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Makeup of universe today

Dark Matter
(suspected since 1930s
established since 1970s)

Dark Energy
(suspected since 1980s
established since 1998)

Also: 
radiation (0.01%)

Visible Matter
(stars 0.4%,  gas 3.6%)





Evidence for Dark energy
from type Ia Supernovae

Union2 SN compilation binned in redshift
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Current evidence for dark energy is 
impressively strong
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ΩDE = 0.724± 0.011
ΩDE = 0 is ∼ 64σ away
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Hints that w < −1??
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Only if H0 ≳ 71 and Planck assumed
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SN datasets and dark energy constraints



1. Is DE something other than vacuum energy?

2. Does GR self-consistently describe cosmic acceleration?

Big questions



Planck Collaboration: Planck 2015 results. XIV. Dark energy and modified gravity
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Fig. 7. PCA analysis constraints (described in Sect. 5.1.3). The
top panel shows the reconstructed equation of state w(z) after the
PCA analysis. Vertical error bars correspond to mean and stan-
dard deviations of the q vector parameters, while horizontal error
bars are the amplitude of the original binning. The bottom panel
shows the PCA corresponding weights on w(z) as a function of
redshift for the combination Planck TT+lowP+BSH.

equal. The function F(x) in Eq. (23) is defined as:

F(x) ⌘
p

1 + x3

x3/2 �
ln
⇣
x3/2 +

p
1 + x3

⌘

x3 . (25)

Eq. (23) parameterizes w(a) with one parameter ✏s, while ade
depends on ⌦m and ✏s and can be derived using an approxi-
mated fitting formula that facilitates numerical computation
(Huang et al. 2011). Positive (negative) values of ✏s correspond
to quintessence (phantom) models.

Eq. (23) is only valid for late-Universe slow-roll (✏V . 1
and ⌘V ⌘ M2

PV 00/V ⌧ 1) or the moderate-roll (✏V . 1 and
⌘V . 1) regime. For quintessence models, where the scalar field
rolls down from a very steep potential, at early times ✏V(a) � 1,
however the fractional density ⌦�(a) ! 0 and the combination
✏V(a)⌦�(a) aprroaches a constant, defined to be a second param-
eter ✏1 ⌘ lima!0 ✏V(a)⌦�(a).

One could also add a third parameter ⇣s to capture the time-
dependence of ✏V via corrections to the functional dependence
of w(a) at late time. This parameter is defined as the relative
di↵erence of d

p
✏V⌦�/dy at a = ade and at a ! 0, where y ⌘

(a/ade)3/2/
p

1 + (a/ade)3. If ✏1 ⌧ 1, ⇣s is proportional to the
second derivative of ln V(�), but for large ✏1, the dependence is
more complicated (Huang et al. 2011). In other words, while ✏s
is sensitive to the late time evolution of 1 + w(a), ✏1 captures
its early time behaviour. Quintessence/phantom models can be
mapped into ✏s–✏1 space and the classification can be further
refined with ⇣s. For ⇤CDM, all three parameters are zero.

In Fig. 8 we show the marginalized posterior distribu-
tions at 68.3 % and 95.4 % confidence levels in the param-
eter space ✏s–⌦m, marginalizing over the other parameters.
In Fig. 9 we show the current constraints on quintessence
models projected in ✏s–✏1 space. The constraints are ob-
tained by marginalizing over all other cosmological parameters.
The models here include exponentials V = V0 exp(���/MP)
(Wetterich 1988), cosines from pseudo-Nambu Goldstone
bosons (pnGB) V = V0[1 + cos(��/MP)] (Frieman et al.
1995; Kaloper & Sorbo 2006), power laws V = V0(�/MP)�n

(Ratra & Peebles 1988), and models motivated by supergrav-
ity (SUGRA) V = V0(�/MP)�↵ exp [(�/MP)2] (Brax & Martin
1999). The model projection is done with a fiducial ⌦m = 0.3
cosmology. We have verified that variations of 1 % compared to
the fiducial ⌦m lead to negligible changes in the constraints.

Mean values and uncertainties for a selection of cosmo-
logical parameters are shown in Table 2, for both the 1-
parameter case (i.e., ✏s only, with ✏1 = 0 and ⇣s = 0, de-
scribing “thawing” quintessence/phantom models, where �̇ =
0 in the early Universe) and the 3-parameter case (general
quintessence/phantom models where an early-Universe fast-
rolling phase is allowed). When we vary the data sets and the-
oretical prior (between the 1-parameter and 3-parameter cases),
the results are all compatible with ⇤CDM and mutually compat-
ible with each other. Because ✏s and ✏1 are correlated, caution
has to be taken when looking at the marginalized constraints
in the table. For instance, the constraint on ✏s is tighter for the
3-parameter case, because in this case flatter potentials are pre-
ferred in the late Universe in order to slow-down larger �̇ from
the early Universe. A better view of the mutual consistency can
be obtained from Fig. 9. We find that the addition of polariza-
tion data does not have a large impact on these DE parameters.
Adding polarization data to Planck+BSH shifts the mean of ✏s
by �1/6� and reduces the uncertainty of ✏s by 20 %, while the
95 % upper bound on ✏1 remains unchanged.

5.1.5. Dark energy density at early times

Quintessence models can be divided into two classes, namely
cosmologies with or without DE at early times. Although the
equation of state and the DE density are related to each other,
it is often convenient to think directly in terms of DE density
rather than the equation of state. In this section we provide a
more direct estimate of how much DE is allowed by the data
as a function of time. A key parameter for this purpose is ⌦e,
which measures the amount of DE present at early times (“early
dark energy,” EDE) (Wetterich 2004). Early DE parameteriza-
tions encompass features of a large class of dynamical DE mo-
dels. The amount of early DE influences CMB peaks and can be
strongly constrained when including small-scale measurements
and CMB lensing. Assuming a constant fraction of ⌦e until re-
cent times (Doran & Robbers 2006), the DE density is parame-
terized as:

⌦de(a) =
⌦0

de �⌦e(1 � a�3w0 )
⌦0

de +⌦
0
ma3w0

+⌦e(1 � a�3w0 ) . (26)
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Planck XIV, “Dark Energy and Modified Gravity”, arXiv:1502.01590

Current constraints on w(z):
largely from geometrical measures

BAO+
SNIa+

Hubble const



Part I: testing DE with geometry and growth

Part II: making predictions for DE observables

Remainder of talk



Dark Energy suppresses 
the growth of density fluctuations

The Virgo Consortium (1996)

with DE

without 
DE

Today1/4 size of today 1/2 size of today
(a=1/4 or z=3) (a=1/2 or z=1) (a=1 or z=0)

Huterer et al, Snowmass report, 1309.5385



Idea: compare geometry and growth
e.g. Wang, Hui, May & Haiman 2007

Ruiz & Huterer, arXiv:1410.5832

Our approach:

Double the standard DE parameter space
(ΩM=1−ΩDE and w):

⇒ ΩM
geom

, wgeom ΩM
grow

, wgrow

[In addition to other:
standard parameters: ΩMh2 ΩBh2, ns, A)
nuisance parameters: probe-dependent]



(Current) Data used

SNIa

Clusters 
(MaxBCG)

BAO (6dF, SDSS LRG, BOSS CMASS)

Weak Lensing (CFHTLens)

CMB (Planck peak location)

RSD

r⟂

r‖



Sensitivity to geometry and growth
2

program has been started very successfully byWang et al.
[17] (see also [18–20] which contained very similar ideas),
who used data available at the time; the constraints how-
ever were weak. Our overall philosophy and approach
are similar as those in Refs. [17–20], but we benefit enor-
mously from the new data and increased sophistication
in understanding and modeling them, as well as the avail-
ability of a few additional cosmological probes not avail-
able in 2007.

The paper is divided as follows: we present the reason-
ing behind our approach in section II. In section III we
review the cosmological probes used in the analysis. A
review of the analysis method is provided in section IV,
and we present our constraints on parameters in section
V. We discuss these results in section VI, and give final
remarks in section VII.

II. PHILOSOPHY OF OUR APPROACH

We would like to perform stringent but general consis-
tency tests of the currently favored ⇤CDM cosmological
model with ⇠25% dark plus baryonic matter and ⇠75%
dark energy, as well as the more general wCDM model.
The ⇤CDM model, favored since even before the direct
discovery of the accelerating universe (e.g. [21]), is in ex-
cellent agreement with essentially all cosmological data,
despite occasional mild warnings to the contrary ([22–
25]). There has been a huge amount of e↵ort devoted
to tests alternative to wCDM – most notably, modified
gravity models where modifications to Einstein’s Gen-
eral Theory of Relativity, imposed to become important
at late times in the evolution of the universe and at large
spatial scales, make it appear as if the universe is accel-
erating if interpreted assuming standard GR.

Here we take a complementary approach, and study
the internal consistency of the wCDM model itself, with-
out assuming any alternative model. We split the cosmo-
logical information describing the late universe into two
classes:

• Geometry: expansion rate H(z) and the comoving
distance r(z), and associated derived quantities.

• Growth: growth rate of density fluctuations in lin-
ear (D(z) ⌘ �(z)/�(0)) and non-linear regime.

Regardless of the parametric description of the geome-
try and growth sectors, one thing is clear: in the standard
model that assumes General Relativity with its usual re-
lations between the growth and distances, the split pa-
rameters Xgeom

i and Xgrow
i have to agree – that is, be

consistent with each other at some statistically appro-
priate confidence level. Any disagreement between the
parameters in the two sectors, barring unforseen remain-
ing systematic errors, can be interpreted as the violation
of the standard cosmological model assumption.

The split parameter constraints provide very general,
yet powerful, tests of the dominant paradigm. They can

Cosmological Probe Geometry Growth

SN Ia H
0

DL(z) —–

BAO

✓
D2

A(z)
H(z)

◆
1/3

/rs(zd) —–

CMB peak loc. R /
p

⌦mH2

0

DA(z⇤) —–

Cluster counts
dV

dz

dn

dM

Weak lens 2pt
r2(z)
H(z)

Wi(z)Wj(z) P

✓
k =

`

r(z)

◆

RSD F (z) / DA(z)H(z) f(z)�
8

(z)

TABLE I. Summary of cosmological probes that we used and
aspects of geometry and growth that they are sensitive to.
The assignments in the second and third column are neces-
sarily approximate given the short space in the table; more
detail is given in respective sections covering our use of these
cosmological probes. Here rs(zd) refers to the sound horizon
evaluated at the baryon drag epoch zd.

be compared to more specific parametrizations of depar-
tures from GR — for example, the � parametrization
[26], or the various schemes of the aforementioned com-
parison of the Newtonian potentials. Our approach is
complementary to these more specific parametrizations:
while perhaps not as powerful in specific instances, it is
equipped with more freedom to capture departures from
the standard model.
Most of the cosmological measurements involve large

amounts of raw data, and their information is often com-
pressed into a very small number of meta-parameters.
For example, weak lensing shows the two-point cor-
relation function, cluster number counts are given in
mass bins, while baryon acoustic oscillations, cosmic
microwave background, and redshift space distortions
information is often captured in a small number of
meta-parameters which are defined and presented below.
[Type Ia supernovae are somewhat of an exception, since
we use individual magnitude measurements from each
SN from the beginning.] Given that in some cases one
assumes the cosmological model (often ⇤CDM) to derive
these intermediate parameters, the question is whether
we should worry about using the meta-parameters to
constrain the wider class of cosmological models where
growth history is decoupled from geometry. Fortunately,
in this particular case our constraints are robust: cer-
tainly for surveys that specialize in either geometry and
growth alone, the meta-parameters are de facto correct
by construction, and capture nearly all cosmological in-
formation of interest. For probes that are sensitive to
both growth and geometry, like the weak lensing and
cluster counts, the quantities used for the analysis —
correlation functions and number counts, respectively —
provide a general enough representation of the raw data
that one can relax the assumption that growth and ge-
ometry are consistent without the loss of robustness and



Standard parameter spaces

EU = Early Universe prior from Planck (ΩMh2, ΩBh2, ns, A)
SH = Sound Horizon prior from Planck (ΩMh2, ΩBh2)

Ruiz & Huterer, arXiv:1410.5832



Omega matter: geometry vs. growth

* SN not the 
recalibrated JLA 

compilation - need 
to update; will 
move ΩM

grow up



w (eq of state of DE): geometry vs. growth

Evidence for
wgrow > wgeom:

3.3-σ



Redshift Space Distortion data



RSD prefer wgrow > −1 (slower growth than in LCDM)

(evidence 3.1-σ)

“Are there cracks in the Cosmic Egg?”
Michael Turner, Aspen, summer 2014

(evidence 2.3-σ)

All growth probes (i.e. also clusters, WL) show 
preference for a slowed growth 

see also e.g. M. Costanzi et al, arXiv:1407.8338, 
                         S. Bocquet et al, arXiv:1407.2942 



(Pretty high) neutrino mass can relieve the 
tension

Ruiz & Huterer, arXiv:1410.5832



Part I: testing DE with geometry and growth

Part II: making predictions for DE observables

Remainder of talk



•For any given class of DE models, current data predict the 
possible range in fundamental cosmological functions D(z), 
H(z), G(z), etc ...

•... which therefore provide ‘target’ quantities (in redshift) 
for ruling out classes of DE models with upcoming data 

Falsifying DE Paradigms 

Underlying Philosophy:

Mortonson, Hu & Huterer, 2009-2011



1. Start with the parameter set:

�M,�K,H0, w(z), w�

3. Employ the likelihood machine
Markov Chain Monte Carlo likelihood calculation, 
between ~2 and ~15 parameters constrained

 2. Use either the current data or future data 
     (current = Union2 SN + WMAP + BAOz=0.35 + H0 

             future  =  Planck + Space DE)

4. Compute predictions for D(z), G(z), H(z) (and γ(z), f(z)) 

Methodology 



!"#$%&'%()*+,"(-+.%*'/)&#*
Structure of graphs to follow

Sketch by M. Mortonson

Prediction on observable
 by SN+CMB Pivot

Max extent of
SN data



LCDM predictions - flat or curved

Growth
to z=1000

Distance

Hubble
parameter

Growth index

Growth
to z=0

f×G

Current 

data

Mortonson, Hu & Huterer 2010



Quintessence predictions (flat, no Early DE)
Current 

data



LCDM predictions 
(flat or curved)

D, G to <1% everywhere
H(z=1) to 0.1% for flat LCDM 

Grey: flat
Blue: curved

Future data



Quintessence 
predictions  

Smoking Gun of curvature:
1. Shift in G0

2. Negative const offset in D

Grey: flat
Blue: curved

Future data



Therefore:

Whole classes of DE models 
are highly falsifiable



Therefore:

Whole classes of DE models 
are highly falsifiable



6

FIG. 3. Upper panel: Flat ⇥CDM predictions for the shear
power spectrum, showing the 68% and 95% CL regions as
in Fig. 1 for COSMOS (upper, grey hatched) and CFHTLS
(lower, blue solid). Lower panel: CFHTLS shear power spec-
trum prediction plotted with respect to the ML flat ⇥CDM
model.

In Fig. 5 we show the 2PCF �+ which is more use-
ful for comparison with the relevant observations from
COSMOS [8] and CFHTLS [43]. The displayed 1⇥ er-
ror bars are computed from the full covariance matrices
estimated for each survey, as described in Refs. [8, 43].
The predicted range of flat �CDM models appears to
be consistent with the observations. However, the error
bars at di⇤erent angular scales are heavily correlated, and
therefore do not represent the actual uncertainty at any
individual scale. Further note that these small-volume
surveys are not well-suited for making statements for or
against ruling out the �CDM model; COSMOS results
use a 1.64 deg2 field containing 76 galaxies per arcmin2,
and CFHTLS results use 22 deg2 containing 12 galaxies
per arcmin2.

If future observations falsify these predictions, then one
would need to generalize the cosmological model class.
The next simplest class of models retains � as the dark
energy but allows for non-vanishing spatial curvature ⇥K

in the �CDM context. We find a minimal error increase
in this class, as shown in the upper panel of Fig. 6. This
is because spatial curvature is well constrained in the
�CDM paradigm. Thus a measurement that falsifies the
flat �CDM model would also falsify the �CDM assump-
tion itself, indicating that the dark sector is more com-
plicated.

FIG. 4. Single source plane, 95% CL full-width extent for the
shear power spectrum �P�/P� (as plotted in the lower panel
of Fig. 3) as a function of l, for sources at z = 0.5 (top), 2
(middle), and 3.5 (bottom).

FIG. 5. Flat ⇥CDM predictions for �+, showing the 68% and
95% CL regions as in Fig. 3 for both the COSMOS (grey
hatched) and CFHTLS (blue solid) source redshift distribu-
tions. Also shown are the data points from Refs. [8] (black
points) and [43] (magenta points) with 1⇥ error bars. Note
that the error bars at di⇤erent angular separations are corre-
lated.

B. Quintessence

Measurements of shear observables outside the bounds
shown in the previous subsection would be in statistical
conflict with �CDM. Barring systematic errors and un-

Vanderveld, Mortonson, Hu & Eifler 2012

Straightforward to make predictions for
actually observable quantities for a given survey,

given the class of DE models

Two-pt function 
of shear 

in real space



Dark Energy Survey Instrument (DESI)

•Huge spectroscopic survey on Mayall telescope (Arizona)
•~5000 fibres, ~15,000 sqdeg, ~20 million spectra
•LRG in 0 < z < 1, ELG in 0 < z < 1.5, QSO 2.2 < z < 3.5
•Great for dark energy (RSD, BAO)
•Great for primordial non-Gaussianity - P(k, z), bispectrum...
•Start ~2018, funding DOE + institutions

Logo 
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Dave Moore, Artist 
Pick up from Masaaki after lunch…. 



Conclusions
‣ So far, all measurements are in excellent agreement 
with Lambda (i.e. w = −1)...
‣...despite occasional alarms to the contrary:
‣ Planck + BAO + SN + high H0local 

‣Separating growth from geometry is a good way to get 
a) constraints b) insights into DE constraints; it now 
indicates a 3-sigma growth ≠ geometry discrepancy

‣We now have accurate, tight predictions for D(z), G(z), 
H(z) and the observable quantities for each class of DE 
models ⇒ way to rule them out.



EXTRA 
SLIDES



To shed light on dark energy:
search for ‘something else’ in the data

•Variation of eq. of state w   → (none yet)

•Clustering of DE                  → (super hard)

•DM-DE interactions             → (none yet)

•Early dark energy                → (none yet)

•Modified gravity (MG)         → (none yet)



4

measurements of distance [29].
For simplicity and clarity, we only use the geometrical

measurement provided by the CMB acoustic peaks’ loca-
tions. The integrated Sachs-Wolfe (ISW) e↵ect of dark
energy imprints on the CMB angular power spectrum
on very large scales adds very little to the information
due to large cosmic variance. CMB is also sensitive to
the physics at the last-scattering surface [30], but recall
that we decided to study the growth vs. geometry only
in the late universe, when dark energy becomes signifi-
cant. Therefore, we use the aforementioned angular di-
ameter distance to last scattering with ⌦Mh2 fixed, which
is sometimes referred to as the “shift parameter” R, de-
fined as

R =
q

⌦mH2
0 (1 + z⇤)DA(z⇤). (4)

To obtain a value of R, we use the Planck collaboration’s
Planck + WP measurements of r⇤ and ✓⇤ [31]; since ✓⇤ =
r⇤/DA(z⇤), we marginalize over these measurements to
get a value for DA(z⇤). Combining this with the Planck
values of ⌦Mh2 and z⇤, we obtain

R = 1.7502± 0.0073 (5)

for their value of z⇤ = 1090.48. Being only sensitive to
⌦M and w, R presents a handy yet powerful constraint
on the late universe. When using the CMB peak infor-
mation alone, measurement of parameter R in Eq. (5)
therefore provides complete information – modulo the
aforementioned small ISW contribution – about CMB’s
constraint on the late universe.

Once we combine the CMB peaks information
with that of other cosmological probes and add the
CMB early-universe prior (discussed further below in
Sec. IVA), simply including the R measurement would
be inconsistent as R is necessarily correlated with the
early universe parameters, e.g. ⌦Mh2. To do it correctly,
we first extract the 5⇥ 5 covariance matrix from Planck
which contains the 4⇥4 early universe prior shown in Ta-
ble VI, plus an additional row and column corresponding
to R. We than use the 5⇥ 5 matrix as our early universe
prior that automatically and consistently includes the
CMB peaks information. Other probes are then added
straightforwardly; see Sec. IVB for details.

C. Baryon Acoustic Oscillations

Baryonic acoustic oscillations (BAO) are features that
arise from the propagating sound waves in the early uni-
verse. The distance the sound wave can travel between
the Big Bang and the present – the sound horizon – im-
prints a characteristic scale not only in the CMB fluc-
tuations, but also in the clustering two-point correlation
function of galaxies. Roughly speaking, the two-point
correlation function is enhanced by ⇠ 10% at distances
of ⇠ 100h�1Mpc. This latter distance is, similarly to the

Survey z
e↵

Parameter Measurement

6dFGS [33] 0.106 rs/DV 0.336± 0.015

SDSS LRG [34] 0.35 DV /rs 8.88± 0.17

BOSS CMASS [35] 0.57 DV /rs 13.67± 0.22

TABLE III. BAO data measurements used here, together with
the e↵ective redshift for the corresponding galaxy sample.

CMB case, well-measured by the early-universe parame-
ters (⌦Mh2 and ⌦Bh

2 principally), but where we observe
it is dependent on the expansion history of the universe
between the time that light from the galaxies is emitted
and today.
Specifically, for two galaxies at the same redshift sep-

arated by comoving distance r and seen with separation
angle ✓, we have ✓ = r/DA(z) which enables measure-
ment of the angular diameter distance given known sep-
aration between galaxies. Similarly, two galaxies at the
same angular location by separated by redshift di↵er-
ence �z are separated by comoving distance r, with the
two quantities related via �z = rH(z). The information
from these transverse and radial sensitivities can be con-
veniently combined into a single quantity, a generalized
distance DV (ze↵) defined as [32]

DV (z) ⌘
✓
(1 + z)2D2

A(z)cz

H(z)

◆1/3

. (6)

The BAO surveys measure rs(zd)/DV (ze↵) (or its in-
verse), where rs(zd) is the comoving sound horizon at
the redshift of the baryon drag epoch zd

rs(z) =
1p
3

Z 1/(1+z)

0

da0

a02H(a0)
p

1 + 3⇢b/4⇢�
. (7)

In addition to the late-universe parameters, these BAO
observable quantities are only sensitive to the early-
universe physics via a fixed single combination, the sound
horizon rs(zd).
It is important to note that tje radiation term must be

included in H(a) in Equation (7). The radiation energy
density relative to critical is ⌦r = ⌦Maeq, where aeq =
1/(1+zeq) is the scale factor at matter-radiation equality
and

zeq ⇡ 25000 ⌦Mh2

✓
TCMB

2.7K

◆�4

. (8)

The ratio of the baryonic density to the radiation density
have be approximated as

3⇢b
4⇢�

⇡ 31500 ⌦Bh
2

✓
TCMB

2.7K

◆�4

a. (9)

We assume a value of TCMB = 2.7255K.

BAO data



Cluster data
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Appendix A: Cluster analysis details

Here we give more details regarding the cluster anal-
ysis, which closely followed one given in the Rozo et al.

[38] MaxBCG cosmological constraints paper.

The analysis is based on assigning “richness” to each
cluster; this is defined as the number of galaxies in R200,
the radius at which the average density of the cluster
is 200 times that of the critical density of the universe.
Moreover, the mass is determined from richness via the
richness-mass relation which has been calibrated using
weak gravitational lensing measurements by Johnston
et al. [40]. The cluster numbers in each richness bin are
shown in Table VIII, while the clusters’ mean mass per
bin is shown in Table IX and in Fig. 8.

In addition to the data in Table VIII, there are also 5
clusters which have N200 > 120. Due to the high richness
of these clusters, they are not analyzed with a standard
�2 approach, and are instead included in the analysis on
an individual basis.

Richness bin No. of Clusters

11-14 5167

14-18 2387

19-23 1504

24-29 765

30-38 533

39-48 230

49-61 134

62-78 59

79-120 31

TABLE VIII. The number of clusters with a richness within
the given bin.

As already implied, the overdensity of � = 200 is
adopted to define cluster masses. In addition, the masses
measured have been assumed to be in cosmology with
⌦M = 0.27. For other cosmologies, this leads to an over-
density of �v = 200(0.27/⌦M ). To correctly account for
this, we rescale the quoted masses from Rozo et. al. for
each tested cosmology using the equations from Hu and

FIG. 8. Top: Number of galaxy clusters within a given rich-
ness bin in the MaxBCG dataset. Errors shown are the diag-
onal parts of the covariance matrix. The step function shown
uses the parameter values from the best fit ⇤CDM model
(Column 2 of Table VII). The data are summarized in Table
VIII. Bottom: Mean mass of galaxy clusters within the given
richness bin in the MaxBCG dataset. The step function uses
the same parameter values as the top figure. The data are
summarized in Table IX.

Richness bin No. of Clusters hM
200bi[1014M�]

12-17 5651 1.298

18-25 2269 1.983

26-40 1021 3.846

41-70 353 5.475

71+ 55 13.03

TABLE IX. Mean mass (and their number) of clusters with a
richness within the given bin.

Kravtsov [66] for mass rescaling

Mh

Mv
=

�h

�v

1

c3

✓
rh
rs

◆3

(A1)

where r is the radius of the halo for a given overdensity,
c the concentration factor, and � is the overdensity. The



RSD (BOSS paper)



2442 C. Heymans et al.

Figure 2. The observed two-point correlation function ξ̂
ij
+ (θ ). The panels show the different ij redshift bin combinations, ordered with increasing redshift bin

i from left to right, and increasing redshift bin j from lower to upper. Refer to Table 1 for the redshift ranges of each tomographic bin. The errors are estimated
from an analysis of N-body lensing simulations as discussed in Section 3.3. The theoretical curves show our fiducial total GG+GI+II signal as a solid line.
When distinguishable from the total, the GG only signal is shown dashed. The magnitude of the GI signal is shown dot–dashed (our fiducial GI model has a
negative anti-correlated signal) and the II signal is shown dotted, where the amplitude is more than 10−7. The results of the broad two-bin tomographic analysis
of Benjamin et al. (2013) are shown in the lower right corner.

to upper, where the redshift distributions of each bin are shown
and tabulated in Section 3.4. The autocorrelated bins lie along the
diagonal. The data points are calculated using the shear correla-
tion function estimator in equation (4), correlating pairs of galaxies
within the full mosaic catalogue for each of the four CFHTLS
fields. The measurements from each field are then combined using
a weighted average, where the field weight is given by the effective
number of galaxy pairs in each angular bin. Note that the results for
each ij bin from each field were found to be noisy but consistent
[see Kilbinger et al. (2013) for measurements of the higher signal-
to-noise 2D shear correlation function for each CFHTLS field]. The
errors, which include sample variance, are estimated from an anal-
ysis of N-body lensing simulations as discussed in Section 3.3. We
remind the reader that the data are highly correlated, particularly
in the low-redshift bins. The theoretical curves show our fiducial
WMAP7 best-fitting cosmological parameter model, with an A = 1
non-linear intrinsic alignment model, to be a good fit to the data. A
possible exception to this is data from tomographic bin combina-
tions that include the lowest redshift bin, which we discuss further
in Section 4.1. The individual components are shown; GG (dashed),

GI (dot–dashed) and II (dotted) models with the total GG+GI+II
shown as a solid line. For comparison, we also show the results of
the broad two-bin tomographic analysis of Benjamin et al. (2013)
in the lower-right corner to demonstrate the low level of II and GI
contamination expected for this high-redshift selected analysis.

4.1 Tomographic data visualization

With 21 tomographic bin combinations, two statistics ξ̂
ij
+ (θ ) and

ξ̂
ij
− (θ ) and five angular scales, we have a total of p = 210 data

points, half of which are shown in Fig. 2. In the cosmological pa-
rameter constraints that follow, it is this large data vector, and a
correspondingly large covariance matrix, that we use in the likeli-
hood analysis. Purely for improving the visualization of this large
data set, however, we propose the following method to compress
the data, motivated by the different methods of Massey et al. (2007)
and Schrabback et al. (2010).

To compress angular scales, we first calculate a WMAP7 cosmol-
ogy GG-only theory model ξ

ij
fid for each redshift bin combination
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Parameter Unsplit, w = �1 Unsplit, w free Split, w = �1 Split, w free

⌦M

(
⌦geom

M

⌦grow

M

0.303± 0.008 0.299± 0.010
0.302± 0.008

0.321± 0.017

0.283± 0.011

0.311± 0.017

⌦Mh2 0.140± 0.001 0.141± 0.002 0.140± 0.001 0.142± 0.002

⌦bh
2 0.0221± 0.0002 0.0220± 0.0003 0.0221± 0.0002 0.0221± 0.0003

w

(
wgeom

wgrow

—– �1.03± 0.05
—–

—–

�1.13± 0.06

�0.77± 0.08

109A 1.95± 0.09 1.91± 0.10 1.96± 0.09 2.17± 0.13

ns 0.961± 0.005 0.959± 0.006 0.962± 0.005 0.961± 0.006

�
8

0.786± 0.015 0.788± 0.016 0.782± 0.016 0.771± 0.017

h 0.680± 0.006 0.687± 0.012 0.661± 0.017 0.677± 0.018

↵s 1.44± 0.11 1.44± 0.11 1.44± 0.11 1.44± 0.11

�c 3.26± 0.11 3.26± 0.11 3.26± 0.11 3.27± 0.11

ln(N |M
1

) 2.36± 0.06 2.37± 0.06 2.29± 0.08 2.33± 0.08

ln(N |M
2

) 4.15± 0.09 4.16± 0.09 4.09± 0.11 4.15± 0.11

�NM 0.359± 0.057 0.357± 0.057 0.378± 0.059 0.367± 0.060

� 1.041± 0.050 1.045± 0.051 1.018± 0.054 1.036± 0.055

�MN 0.462± 0.081 0.459± 0.082 0.486± 0.085 0.464± 0.084

TABLE VII. Constraints on the cosmological parameters from the combined probes. The second column shows constraints in
the unsplit ⇤CDM (so w = �1) model, while the third column also shows the standard unsplit case but allows w to vary. The
fourth and fifth columns are our main results, and show the split-parameter cases where ⌦M is split and wgeom = wgrow = �1
is fixed (fourth column), and finally where both ⌦M and w are split and allowed to vary (fifth column). In cases of parameters
that can be split, the constraints are given either on the unsplit parameter (vertically centered number) or separate constraints
on the geometry and growth split parameters (vertically o↵set pair of numbers).

Clearly, in this w = �1 split case the geometry and
growth constraints are perfectly consistent with each
other. The geometry constraint is stronger, as expected.

C. Split case: ⌦M and w

A much more challenging task is to constrain the ge-
ometry and growth components of the dark energy equa-
tion of state, since in that case one also has to split
the matter density and therefore deals with the dark en-
ergy sector parameter space consisting of four param-
eters: ⌦geom

M ,⌦grow
M , wgeom and wgrow. Before we show

the constraints, let us emphasize that, despite their rel-
atively weak individual constraints on the equation of
state, all of the cosmological probes are invaluable since
in combination they help break degeneracies in the full
⇠ 10-dimensional parameter space and lead to excellent
combined constraints.

In Fig. 5, we show constraints on wgeom

and wgrow, marginalized (for each probe) over
{⌦geom

M ,⌦grow
M ,⌦Mh2,⌦bh

2, 109A, ns}, plus the nui-
sance parameters as before. As in the previous case
when only the matter density parameter was split, we
find largely expected directions probed in this plane.
However, because we now fully marginalize over the
matter density parameters ⌦geom

M and ⌦grow
M , the con-

straints on the equation of state are necessarily weaker.

Nevertheless, BAO and SNIa still do an admirable job
in constraining the geometric w. The CMB distance,
being a single quantity, is subject to degeneracy between
⌦geom

M and wgeom and, by itself, provides no constraint
on either parameter alone. Finally WL and clusters also
weakly constrain either equation of state parameters
due to partial degeneracies. All of the aforementioned
probes are broadly consistent with the ⇤CDM value
wgeom = wgrow = �1.
The one significant outlier are the RSD; they alone,

combined with the Planck early-universe prior, precisely
constrain the growth equation of state, but with the value

wgrow,RSD = �0.760± 0.085, (31)

which is clearly far from the ⇤CDM value of �1.
The RSD data clearly pull the combined constraints

away from the wgeom = wgrow line, as a simple visual
inspection of Fig. 5 shows. The fully marginalized com-
bined constraints from all cosmological probes, including
the discrepant RSD, are

⌦geom
M = 0.283± 0.011

⌦grow
M = 0.311± 0.017

wgeom = �1.13± 0.06

wgrow = �0.77± 0.08

(⌦M and w both split)

(32)
and those on all other parameters can be found in the last
column of Table VII. Note also that the overall goodness



Modeling DE
Modeling of low-z w(z):
Principal Components

500 bins (so 500 PCs)
0.03<z<1.7

We use first ~10 PCs;
(results converge 10→15)

Fit of a quintessence 
model with PCs



Cosmological Functions

Expansion Rate (BAO):

H(z) = H0

�
�M(1 + z)3 + �DE

�DE(z)
�DE(0)

+ �K(1 + z)2
⇥1/2

Distance (SN, BAO, CMB):

Growth (WL, clusters):

G�� +
�

4 +
H �

H

⇥
G� +

⇤
3 +

H �

H
� 3

2
�M(z)

⌅
G = 0

G = D1/a

D(z) =
1

(|�K|H2
0 )1/2

SK

�
(|�K|H2

0 )1/2

⇤ z

0

dz�

H(z�)

⇥



1. Start with the parameter set:

�M,�K,H0, w(z), w�

4. ...employ the likelihood machine...
Markov Chain Monte Carlo likelihood calculation, 
between ~2 and ~15 parameters constrained

3. Using either the current data 
    or future (SNAP+Planck) data...

5. .... and compute predictions for D(z), G(z), H(z) etc

Methodology 

(early DE eq of state)

2. Pre-compute PCs of w(z) based on future 
data



Assumed “data”:
1. SNAP 2000 SNe, 0.1<z<1.7 
     (plus 300 low-z SNe); 

 converted into distances
2. Planck info on Ωmh2 and DA(zrec)

�2
� =

�
0.1

�zsub

⇥ ⇤
0.152

N�
+ 0.022

�
1 + z

2.7

⇥2
⌅

Predictions from Future Data

Predictions below shown 
around: 

fiducial model

Dead Alive



Cosmological “observable” functions

Matter and DE 
energy density

(relative to critical)

D = distance 
H = expansion rate

G = growth of density 
fluctuations

(ignore f)



Modeling of Early DE

�DE(z > zmax) = �DE(zmax)
�

1 + z

1 + zmax

⇥3(1+w�)

de Putter & Linder 2008

Modeling of modified Gravity

G(a) = exp
�⇤ a

0
d ln a� [��

M (a�)� 1]
⇥

Linder 2005



In principal, constraints are good...
(components....)

Ruiz, Shafer, Huterer & Conley 2012

αi       = PC amplitude
ei(z) = PC shape

Red = with SN systematics
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Structure of graphs to follow

Sketch by M. Mortonson

Prediction on observable
 by SN+CMB Pivot

Max extent of
SN data



LCDM predictions - flat or curved

Growth
to z=1000

Distance

Hubble
parameter

Growth index

Growth
to z=0

f×G

Current 

data

Mortonson, Hu & Huterer 2010



Quintessence predictions (flat, no Early DE)
Current 

data



LCDM predictions 
(flat or curved)

D, G to <1% everywhere
H(z=1) to 0.1% for flat LCDM 

Grey: flat
Blue: curved

Future data



Quintessence 
predictions  

Smoking Gun of curvature:
1. Shift in G0

2. Negative const offset in D

Grey: flat
Blue: curved

Future data


