GLPA conference, 2015

Dark Matter

Dragan Huterer, Jacob Bourjaily, Ron Kaitchuck

Dark Matter! Early History:

- Fritz Zwicky (1933) observed the motions of galaxies in the Coma cluster and
- Zwicky concluded that their trajectories cannot be supported by the visible matter (he used the so-called virial theorem to relate the velocities to the total mass)
- Therefore, some -- most -- matter in Coma must be dark

Fritz Zwicky
(Swiss,
prof at Caltech)

Coma cluster (100 Mpc away)

Flat rotation curves

- In the 1970s, Vera Rubin and collaborators clinch the evidence for DM by measuring rotation rate of stars in galaxies
- She found that rotation curves stay flat as you recede from the center of the galaxy
- Conclusion: the dark halo conspires to "kick in" where the luminous matter stops to make the total curve flat

Vera Rubin (American, shown measuring spectra)

Measuring the rotation curve

- Galaxies (that is, gas, clouds and stars in them) rotate
- Rotation can only be supported by sufficient mass (see Newton's laws equation at right)
- Newton's laws predict that velocity should fall off with square root of radius
- Not observed velocity stays constant with radius ⇒ "flat rotation curves"

$$\frac{mv^2}{r} = \frac{GM_r m}{r^2} \Rightarrow v = \sqrt{\frac{GM_r}{r}}$$

A typical galaxy rotation curve

Dark Matter is in "halos" around galaxies (and also around clusters)

"Mass-to-Light ratio" measurements indicate: the bigger the object is, the more DM-dominated it is

DM "imaged" using weak gravit. lensing

Bullet cluster: mass and light do not overlap!

Best evidence for DM: fluctuations in the cosmic microwave background (CMB)

Makeup of universe today

Simulation movie

DM cannot be one of these!

Elementary Particles

- Hadrons: particle made of quarks
 - **baryons:** 3 quarks
 - mesons: 2 quarks
- Leptons and force carries are not made of quarks

Examples:

DM *could* be one of these supersymmetric particles (there are other possibilities too...

Direct and Indirect Searches for Dark Matter:

Direct detection - wait for WIMP to scatter off of nuclei in underground detectors

Indirect detection: detect products - "normal" particles - of WIMP annihilation in the center of Galaxy (or other galaxies)

Sanford Underground Research Facility (SD)

Upper limits... up until when?

Indirect detection

Indirect detection through γ -rays from DM annihilation

Fermi-LAT (Fermi Large Area Telescope)

H.E.S.S. & H.E.S.S.-2

VERITAS

CTA (Cherenkov Telescope Array)

Big Questions

- 1. How sure are we about the evidence for DM?
- 2. Is DM made up of as-yet undiscovered particles (Weakly Interacting Massive Particles, "WIMPS")? [as opposed to e.g. modifications of gravity]
- 3. Will we find the DM? When? How sure will we be we found it?

4. When we find DM, then what?