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Makeup of universe today

Dark Matter
(suspected since 1930s
established since 1970s)

Dark Energy
(suspected since 1980s
established since 1998)

Also: 
radiation (0.01%)

Baryonic Matter
(stars 0.4%,  gas 3.6%)



Evidence for Dark energy 
from type Ia Supernovae

Union2 SN compilation binned in redshift
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Current evidence for dark energy is  
impressively strong

Dan Shafer 

SN + BAO + CMB: 
ΩΛ=0.724±0.010 
ΩΛ=0 is 72-σ away



Fine Tuning Problem: 
“Why so small”?

Vacuum Energy: Quantum Field Theory  
predicts it to be determined by cutoff scale

60-120 orders of magnitude 
smaller than expected!

Planck scale:

SUSY scale: 
(1019 GeV)4
(1 TeV)4 }
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Lots of theoretical ideas, few compelling ones:
Very difficult to motivate DE naturally

E.g. ‘quintessence’  
(evolving scalar field)

mφ ≃ H0 ≃ 10−33 eV

�̈+ 3H�̇+
dV

d�
= 0

Ratra & Peebles, 1988 
Zlatev, Wang & Steinhardt, 1999



String landscape?  
⇒ A time of desperation?

0 10−120 MPL
4 MPL

4 ρΛ

Among the ∼10500 minima,  
we live in one that allows structure/galaxies to form
(selection effect) (anthropic principle)

Pam Jeffries

Kolb & Turner, “Early Universe”, footnote on p. 269: 
“It is not clear to one of the authors how a concept as lame 

as the “anthropic idea” was ever elevated to the status of a principle”

Landscape 
“predicts” the   
observed ΩDE



A difficulty: 
DE theory target accuracy, in e.g. w(z),  

not known a priori

(Δm2)sol ≃ 8×10−5 eV2  

(Δm2)atm ≃ 3×10−3 eV2 

Contrast this situation with:

1. Neutrino masses:
∑mi = 0.06 eV*  (normal)}
∑mi = 0.11 eV*  (inverted)

*(assuming m3=0)

vs.

2. Higgs Boson mass (before LHC 2012):
mH ≲ O(200) GeV

(assuming Standard Model Higgs)



Planck Collaboration: Planck 2015 results. XIV. Dark energy and modified gravity
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Fig. 7. PCA analysis constraints (described in Sect. 5.1.3). The
top panel shows the reconstructed equation of state w(z) after the
PCA analysis. Vertical error bars correspond to mean and stan-
dard deviations of the q vector parameters, while horizontal error
bars are the amplitude of the original binning. The bottom panel
shows the PCA corresponding weights on w(z) as a function of
redshift for the combination Planck TT+lowP+BSH.

equal. The function F(x) in Eq. (23) is defined as:

F(x) ⌘
p

1 + x3

x3/2 �
ln
⇣
x3/2 +

p
1 + x3

⌘

x3 . (25)

Eq. (23) parameterizes w(a) with one parameter ✏s, while ade
depends on ⌦m and ✏s and can be derived using an approxi-
mated fitting formula that facilitates numerical computation
(Huang et al. 2011). Positive (negative) values of ✏s correspond
to quintessence (phantom) models.

Eq. (23) is only valid for late-Universe slow-roll (✏V . 1
and ⌘V ⌘ M2

PV 00/V ⌧ 1) or the moderate-roll (✏V . 1 and
⌘V . 1) regime. For quintessence models, where the scalar field
rolls down from a very steep potential, at early times ✏V(a) � 1,
however the fractional density ⌦�(a) ! 0 and the combination
✏V(a)⌦�(a) aprroaches a constant, defined to be a second param-
eter ✏1 ⌘ lima!0 ✏V(a)⌦�(a).

One could also add a third parameter ⇣s to capture the time-
dependence of ✏V via corrections to the functional dependence
of w(a) at late time. This parameter is defined as the relative
di↵erence of d

p
✏V⌦�/dy at a = ade and at a ! 0, where y ⌘

(a/ade)3/2/
p

1 + (a/ade)3. If ✏1 ⌧ 1, ⇣s is proportional to the
second derivative of ln V(�), but for large ✏1, the dependence is
more complicated (Huang et al. 2011). In other words, while ✏s
is sensitive to the late time evolution of 1 + w(a), ✏1 captures
its early time behaviour. Quintessence/phantom models can be
mapped into ✏s–✏1 space and the classification can be further
refined with ⇣s. For ⇤CDM, all three parameters are zero.

In Fig. 8 we show the marginalized posterior distribu-
tions at 68.3 % and 95.4 % confidence levels in the param-
eter space ✏s–⌦m, marginalizing over the other parameters.
In Fig. 9 we show the current constraints on quintessence
models projected in ✏s–✏1 space. The constraints are ob-
tained by marginalizing over all other cosmological parameters.
The models here include exponentials V = V0 exp(���/MP)
(Wetterich 1988), cosines from pseudo-Nambu Goldstone
bosons (pnGB) V = V0[1 + cos(��/MP)] (Frieman et al.
1995; Kaloper & Sorbo 2006), power laws V = V0(�/MP)�n

(Ratra & Peebles 1988), and models motivated by supergrav-
ity (SUGRA) V = V0(�/MP)�↵ exp [(�/MP)2] (Brax & Martin
1999). The model projection is done with a fiducial ⌦m = 0.3
cosmology. We have verified that variations of 1 % compared to
the fiducial ⌦m lead to negligible changes in the constraints.

Mean values and uncertainties for a selection of cosmo-
logical parameters are shown in Table 2, for both the 1-
parameter case (i.e., ✏s only, with ✏1 = 0 and ⇣s = 0, de-
scribing “thawing” quintessence/phantom models, where �̇ =
0 in the early Universe) and the 3-parameter case (general
quintessence/phantom models where an early-Universe fast-
rolling phase is allowed). When we vary the data sets and the-
oretical prior (between the 1-parameter and 3-parameter cases),
the results are all compatible with ⇤CDM and mutually compat-
ible with each other. Because ✏s and ✏1 are correlated, caution
has to be taken when looking at the marginalized constraints
in the table. For instance, the constraint on ✏s is tighter for the
3-parameter case, because in this case flatter potentials are pre-
ferred in the late Universe in order to slow-down larger �̇ from
the early Universe. A better view of the mutual consistency can
be obtained from Fig. 9. We find that the addition of polariza-
tion data does not have a large impact on these DE parameters.
Adding polarization data to Planck+BSH shifts the mean of ✏s
by �1/6� and reduces the uncertainty of ✏s by 20 %, while the
95 % upper bound on ✏1 remains unchanged.

5.1.5. Dark energy density at early times

Quintessence models can be divided into two classes, namely
cosmologies with or without DE at early times. Although the
equation of state and the DE density are related to each other,
it is often convenient to think directly in terms of DE density
rather than the equation of state. In this section we provide a
more direct estimate of how much DE is allowed by the data
as a function of time. A key parameter for this purpose is ⌦e,
which measures the amount of DE present at early times (“early
dark energy,” EDE) (Wetterich 2004). Early DE parameteriza-
tions encompass features of a large class of dynamical DE mo-
dels. The amount of early DE influences CMB peaks and can be
strongly constrained when including small-scale measurements
and CMB lensing. Assuming a constant fraction of ⌦e until re-
cent times (Doran & Robbers 2006), the DE density is parame-
terized as:

⌦de(a) =
⌦0

de �⌦e(1 � a�3w0 )
⌦0

de +⌦
0
ma3w0

+⌦e(1 � a�3w0 ) . (26)
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Planck XIV, “Dark Energy and Modified Gravity”, arXiv:1502.01590

Current constraints on w(z): 
largely from geometrical measures

BAO+ 
SNIa+ 

Hubble const



Dark Energy suppresses  
the growth of density fluctuations

The Virgo Consortium (1996)

with DE

without 
DE

Today1/4 size of today 1/2 size of today
(a=1/4 or z=3) (a=1/2 or z=1) (a=1 or z=0)

Huterer et al, Snowmass report, 1309.5385



Next Frontier: Growth (+geom) from LSS

CMB LSS

dimension 2D 3D

# modes ∝lmax
2 ∝kmax

3

can slice in λ only λ, M, bias...

temporal evol. no yes

systematics? relatively  
clean relatively messy

theory modeling easy can be hard



Using growth to separate GR from MG:

H2
− F (H) =

8πG

3
ρ, or H2 =

8πG

3

(

ρ +
3F (H)

8πG

)

For example:

Modified gravity GR + dark energy

Growth of density fluctuations can decide:

�̈ + 2H �̇ � 4⇡G⇢M� = 0
(assuming GR)



Remainder of talk:  
three sets of dark energy tests 

with LSS

1. Separating growth from geometry using  
    current data

2. Measuring covariance of peculiar velocities of 
nearby SN/gals to test LCDM

3. Blinding the DES analysis.



1. Separating geometry and growth
2

program has been started very successfully byWang et al.
[17] (see also [18–20] which contained very similar ideas),
who used data available at the time; the constraints how-
ever were weak. Our overall philosophy and approach
are similar as those in Refs. [17–20], but we benefit enor-
mously from the new data and increased sophistication
in understanding and modeling them, as well as the avail-
ability of a few additional cosmological probes not avail-
able in 2007.

The paper is divided as follows: we present the reason-
ing behind our approach in section II. In section III we
review the cosmological probes used in the analysis. A
review of the analysis method is provided in section IV,
and we present our constraints on parameters in section
V. We discuss these results in section VI, and give final
remarks in section VII.

II. PHILOSOPHY OF OUR APPROACH

We would like to perform stringent but general consis-
tency tests of the currently favored ⇤CDM cosmological
model with ⇠25% dark plus baryonic matter and ⇠75%
dark energy, as well as the more general wCDM model.
The ⇤CDM model, favored since even before the direct
discovery of the accelerating universe (e.g. [21]), is in ex-
cellent agreement with essentially all cosmological data,
despite occasional mild warnings to the contrary ([22–
25]). There has been a huge amount of e↵ort devoted
to tests alternative to wCDM – most notably, modified
gravity models where modifications to Einstein’s Gen-
eral Theory of Relativity, imposed to become important
at late times in the evolution of the universe and at large
spatial scales, make it appear as if the universe is accel-
erating if interpreted assuming standard GR.

Here we take a complementary approach, and study
the internal consistency of the wCDM model itself, with-
out assuming any alternative model. We split the cosmo-
logical information describing the late universe into two
classes:

• Geometry: expansion rate H(z) and the comoving
distance r(z), and associated derived quantities.

• Growth: growth rate of density fluctuations in lin-
ear (D(z) ⌘ �(z)/�(0)) and non-linear regime.

Regardless of the parametric description of the geome-
try and growth sectors, one thing is clear: in the standard
model that assumes General Relativity with its usual re-
lations between the growth and distances, the split pa-
rameters Xgeom

i and Xgrow
i have to agree – that is, be

consistent with each other at some statistically appro-
priate confidence level. Any disagreement between the
parameters in the two sectors, barring unforseen remain-
ing systematic errors, can be interpreted as the violation
of the standard cosmological model assumption.

The split parameter constraints provide very general,
yet powerful, tests of the dominant paradigm. They can

Cosmological Probe Geometry Growth

SN Ia H
0

DL(z) —–

BAO

✓
D2

A(z)
H(z)

◆
1/3

/rs(zd) —–

CMB peak loc. R /
p

⌦mH2

0

DA(z⇤) —–

Cluster counts
dV

dz

dn

dM

Weak lens 2pt
r2(z)
H(z)

Wi(z)Wj(z) P

✓
k =

`

r(z)

◆

RSD F (z) / DA(z)H(z) f(z)�
8

(z)

TABLE I. Summary of cosmological probes that we used and
aspects of geometry and growth that they are sensitive to.
The assignments in the second and third column are neces-
sarily approximate given the short space in the table; more
detail is given in respective sections covering our use of these
cosmological probes. Here rs(zd) refers to the sound horizon
evaluated at the baryon drag epoch zd.

be compared to more specific parametrizations of depar-
tures from GR — for example, the � parametrization
[26], or the various schemes of the aforementioned com-
parison of the Newtonian potentials. Our approach is
complementary to these more specific parametrizations:
while perhaps not as powerful in specific instances, it is
equipped with more freedom to capture departures from
the standard model.
Most of the cosmological measurements involve large

amounts of raw data, and their information is often com-
pressed into a very small number of meta-parameters.
For example, weak lensing shows the two-point cor-
relation function, cluster number counts are given in
mass bins, while baryon acoustic oscillations, cosmic
microwave background, and redshift space distortions
information is often captured in a small number of
meta-parameters which are defined and presented below.
[Type Ia supernovae are somewhat of an exception, since
we use individual magnitude measurements from each
SN from the beginning.] Given that in some cases one
assumes the cosmological model (often ⇤CDM) to derive
these intermediate parameters, the question is whether
we should worry about using the meta-parameters to
constrain the wider class of cosmological models where
growth history is decoupled from geometry. Fortunately,
in this particular case our constraints are robust: cer-
tainly for surveys that specialize in either geometry and
growth alone, the meta-parameters are de facto correct
by construction, and capture nearly all cosmological in-
formation of interest. For probes that are sensitive to
both growth and geometry, like the weak lensing and
cluster counts, the quantities used for the analysis —
correlation functions and number counts, respectively —
provide a general enough representation of the raw data
that one can relax the assumption that growth and ge-
ometry are consistent without the loss of robustness and

Ruiz & Huterer 2015



Idea: compare geometry and growth
see also: Wang, Hui, May & Haiman 2007

Ruiz & Huterer 2015

Our approach:

Double the standard DE parameter space 
(ΩM=1−ΩDE and w): 

⇒ ΩM
geom

, wgeom ΩM
grow

, wgrow 

[In addition to other:
standard parameters: ΩMh2 ΩBh2, ns, A)
nuisance parameters: probe-dependent]



(Current) Data used

SNIa

Clusters  
(MaxBCG)

BAO (6dF, SDSS LRG, BOSS CMASS)

Weak Lensing (CFHTLens)

CMB (Planck peak location)

RSD

r⟂

r‖



Standard parameter space

EU = Early Universe prior from Planck (ΩMh2, ΩBh2, ns, A) 
SH = Sound Horizon prior from Planck (ΩMh2, ΩBh2)



w (eq of state of DE): geometry vs. growth

Evidence for 
wgrow > wgeom: 

3.3-σ

Ruiz & Huterer 2015

* SN not the 
recalibrated JLA 

compilation - need 
to update; will 
move wgeom up



Redshift Space Distortion data



RSD prefer wgrow > −1 (slower growth than in LCDM)

(evidence 3.1-σ) (evidence 2.3-σ)



Therefore: 
growth probes point to even less growth 

than LCDM with ~Planck parameters 
(i.e. wgrow > −1)

Probably equivalent to these recent findings: 
● σ8 from clusters is lower than that from CMB (eg. Chon & Bohringer, 
Hou et al, Bocquet et al, Costanzi et al) 
● σ8 from lensing is lower than that from CMB (eg. MacCrann et al) 
● evidence for neutrino mass (eg. Beutler et al, Dvorkin et al) 
● evidence for interactions in the dark energy sector (eg. Salvatelli et al)

(but the evidence is still not very strong...)



Vhubble⋍cz

Vpec

Zobs = Z  + Vpec,‖/c

2. Measuring peculiar velocities

Typically:
•measure zobs directly (from spectrum) 
•infer z from measured distance (e.g. standard candle or FP) 
•⇒ infer Vpec,‖
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Figure 1. Comparison of the signal (left panel) and noise (right panel) contributions to the full
covariance matrix for the 111 SNe at z < 0.05 from the JLA compilation.

Putting these ingredients together, we construct a multivariate Gaussian likelihood6

L(A,v
bulk

) / 1p
|C|

exp


�1

2
�m

|
C

�1

�m

�
, (4.3)

where the elements of the vector �m are

(�m)
i

= mcorr

i

�mth(z
i

,M,⌦
m

)��mbulk

i

(v
bulk

) , (4.4)

where mcorr

i

are the observed, corrected magnitudes and mth(z
i

,M,⌦
m

) are the theoretical
predictions for the background cosmological model (see below). The M parameter corre-
sponds to the (unknown) absolute calibration of SNe Ia; we analytically marginalize over it
in all analyses (e.g. appendix of [20]).

We emphasize that, since the covariance depends on the parameter A that we are
interested in constraining, we need to include a term for the 1/

p
|C| prefactor in addition to

the usual �2 quantity. Since the covariance is a strictly increasing function of A, neglecting
the prefactor would lead to the clearly erroneous result that the likelihood is a maximum for
A ! 1.

The likelihood in eq. (4.3) is the principal tool we will use for our analyses. In this
most general form, the likelihood depends on two input quantities (four parameters, since
the velocity has three components): the normalization A of the signal component of the
covariance matrix and the excess bulk velocity v

bulk

not captured by the velocity covariance.
Note that, in the fiducial model, A = 1 and v

bulk

= 0.
Throughout our analyses, we assume a flat ⇤CDM model (w = �1, ⌦

k

= 0) with free
parameters fixed to values consistent with data from Planck [21] and other probes. That is, we
fix ⌦

m

= 0.3, physical matter density ⌦
m

h2 = 0.14, physical baryon density ⌦
b

h2 = 0.0223,

6Note that SN flux, or a quantity linearly related to it, might be a better choice for the observable than
the magnitude, given that we expect the error distribution of the former to be more Gaussian than the latter.
Nevertheless, this choice should not impact our results, as the fractional errors in flux are not too large, and
we have explicitly checked that the distribution of the observed magnitudes around the mean is approximately
Gaussian. Therefore we follow most literature on the subject and work directly with magnitudes.

– 8 –

Signal and noise covariance
Cij = Sij + Nij

Sij ⌘ h�mi �mji =


5

ln 10

�2 (1 + zi)2
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(1 + zj)2
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⇠ij

⇠ij ⌘ h(vi · n̂i)(vj · n̂j)i =
dDi

d⌧

dDj

d⌧

Z
dk

2⇡2
P (k, a = 1)

X

`

(2`+ 1)j0`(k�i)j
0
`(k�j)P`(n̂i · n̂j)



Using vpec to test cosmology

This is a mature subject

Our contribution:

•Significantly streamlined and simplified analysis/likelihood 
approach 

•Using best SN sample to date (Supercal; 208 objects at z<0.1): all 
objects fitted and calibrated using the same technology (Scolnic et al 
2015) 

•Analysis is robust: we marginalize over systematic parameters, check 
alternate assumptions in fits. [Note: systematics still a concern.]

Huterer, Shafer, Scolnic & Schmidt, on arXiv soon
Huterer, Shafer & Schmidt, JCAP, 2016

Kaiser 1989, Gorski et al 1989, Willick & Strauss 1995,  
Hui & Greene 2005, Watkins et al 2012,…
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Do the SN and galaxy data prefer signal covariance?
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 SN Ia (Supercal)
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 Combined

Cij = ASij + Nij

11-σ detection of covariances; A=1.05+0.25
−0.21

Huterer, Shafer, Scolnic & Schmidt, on arXiv soon

A=1: LCDM

A=0: pure noise
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Equivalently, we have a 11% meas. of fσ8

f (z)σ 8(z) = d lnD
d lna

[σ 8D(z)]

fσ 8 = 0.428−0.045
+0.048 @ z⋍0.02



•Ground photometric:  
‣Dark Energy Survey (DES) 

‣Pan-STARRS 

‣Hyper Suprime Cam (HSC)  

‣Large Synoptic Survey Telescope (LSST) 

•Ground spectroscopic: 
‣Hobby Eberly Telescope DE Experiment (HETDEX) 

‣Prime Focus Spectrograph (PFS) 

‣Dark Energy Spectroscopic Instrument (DESI) 

•Space:  
‣Euclid  

‣Wide Field InfraRed Space Telescope (WFIRST)

Ongoing or upcoming DE experiments:



Dark Energy Survey (DES)   
Imaging survey over 5000 sq deg

Dark Energy Spectroscopic Instr. (DESI)  
Spectroscopic survey over 15,000 sq deg

Blanco telescope at Cerro Tololo, Chile

Mayall telescope at Kitt Peak, Arizona

ferrule holder (on eccentric arm)
eccentric axis (Φ) bearing

retaining threads

Θ motor

+ +

Θ
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106 μm
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central axis
Θ bearing

control
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Fiber positioner 
@UM (×5000)



Story so far:
Dark energy measurements definitely in the precision 
regime - impressive constraints…  
…but the really big questions (nature of DE) unanswered 
Potential to improve constraints from upcoming surveys

Planck Collaboration: Cosmological parameters
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for temperature-to-polarization leakage). The theoretical T E and
EE spectra plotted in the upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with
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Planck Collaboration: Cosmological parameters
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for temperature-to-polarization leakage). The theoretical T E and
EE spectra plotted in the upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with
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lower panels show the best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and
EE spectra.
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temp-temp temp-pol pol-pol
But are Planck++ constraints so good that they bias us?

Danger of declaring currently favored model to be the truth 
blinding new data is key⇒



3. Blinding the DES analysis

Our requirements: 
• Preserve inter-consistency of cosmological probes 
• Preserve ability to test for systematic errors

Muir, Elsner, Bernstein,  
Huterer, Peiris and DES collab.

Our choice is specifically:

ξij
blinded (k) = ξij

measured (k) 
ξij

model 1(k)
ξij

model 2 (k)
⎡

⎣
⎢

⎤

⎦
⎥

Tests passed, black-box code ready.  
First application expected for clustering measurements in DES year-3 data.



Conclusions

•Huge variety of new observations probing dark 
energy, particularly with the large-scale structure

•Current status of DE: excellent consistency with 
Lambda

•Blinding in analysis (along with sophisticated 
statistical tools + systematics control) will be key

•Like particle physicists, we would really like to 
see some “bumps” in the data

•In that regard, internal consistency tests with 
data (e.g. geometry/growth split) can help



EXTRA SLIDES



(Pretty high) neutrino mass can relieve the 
tension

Ruiz & Huterer, arXiv:1410.5832



L(A, vbulk) /
1p
|C|

exp
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i (v
bulk

)

�mbulk
i ⌘ �mbulk(vbulk; zi, n̂i) = �
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ln 10
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(1 + zi)2

H(zi)dL(zi)
n̂i · vbulk ,

Likelihood
“Admixture”  

of signal: 
C = AS+N

Excess  
(on top of LCDM)  

bulk vel.

LCDM predicts:  
A=1, vbulk=0

Very simple.



Omega matter: geometry vs. growth

* SN not the 
recalibrated JLA 

compilation - need 
to update; will 
move ΩM

geow up


