, the dependence of result on placement of fitting
nodes is weak. The above test and analysis have been also
done with data set I, and a similar result has been found. In
what follows, we adopt the former, slightly nonuniform
placement in redshift.
Given the above two cosmological data sets, we explore

the 12-D parameter space from Eq. (1). After marginaliz-
ing over other cosmological parameters, we obtain the
constraint of DE parameters wi as plotted in Fig. 1. In
the upper panel, we find that almost all the mean values of
points are consistent with the prediction of %CDM model
except for the 1st and the 4th points, at redshifts 0 and 0.5.
The equation of state at the present epoch is slightly
favored to be below (1, while the equation of state at
redshift 0.5 is greater than (1 at 68% C.L., showing a

1Reference [17] has proved that in Friedmann-Robertson-
Walker cosmology, the equation of state of a single fluid or a
single scalar field cannot cross(1. To realize such crossing, one
has to introduce at least one more degree of freedom.

2We are aware of that the fit must further improve for some
higher n, because any data set can be perfectly fit by some
suitable, but possibly highly oscillatory wðzÞ.
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small ‘‘bump.’’ This bump most likely stems from a feature
in the Hubble diagram of the Riess-182 data set I. To see
this, we replace the Riess-182 and SDSS-gal data by
ESSENCE-192 and SDSS-lrg data, respectively, and get
the result in lower panel of Fig. 1. With this new data set,
the bump at redshift 0.5 disappears and wð0:1 & z & 0:9Þ
is consistent with (1 at 68% C.L. The equation of state at
redshifts 0 and 1 deviates from (1, but not significantly.
The equation-of-state parameters wi are correlated,

however, somewhat complicating their interpretation; for
example, the highest correlation coefficient is (0:9 be-
tween w4 and w5. It is therefore useful to decorrelate the
wi, as done in Ref. [7].
For each MCMC run, we compute the covariance matrix

of the equation-of-state parameters C ¼ ðwi ( hwiiÞðwj (
hwjiÞT % hppTi using CosmoMC [12]. We then diagonalize
the Fisher matrix F % C(1, so that F ¼ OTDO; here, O is
the resulting orthogonal matrix, and D is diagonal.
One can now rotate the parameters into a basis where the

new parameters q are uncorrelated; q ¼ Wp. There are
many ways to do so [27]. Here we make two alternative
choices.
Choice 1: W1 ¼ F1=2; then Cq1

¼ hq1q
T
1 i ¼

W1hppTiWT
1 ¼ I.

FIG. 1 (color online). Reconstruction of wðzÞ using the data
sets I (top panel) and II (bottom panel); see text for details. The
inner (red) and outer (black) error bars correspond to 68% and
95% error bars, respectively. The %CDM model is shown with
the dashed (blue) line. In the bottom panel, we also plot the
reconstruction result with an alternative placement of fitting
nodes (points and curve; see text for details).

FIG. 2 (color online). Constraints on uncorrelated band powers of the equation of state wðzÞ, using the data set II. (a), (b) median
values and the 68% and 95% constraints on the localized principal components q1, and their weights in redshift W1, respectively.(c),
(d) same for the principal components q2 and their weights W2 (see the text for definitions). (e) likelihood distributions for the
parameters q1;(f) reduction in "2 relative to %CDM as the number of fitting nodes (for parameters q1) is increased.
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Choice 2: W2 ¼ O; then Cq2
¼ hq2q

T
2 i ¼

W2hppTiWT
2 ¼ D(1.

Here, W1 corresponds to the localized principal com-
ponent decomposition of the parameters p—the weights
(rows of W1) are almost positive definite and fairly well
localized in redshift [7]. W1 is usually rescaled so that its
rows sum up to unity,

Pn
j¼1ðW1Þij ¼ 1, and we follow this

practice. Note, however, that the physical inferences do not
depend on the normalization of W1 (or W2) as both the
parameters q and their values for a particular theoreti-
cal model change consistently. For example, we have tried
a different normalization of W1 and explicitly checked
that the parameters q and their values corresponding to
the wðzÞ ¼ (1 model change so that the hypothesis test
of whether the measured parameters are consistent with
wðzÞ ¼ (1 returns the same result.

We find that all localized principal component band
powers are consistent with the cosmological constant value
at 95% C.L. Two out of six points deviate from %CDM
at greater than 68% C.L., which is not statistically unex-
pected. This conclusion is easy to read off in Panel A of
Fig. 2, where the q’s are uncorrelated and is independent of
the choice of the decorrelating weights. In Panel C, we
replace q1 with q2 (withW2 normalized asW1 above), and
again find consistency with the cosmological constant
scenario.

IV. SUMMARYAND DISCUSSION

Using the latest astronomical data of SNe Ia, CMB, and
LSS, we used the MCMC machinery to reconstruct the
expansion history of the Universe, and the evolution of
dark energy, in a nearly model-independent fashion. We
used the cubic spline interpolation between n values of the
equation state wi, fitting the expansion history more flexi-
bly than essentially any description used on existing data
so far. We found that n ¼ 6 values of the equation of state
in the range 0 ) z ) 1 can be usefully constrained, and
that increasing their number slightly does not improve
the fit.

Some comments can be made about our approach. We
think the cubic spline leads a largely unbiased recon-

struction of wðzÞ. An exception to this would be a highly
oscillatory fiducialwðzÞ, which however cannot be robustly
constrained with other approaches (and current data) ei-
ther. Moreover, our results are not in conflict with Ref. [28]
who claimed that only 2–3 equation-of-state parameters
can be measured even from future surveys to better than
about 10%, since we do not measure the six wi to nearly
such a good accuracy; see Fig. 1. Finally, one could cer-
tainly apply the same approach to the reconstruction of the
dark energy density %DEðzÞ as in [29], although we would
argue that probing dynamics of dark energy requires spe-
cifically wðzÞ.
Our results do not show any significant evidence for the

evolution of the equation of state with time, and are fully
consistent with the cosmological constant scenario in the
interval 0 ) z ) 1 at the 95% C.L. We would particularly
like to be able to test the dynamics of dark energy; for
example, the ‘‘freezing’’ and ‘‘thawing’’ scalar field
models [30], which have different physical behavior and
a different sign of dw=dz; however, the accuracy we have
right now is not sufficient to distinguish between these
models [31]. Our method is straightforward to implement,
and will produce sharp tests of the dynamics of dark energy
once we have data from the next-generation surveys, such
as the Dark Energy Survey [32], Joint Dark Energy
Mission [33], Large Synoptic Sky Telescope [34], and
Pan-STARRs [35].
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