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Three key questions
1In cosmology

Inflation
Quark Soup
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Three big questions 1n cosmology
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Dark Matter

Coma cluster
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Modern evidence for Dark Matter

Mass | | ’ i
surface LA (LA
density IR \ X-ray light mass (does the lensing)

e
v i (Y1 Ty \_
N i.n'ﬁ'-‘f.u ) (\ “
‘ 18 el 11V Vil i |\ \TI

= (MgMpe?)
‘1-__

y
Y
§
\
Fa
56

2
[N
/s \l.'
)
4\
ii\ \
. "ﬁ :
:
i
; /
/
A
J,Q
57

—55 58

6"58M428 365 308 243 18% 12°
Markevitch et al
Clowe et al

oo Bullet cluster

Mass profile around a cluster



ence for Dark Matter
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WIMP-nucleon cross section [cm?]

Direct searches:
Cross-section vs mass constraints
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Indirect detection

The Milky Way in gamma-rays as measured by Fermi-LAT

Numerous alarms about “bumps” in spectra seen from Galaxy,
and from dwarf galaxies (Reticulum, etc)

SO far, none are convincing or truly statistically significant

Exciting and fast-developing field, but will be hard to have a
convincing detection of DM just from indirect detection



Three big questions 1n cosmology
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log [Relative distance]
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Evidence for Dark energy
from type la Supernovae

accelerates now
decelerates 1n the past

—

open
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Current evidence for dark energy is
1mpressively strong

SN + BAO + CMB:
QA=0.724+0.010 |
QA=0 1s[72-0 away

Likelihood

.......................... S
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, 1 Daniel Shafer
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Supernova Cosmology Project

Suzuki, et al., Ap.J. (2011)
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Fine Tuning Problem:
“Why so small”?

Vacuum Energy: Quantum Field Theory
predicts 1t to be determined by cutoff scale

pac =3 Sa [ ViEmE S s Y S

ﬁelds fields

Measured: (107%eV)?

4 60-120 orders of magnitude
SUSY scale: (1 TeV) smaller than expected!

Planck scale: (10" GeV)*



Lots of theoretical 1deas, few compelling ones:
Very difficult to motivate DE naturally

v E.g. ‘quintessence’
A (evolving scalar field)

b+ 3H ‘;‘; — 0

me = Ho = 10723 eV



String landscape?

= A symptom of desperation.

0

107120 Mpr 2 Mpr 2

Among the ~10°°° minima,

we live 1n one that allows structure/galaxies to form
(selection effect) (anthropic principle)

— Landscape
“prediCtS” the
observed C2pE

Kolb & Turnr, “Early Universe”, footnote on p. 269:
‘It is not clear to one of the authors how a concept as lame
as the “anthropic idea” was ever elevated to the status of a principle”




A difficulty:
DE theory target accuracy, 1n e.g. w=p/p,
not known a priori

Contrast this situation with:

1. Neutrino masses:

(Am2)801 =~ 8)(1()_5 eVz } Zmi = 0.006 eV* (normal)

. _ _q 0 VS,
(Am )atm 3x10° eV ij =0.11 eV* (inverted)

“(assuming ms=0)
2. Higgs Boson mass (before LHC 2012):
my = 0(200) GeV

(assuming Standard Model Higgs)



What if gravity deviates from GR?

For example:

8 S 3F(H)
H?—F(H) = — H2 =27 o4
(H)=——p, o ; (p e >
v \/
Modified gravity Dark energy

Notice: there 1s no way to distinguish these two possibilities just
by measuring expansion rate H(z)!



Can we distinguish between DE and MG?

Yes; here 1s how:

* In standard GR, H(z) determines distances and growth of
structure

0+ 2H — 4mppd = 0

® So check if this 1s true by measuring separately

/ N\

Geometry Growth
(as known as kinematic probes) (a.k.a. dynamical probes)
(a.k.a. Ot order cosmology) (a.k.a. 1%t order cosmology)
Probed by supernovae, CMB, Probed by galaxy clustering,

weak lensing, cluster abundance weak lensing, cluster abundance



Dark Energy suppresses
the growth of density fluctuations

(a=1/4 or z=3) (a=1/2 or z=1) (a=1 or z=0)
1/4 size of today 1/2 size of today Today

without
DE

Huterer et al, Snowmass report, 1309.5385 The Virgo Consortium (1996)



Idea: compare geometry and growth

Our approach:

Double the standard DE parameter space
(QM=1-Qpr and w):

— QMgeom wgeom QMgI'OW WErow

[In addition to other, usual parameters]

Eduardo Ruiz,
PhD 2014 Ruiz & Huterer, PRD 2015




Sensitivity to geometry and growth

Cosmological Probe Geometry Growth
SN Ia HODL(Z) —
D3 (2) t/3
BA A ) _
NGO
CMB peak loc. R o /QmHZ Da(zs) —
dV dn

Clust t —
uster counts o Y

Weak lens 2pt

RSD F(z) x Da(z)H(z) f(z)os(z




Standard parameter space

—0.6 WL + EU

—0.

~1. -
g /

~1.4

—1.6
BAO + SH

-1.

/ Clusters + EU

0.2 0.3 0.4 0.5
QM

—2.0

EU = Early Universe prior from Planck (@2uvh?, Qsh?, ng, A)
SH = Sound Horizon prior from Planck (Q2nvh?, Qsh?)



w (eq of state of DE): geometry vs. growth

—1.0 Clusters Evidence for
+ EU WErow > yyygeom.
—-1.2 3.3-0
—1.4 WL
F EU
—-1.6
-1.8 .
50

—1.5 —1.0 —0.5

wgeom Ruiz & Huterer 2015



Ongoing or upcoming DE experiments:

e Ground photometric:
» Dark Energy Survey (DES)
» Pan-STARRS
» Hyper Supreme Cam (HSC)
» Large Synoptic Survey Telescope (LSST)

e Ground spectroscopic:
» Hobby Eberly Telescope DE Experiment (HETD EX)
» Prime Focus Spectrograph (PFS)
» Dark Energy Spectroscopic Instrument (DESI)
e Space:
» Euclid
»Wide Field InfraRed Space Telescope (WFIRST)



! b J J
'A‘.‘L‘AIL’;; .

Dark Energy Survey (DES)

Evrard, Gerdes, Huterer, McKay, Miller, Schubnell, Tarlé
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Cerro Banco, Chile

Dark Energy Spectroscopic Instr. (DESI)
Gerdes, Huterer, Miller, Schubnell, Tarlé
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Three big questions 1n cosmology
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But: 1n the 1970s, 1t 1s known that standard cosmological
model has some problems

Horizon problem: the CMB is (very nearly) uniform, while 7= ‘:"7"'}';?::7\

we can show that regions greater than about 1° apart could { v g
. ‘:‘ T ..)';‘ .. '.J'l'_',}‘“" 5. 'th/

not have been 1n a causal contact e

Flatness problem: the universe is close to flat (flat /

geometry), while, if you work out basic equations, it tends to ///
diverge from flat. Therefore, present-day flatness implies 1\
extreme fine tuning (to flat) in early universe \\

Origin of Structure: the CMB (and our sky) show structures:
hot and cold spots first, and then later galaxies etc. CMB "
shows that you need a seed density perturbation of 0p/p=10"° FESE

(p 1s density)




Inflation: basic picture

b+ 3H 2‘; = ()

> . .
inflation
O

ends
scalar field (‘inflaton’)
1s slowly “rolling”

reheating
S —
Guth 1981;

Linde 1982; Albrecht & Steinhardt 1982



eneric Inflationary Predictions:

Millenium simulation

® Flat spatial geometry; Qx = 0.000 + 0.005 +/

® Nearly scale-inv spectrum; n. = 0.965 + 0.005 +/ ® What energy scale?
® Baekground of gravity waves (r = 0.1)? ® How many fields?
5 (Nearly) gaussian 1€s fn, = 0.8+ 5.0 § — ® What interactions?




Standard Inflation, with...

1. a single scalar field

2. the canonical kinetic term
3. always slow rolls

4. 1n Bunch-Davies vacuum

5. 1n Einstein gravity

produces unobservable NG

Therefore, measurement of nonzero NG would
point to a violation of one of the assumptions above



NG from 3-point correlation function

“Local NG” (squeezed triangles) is defined as
2 2
O = &g+ fau (PG — (PT))

“Local”, “Equilateral”, “orthogonal” fnL - refers to triangle shapes
= test number of fields & their interactions

Threshold for new physics: fnr2» kind = (1)

Alvarez et al, arXiv:1412.4671



Simulated maps

fni=0

7= (assi) %

le_= -5000 le_= -500

fui= 45000 =

Planck Temp + Pol: fx\p. = 0.8 £ 5.0



Does galaxy/halo bias depend on NG?

(5p>
clustering of galaxies ——> cosmologists
bias = . 50 5 _ P/ halos measure
clustering of dark matter <5p>
/ P/ DM \
usually nuisance theory predicts

parameter(s)

Py (k, z) = b*(k, z) Pom (K, 2)

(theorem:) Large-scale bias 1s scale-independent (b doesn’t depend on k)
if the short and long modes are uncorrelated
that 1s, if structure distribution is Gaussian



Scale dependence of NG halo bias

P (k) [(h™'Mpc)’]

b(k.fu)/b(k,0)

Verified using a variety of theory and simulations.
~500 papers on subject o far Dalal, Doré, Huterer & Shirokov 2008



SPHEREx

pI‘OpOsal fOI' telescope dedicated tO measuril’lg NG (and other science)

Home Science Instrument Strategy Publications leam

SPHEREX f“'*‘p

P

Spectrophotometer for the History of the Umverse Epoch of Relomzatlon and lcés EXpIorer

o"‘..'

spherex.caltech.edu

* 97 bands (!) with Linearly Variable Filters (LVF)
* A between 0.75 and 4 um

* small (20cm) telescope, big field of view

* whole sky out to z~1

egoal: o(fn1) = 1



Non-Gaussianity vs inflation recap:

If we find:

fnplocal = O(1) = multiple fields

fxreawil = O(1) = strong coupling (non-slow roll)

fnp 20y kind < O(1) [no detection] =
consistent with slow-roll, weakly coupled single field



Connecting the early and late universe

(inflation and dark energy)

comes from the late universe?

1gnal

Which part of the CMB s

Planck full-sky map

Jessie Muir



Integrated Sachs-Wolfe effect

AT 2 [t O(7.t
AT (ﬁ):_zf e (7“7)7
T |iqw cc Ji. Ot

Sachs & Wolfe, 1967

Nonzero when universe 1s not matter-dominated, so:
* right after recombination (‘early ISW’)
e when dark energy starts to dominate (‘late ISW’)

- - —
" O
1%

AT, . AT AT ) g |
prim ISW |‘ ” ;

-

g

Idea: use a galaxy survey to map out d®/dt, then get (dT/T)isw



Real-data of ISW

reconstruction:
(Peacock & Francis 2010)

But what about systematic errors??
Astrophysical - instrumental - theoretical

We performed end-to-end simulation to answer this:

model survey
dn/dz, b(z),
noise

estimator
filter




Main conclusion: in reconstructing ISW maps,
direction-dependent cahbratlon errors can be devastating
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(a) Stellar density (b) Extinction ¢) Airmass eein (e) Sky brightness
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Muir & Huterer, Phys Rev D, 2016



Quality of ISW map reconstruction with multiple surveys

1.0 ,
—— SphereX (z,=0.3)
—— Euclid-like (z =0.7)

0.8/ —— Combined
---- No Var[c] in Estimator

0.6/ ‘

Q
0.4|
0.2}
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0 i x
Do 107 107

Variance of calib. error field (var[c])

Weaverdyck, Muir & Huterer
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Story so far:

> Cosmology definitely in the precision regime

> Impressive constraints on DM, DE and inflation...
...but some big questions unanswered

> Lots of potential from upcoming surveys

But are Planck+

_temp-temp

r .......................

bk adaal P
2 10 30 500 1000 1500 2000 2500

constraints so good that they bias us?

Danger of declaring currently favored model to be the truth
—> blinding new data is key



Blinding the DES analysis

Muir, Elsner, Bernstein,
Huterer, Peiris and DES collab.

~

Our requirements:

* Preserve inter-consistency of cosmological probes
* Preserve ability to test for systematic errors

Our choice 1s specifically:

model 1
model 11y
bhnded measured ]
(k)= (K) | ==
del 2 ( k)

1

Tests passed, black-box code ready.

First application expected for clustering measurements in DES year-3 data.



Conclusions

- Huge variety of new observations in cosmology,
particularly in the large-scale structure

* 3 big questions: dark matter, dark energy, inflation

- Ability to measure parameters, test theories, at the
1% level

 Blinding 1n analysis (along with sophisticated
statistical tools) will be key

- Like particle physicists, we would really like to
see some “bumps” in the data



