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Current evidence for dark energy is
1mpressively strong
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Since the discovery of acceleration,
constraints have converged to w = —1

SN + BAO + CMB
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But we can do much better; need:
- Better mapping of expansion history
- Precision measurements of growth history.



Figures of Merit (FoMs)

Most common choice:

area of the (95%) ellipse 1n the wo-wa plane
(DETF report 2006)
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Or, simply:




DETF FoM - pros and cons

Advantages:

e Captures not only w=const but also variation in w(z)
® (Wo, Wa) parametrization surprisingly flexible yet very simple

e [lasy to compute and intuitive

Disadvantages:

e ['ails to capture non-canonical w(z) models, or ones with early DE
® Does not address anything about modified gravity vs. DE

e Not particularly designed to measure departures from LCDM



Extending the DETF FoM: using

principal components (PCs)

These are best-to-worst
measured linear
combinations of w(z)
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® Shows where sensitivity of any given survey is greatest
® Can be used to study optimization of surveys
® Can be used to make “model-independent” statements about DE
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Generalizing FoM to many parameters - PCs of w(z)
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In principal, constraints are good...
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But what about Modified Gravity FoM?

Currently standard MG FoM:
The growth index y  Linder 2005

Excellent fit to GR with dark energy with any w(z):
v = 0.55 + 0.05[1 + w(z = 1)]

= Search for deviation from 0.55 (= small correction)
Adopted, 1n addition to PC FoM, by FoOMSWG (Albrecht et al 2009)

Advantages and disadvantages:

Pros® extremely easy to use/calculate
Cons: growth in MG is typically scale-dependent, g = g(a k)



Falsifying general classes of DE models
LCDM (w = —1)

Predictions on D/G/H

(68% and 95%)
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Systematic errors

» Already limiting factor in measurements

» Will definitely be limiting factor with WFIRST-type
quality data

» Quantity of interest: (true sys. — estimated sys.)
difference

» Self-calibration: measuring systematics internally from
survey



Specifically for 3 probes:

Supernovae: each SN provides info about DE; can
choose a “golden subsample” to limit systematics

BAO: relatively systematics-free (additional info in RSD
and P(k), but also additional systematics!)

Weak lensing: control of systematics most challenging,
but great potential, esp in providing info on growth



Poster child of systematics:
photometric redshift errors

Example Requirements
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Note: scatter o, or even o(z) and bias(z),
are NO'T sufficient to describe effects of photo-z errors on DE
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Spectroscopic failures (shown below)
lead to increased photo-z errors, and thus DE biases

R>4.0 R>5.0 R>6.0

Zspec
Zspec
Zspec

Increasing quality threshold (R) of specoseopic ZS

Final requirement (based on end-to-end simulation):
must have <1% fraction of wrong spectroscopic redshifts

Cunha et al, in prep.



Another example (WL):
Multiplicative errors in shear (g;)

y(zi) = y(zi) x g
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prior on multiplicative factors in shear

Requirement: (few)x10 averaged over redshift bin



Theory Systematics example (WL)

Using stmulations to calibrate power spectrum at nonlinear scales
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From space, one automatically ameliorates or altogether
avolds some of the most pernicious systematics!

Example: most common calibration errors
e.g. atmospheric spatially varying extinction.

Effect of calib
errors
on cosmo
parameters

from P(k)

measurements:

Huterer et al, in prep.
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Conclusions

» Sophisticated figures of merit exist to quantify
mapping expansion history; simple ones for growth

» Tests of growth/expansion beyond FoMs

» Systematic control 1s key to Stage 111 experiments and
beyond

» Self-calibrating 1s powerful, but can’t self-calibrate
everything

» From space, circumvent some dangerous systematics;
others remain = their careful modeling and

understanding 1s key



