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Makeup of universe today

Dark Matter
(suspected since 1930s
established since 1970s)

Dark Energy
(suspected since 1980s
established since 1998)

Also: 
radiation (0.01%)

Visible Matter
(stars 0.4%,  gas 3.6%)



Some of the early
history of the Universe

is actually understood better!

Physics quite well 
understood

95% of contents only 
phenomenologically 

described



Evidence for Dark Energy
from type Ia Supernovae

Union2 SN compilation binned in redshift



ΩDE ≡ ρDE

ρcrit

w ≡ pDE

ρDE



Current evidence for dark energy is 
impressively strong

D. Shafer 
(Michigan)
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(assuming w = −1)
ΩDE = 0.724± 0.011
ΩDE = 0 is ∼ 64σ away
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Coincidence problem

10-35 sec 1 minute 380,000 yr 13.7 Gyr

Radiation

ρmat(a) ∝ a−3

ρrad(a) ∝ a−4

ρDE(a) ∝ a−3(1+w) � a0

a is scale factor
a=0: Big Bang
a=1: today
a ≡ 1/(1+z)



Cosmological constant problem

Vacuum Energy: QFT predicts it to be cutoff scale

60-120 orders of magnitude 
smaller than expected!

Planck scale:

SUSY scale: 

(1019 GeV)4
(1 TeV)4 }
(10−3eV)4Measured:

ρVAC =
1
2

�

fields

gi

� ∞

0

�
k2 + m2

d3k

(2π)3
�

�

fields

gik4
max

16π2



Since the discovery of acceleration, 
constraints have converged to w ≈ −1

But we can do much better; need:
- Better mapping of expansion history
- Precision measurements of growth history.
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•What is the nature of dark energy? Does 
General Relativity require modifications?

•What is the neutrino mass hierarchy?

•What is the energy scale of inflation?

CMB lensing is related to some
of the most exciting

 questions in cosmology:



Last scattering surface 

Inhomogeneous universe 
  - photons deflected 

Observer 

CMB Lensing 
from Antony Lewis

Duncan Hanson



Lensing order of magnitudes 

 

Newtonian argument:  = 2  
     General Relativity:  = 4  

 

Potentials linear and approx Gaussian:  ~ 2 x 10-5  

 ~ 10-4 

Characteristic size from peak of matter power spectrum ~ 300Mpc 

Comoving distance to last scattering surface ~ 14000 MPc 

pass through ~50 lumps 

assume uncorrelated 

total deflection ~ 501/2 x 10-4  

~ 2 arcminutes 

(neglects angular factors, correlation, etc.) 

 (   << 1) 

from Antony Lewis



So why does it matter? 

2arcmin:  ell ~ 3000 
 
- On small scales CMB is very smooth so lensing dominates the 
linear signal 
 

Deflection angles coherent over 300/(14000/2) ~ 2    
 

- comparable to CMB scales 
 
- expect 2arcmin/60arcmin ~ 3% effect on main CMB acoustic peaks 
 

from Antony Lewis



Lensing effects on CMB observables
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FIG. 5: Detection of CMB lensing via the cross power spec-
trum Cφg

" between the reconstructed potential and galaxy
counts. The three 1σ error bars on each bandpower repre-
sent different Monte Carlo methods: WMAP simulations vs
NVSS simulations (left/black), WMAP data vs NVSS simu-
lations (middle/blue), and WMAP simulations vs NVSS data
(right/red). These error bars represent statistical errors only;
the result with systematic errors included will be shown in
Fig. 19.

We determine the estimator normalization Nb by end-
to-end Monte Carlo simulations of the pipeline, including
a nonzero Cφg

" in the simulations for calibration. (Strictly
speaking, the normalization should be a matrix which
couples bands b != b′, but we have neglected the off-
diagonal terms, which are small for our case of large sky
coverage and wide bands.) As we will see in Appendix B,
the normalization Nb is proportional to a cut-sky Fisher
matrix element, which must be computed by Monte Carlo
unless an approximation is made such as simple fsky scal-
ing. In addition, Monte Carlo simulations are also needed
to compute the one-point term in Eq. (17).

This concludes our description of the pipeline. We have
not motivated the details in the construction of our lens-
ing estimator Ĉφg

b , but in Appendix B we show that the
estimator is optimal, by proving that it achieves statisti-
cal lower limits on the estimator variance, so that the best
possible power spectrum uncertainties are obtained. This
justifies the combination of ingredients presented here:
inverse signal + noise filtering (steps 5 and 7), keeping
the lensing potential in harmonic space (step 6), and in-
cluding the one-point term in the cross-correlation (step
8); and shows that no further improvements are possible.

B. Results

The result of applying this analysis pipeline to the
WMAP and NVSS datasets is shown in Fig. 5. We em-
phasize that the uncertainties are purely statistical. Sys-
tematic errors will be studied in §V-§VIII, and an up-

FIG. 6: CMB lensing detection obtained by analyzing Q-band
(left/black error bar in each triple), V-band (middle/blue),
and W-band (right/red) data from WMAP separately, show-
ing consistency of the result between CMB frequencies.

dated version of the result shown in §IX, where we also
show that the detection significance with systematic er-
rors included is 3.4σ.

Our error bars were obtained by Monte Carlo, cross-
correlating simulations of WMAP and NVSS. As a con-
sistency check, Fig. 5 shows that nearly identical er-
ror bars are obtained if WMAP simulations are cross-
correlated to the real NVSS data, or vice versa. This
is an important check; if it failed, then we would know
that our simulations were failing to capture a feature of
the datasets which contributes significant uncertainty to
the lensing estimator. In addition, it shows that the
uncertainties only depend on correctness of one of the
simulation pipelines. Suppose, for example, that the
NVSS dataset contains unknown catastrophic systemat-
ics which invalidate our simulations. Because the same
result is obtained by treating NVSS as a black box to
be cross-correlated to WMAP simulations, it is still valid
(provided that WMAP contains no “catastrophic” sys-
tematics!)

As another consistency check, in Fig. 6 we show the
detection that is obtained if each frequency in WMAP is
analyzed separately. No signs of inconsistency are seen,
although we have not attempted to quantify this pre-
cisely: the results obtained from different frequencies are
correlated even though the CMB noise realizations are
independent, because NVSS is identical and so is the un-
derlying CMB realization. For the same reason, we cau-
tion the reader that the three sets of error bars in Fig. 6
cannot be combined in a straightforward way to obtain
an overall result. The best possible way of combining the
data is already shown in Fig. 5: the maps from the three
frequencies are combined into a single CMB map which
is cross-correlated to NVSS.

CMB Lensing detected!

Smith, Zahn and Doré 2007 (also Hirata et al 2008)
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CMB Lensing detected!

Das et al (2011; ACT; 4-sigma) 
van Engelen et al (2012; SPT; 6-sigma)
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FIG. 6.— A comparison of the derived lensing bandpowers from SPT and ACT (Das et al. 2011b). Although we show the lowest-L datapoint, centered at
L = 50, we do not use this point in our fits due to the possible interaction with the subtraction of the apodization feature (Section 4.1.2) on this large scale. The
solid curve is not a fit to the data; rather, it is the lensing power spectrum in our fiducial ΛCDM cosmology, corresponding to A0

lens = 1.

FIG. 7.— 95% confidence-level constraints on σ8 and Ωch2 from WMAP7
data alone (red dotted contour), and improvement when including the SPT
lensing data (blue solid contour).

σ8 = 0.810± .026 compared with WMAP7 alone.
Zahn et al. (2012, in preparation) suggest that, for the

SPT data considered here, the lensing information contained
in CMB power spectrum estimators and that contained in
trispectrum estimators are largely independent. Combining
the K11 temperature power spectrum data with the lensing
bandpowers, we obtain a constraint on the matter fluctuation
amplitude of σ8 = 0.814 ± 0.020, an improvement in preci-
sion of ∼ 30% compared to WMAP7 alone.

6.2.2. Alens

In Section 6.1 we performed a fit for the lensing ampli-
tude at a fixed reference cosmology. Here, we use MCMC
techniques to find constraints on the lensing amplitude when
marginalizing over ΛCDM parameters. At each point in the
WMAP7 ΛCDM chain, we define a parameter, Alens, which
corresponds to the amplitude of the lensing power spectrum
relative to its value for the given set of ΛCDM cosmological
parameters. We can then find constraints on this parame-
ter, to which we assign a flat prior, jointly with the ΛCDM
parameters. K11 used this approach to measure the lensing
amplitude at high significance. We find that the SPT lensing
data in combination with WMAP7 measure the lensing am-
plitude to be Alens = 0.90± 0.19. The equivalent measure of
the lensing impact on the temperature power spectrum from
K11 is Alens = 0.92 ± 0.23. These constraints are shown in
Figure 8. Combining the SPT lensing data with K11, neglect-
ing any possible correlation between the lensing information,
gives Alens = 0.90 ± 0.15, with the six ΛCDM parameters
marginalized.

6.2.3. Curvature

Observations of the primary CMB at z ∼ 1100 do not mea-
sure the spatial curvature of the Universe to high precision.
This is due to the angular diameter distance degeneracy. A
key physical length scale associated with the observed CMB
surface is the acoustic scale, and observations of the CMB that
include the acoustic peak region of the power spectrum can
measure the angular size corresponding to this physical scale
to high accuracy. Indeed, the parameter θs is used as one of
the standard base parameters in cosmological fitting. There is
an effective degree of freedom associated with the angular di-
ameter distance to the CMB recombination surface, which is

van Engelen et al



Figure 1: Left panel: Signal angular power spectrum for the E (dashed line) and B (solid lines)

modes. The black solid dashed line corresponds to the lensing induced B modes for all

the models considered. The light to dark red colored curves correspond to different r

values, namely 0.43, 0.1, 0.01 and 0.001. The cosmological parameters used for this plot

correspond to the WMAP5 ΛCDM+r best fit model [9]. Note that r = 0.43 corresponds

to the 95% upper limit on r using this data-set. Obviously, for any allowed value of r, the

lensing signal will dominate for ! ≥ 200. Right panel: Redshift dependence of the two

principal components (Z1 and Z2 respectively) of the lensing potential angular power

spectrum defined in Eq. (3) (from [10]). These curves illustrate the CMB polarization

lensing sensitivity to moderate redshifts, i.e. up to z " 5.

Promisingly, it was realized that the lensing of the CMB is more significant in polarization
than in temperature [8]. This stems from the fact that the lensing effects on the CMB
can be qualitatively understood as a smearing of the CMB acoustic peaks in the angular

power spectrum. Since the CMB polarization has sharper acoustic peaks than temperature,
the gravitational lensing effect is more significant in polarization than in temperature by

approximately a factor of two. But the instrumental sensitivity required to detect the lensing
effect in polarization is nevertheless higher than for temperature because of the weak degree
of polarization of the CMB in the first place.

However, the lensing of the polarized CMB presents several interesting features. First, as
seen in Eq. (1), gravitational lensing lensing does not mix Q and U, it will nevertheless result

in a mixing of the E and B modes because the transformation from (Q,U) to (E,B) is non-local
[8, 11, 12]. In particular, E mode power will be transferred into B modes, generating in this

way the largest guaranteed B-mode signal. This particular signal is totally independent from
the existence of primordial B modes, i.e. the existence of tensor modes in the early universe
as illustrated in the left panel of Fig. 1. Since for realistic values of r, this B mode lensing

signal is likely to dominate over the primordial one at sub-degree scales, it might limit our
quest from primordial B mode [13, 14, 15] if not properly taken care of. The procedure of

cleaning the lensing signal or “delensing” the B modes will be made explicit below.
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Smith et al, white paper, 2008
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serves a dual purpose: it is a parametrization independent
quantification of the additional information from lensing
(Secs. IVA and IV B), and it exposes the origin of the non-
Gaussian covariance of the CMB as arising from the
sample variance of the lenses (Sec. IV C).

A. Principal components

We begin by choosing the parameters of interest to be
fluctuations pl in the power spectrum of the lenses around
the fiducial model

 C!!
l ! "1# pl$C!!

l jfid: (34)

With these parameters in the Fisher matrix of Eq. (25), the
covariance matrix

 "C$ll0 ! "F%1$ll0 (35)

can be interpreted as that of the measurements of C!!
l

under the assumption that the parameters that control the
unlensed CMB are fixed.

The principal components or eigenvectors of this covari-
ance matrix determine the best constrained linear combi-
nations of C!!

l . We find that, if lensing B modes are not
observed, the covariance Cll0 is dominated by one well-
constrained component K1"l$, which we show in Fig. 2.
Equivalently, this means that only one observable in C!!

l is
constrained by lensed fT; Eg power spectra:

 !1 !
defX

l

C!!
l

C!!
l jfid

K1"l$: (36)

The power spectrum C!!
l jfid of the fiducial model is scaled

out of the weights K1"l$, such that deviations from !1 ! 1
represent the fractional change in the weighted amplitude

of the power. Hence the normalization is chosen such thatP
lK1"l$ ! 1.
On the other hand, if we make the artificial assumption

that lensing B modes are observed but lensed fT; Eg are not,
then we find that the covariance is dominated by a single
broad component K2, which peaks at l& 200 and includes
a wide range of l. Lensed B-mode measurements therefore
constrain a second observable,

 !2 !
defX

l

C!!
l

C!!
l jfid

K2"l$: (37)

The principal components Ki"l$ were computed assum-
ing cosmic variance limited CMB measurements to lmax !
2000; however, the shape of the eigenmodes remains
nearly the same if lmax is lowered, or if a white noise power
spectrum is used in place of a cutoff in l. Therefore, the
observables !i provide a parameter-independent represen-
tation of the information in the lensed CMB regardless of
the noise characteristics. A caveat to this statement is that
we never consider CMB multipoles beyond lmax ! 2000 in
this paper; relaxing this assumption may permit additional
modes in the lensing potential to be constrained.

For BB, the higher principal components are not com-
pletely negligible; the second-best constrained component
has a variance which is worse than K2"l$ by a factor of 7.
We have found that constraints from higher components
can almost always be neglected in parameter forecasts, but
can have some impact on degenerate directions involving
curvature for a measurement of lensing B modes which is
close to all-sky cosmic variance limited. In the rest of the
paper, we will ignore higher components from lensed B
modes.

The structure of the two eigenmodes is related to the
lensing kernels of Eq. (6). Given that power in the deflec-
tion angles peaks at l1 < 100 in the fiducial model, lensing
mainly acts as a convolution kernel of width l1 on the high l
CMB power spectrum. The fT; Eg kernels share a similar
structure since the angle between the lensed and unlensed l
is of order l1=l. The B kernel is weighted toward higher l1
for the same reason. Likewise, the dominance of a single
mode in fT; Eg reflects the tight range in l1 of the con-
volution compared with typical structure in the unlensed
power spectra.

B. Parameter sensitivity

Next, to understand how sensitivity to these eigenmodes
translates into cosmological parameters, let us examine
their construction in both the multipole and redshift direc-
tions. The change in the observables due to cosmological
parameters can be derived from Eqs. (36) and (37) once the
change in C!!

l is known.
In Fig. 3 we plot the derivatives @C!!

l =@p" for several
cosmological parameters p". The corresponding deriva-
tives of the observables are given in Table II. Since the

 

FIG. 2 (color online). Principal components K1"l$, K2"l$ of the
lensing potential C!!

‘ obtained from CMB measurements to
lmax ! 2000, as described in Sec. IVA. These represent modes
in C!!

l which are constrained by measuring either lensed fT; Eg
or lensed B modes, respectively.

KENDRICK M. SMITH, WAYNE HU, AND MANOJ KAPLINGHAT PHYSICAL REVIEW D 74, 123002 (2006)

123002-6

T, E

B

Smith, Hu and Kaplinghat 2006

Principal components of observable 
potential power (in l)



acoustic peaks constrain

 lA !
def

!DA"Ds#=ss; (38)

where ss is the sound horizon at recombination Ds, we take
these derivatives at fixed lA (by adjusting !DE). They then
quantify the additional sensitivity to cosmological parame-
ters introduced by lensing.

Notice that the derivatives of the power spectra are quite
flat compared across the multipoles where the two princi-
pal components have support (see Fig. 2). Hence the
sensitivity of the observables to most parameters can be
accurately determined from the sensitivity of the power
spectra at the median multipoles lKi of the principal com-
ponents, defined by

PlKi
i!1 Ki"l# ! 1=2: lK1 ! 114 and

lK2 ! 440.
Next, to understand the relative sensitivities to different

parameters, consider the fact that C""
l is determined by a

projection of the matter power spectrum with a well-
defined redshift sensitivity. In Fig. 4, we plot this sensitiv-
ity Zi"z#, where

 C""
lKi

! C""
lKi

jfid
Z

dzZi"z#: (39)

These weights are calculated under the Limber approxi-
mation (see e.g. [18]). In the fiducial model

R
dzZi ! 1, so

that fluctuations in Zi determine fluctuations in the observ-
ables as

 #"i $
#C""

lKi

C""
lKi

jfid
!

Z
dz#Zi"z#: (40)

We expect this to be a reasonable approximation since
#C""

l is not a rapidly varying function of l (see Fig. 3).
To make the above considerations more concrete, con-

sider the sensitivity to changes in the distance DA, expan-
sion rate H, growth rate of the gravitational potential G and
the shape of the matter power spectrum #2

m ! k3P"k#=2!3

at the lens redshift

 

#Zi

Zi
!

!
ni
#DA

DA
% #H

H
& 2

#G
G

& 2
#DA"Ds %D#
DA"Ds %D#

"
;

ni !
def

3% d ln#2
m

d lnk

########k!"lKi=DA#
: (41)

A typical value for the slope of the power spectrum gives
ni ' 1.

CMB lensing is sensitive mainly to high-redshift
changes in the amount of lensing, and correspondingly
"1 has a median redshift of z' 2 and "2, z' 3. The

TABLE II. Derivatives of the observables "1, "2 with respect
to parameters of interest (top) and nuisance parameters (bottom).
In all rows except the last, the derivatives are taken adjusting
!DE to hold lA fixed. Units for

P
m$ are eV.

"1 "2

@"i=@"
P

m$# %0:24 %0:34
@"i=@w0 %0:14 %0:12
@"i=@wa %0:072 %0:061
@"i=@!K %8:24 %9:17

@"i=@"!ch2# 17.0 24.7
@"i=@ ln#% 2.00 2.09
@"i=@ lnlA 2.37 2.99

 

FIG. 4 (color online). Redshift sensitivity of the lensing ob-
servables "i near the fiducial model. To a good approximation
the observables constrain the amplitude of C""

li
around multi-

poles near the median of the eignmodes of Fig. 2, lK1 ! 114,
lK2 ! 440. The redshift sensitivities Zi at these multipoles [see
Eq. (39)] are plotted for the fiducial model.

 

FIG. 3 (color online). Derivatives of C""
l with respect to the

parameters
P

m$, w0, wa, and !K, illustrating the different l
dependence. As in Table II, the derivatives are taken adjusting
!DE to hold lA fixed.

COSMOLOGICAL INFORMATION FROM LENSED CMB . . . PHYSICAL REVIEW D 74, 123002 (2006)

123002-7

Redshifts constrained by φφ power spectrum

Smith, Hu and Kaplinghat 2006



What is the relation between 

constraints on dark energy

from CMB power spectrum (e.g. CTT)

 and CMB lensing (e.g. Cφφ)

?



CMB and Dark Energy
S

ou
n

d h
orizonDistance to recombination

Bennett et al (WMAP collaboration)

Credit: WMAP team

Θ

2-
pt

 c
or

re
la

ti
on

Dependence on DE:
1. Peaks’ positions
2. ISW (low ell)

http://www.lsst.org
http://www.lsst.org


CMB and Dark Energy
One* linear combination of DE parameters is measured by the CMB

(*ignoring ISW)

(old plot, sorry...)
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[Recall, CMB lensing additionally carries info about power spectrum P(k)]
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De Putter, Zahn and Linder 2009

Future constraints with lensing:

•wpivot to 0.02
•Ωearly to 0.002
•Σmν   to 0.05

Parameter constraint forecasts:
dark energy, early DE, neutrino mass

9

FIG. 4: Comparing the cosmological constraints on the neu-
trino mass and dark energy density in the ΛCDM fiducial
cosmology from Planck (dashed contours) vs. CMBpol (solid),
taking lmax = 2000.

constant dark energy density at early times, and w0 is the
present dark energy equation of state. Hence, the two
added parameters Ωe and w0 describe the dark energy
properties.

Figure 9 shows the constraints in the w0-Ωe plane,
marginalizing over the other seven parameters, for differ-
ent data set types. The fiducial model has w0 = −0.95,
Ωe = 0.03. As in the w0-wa case, the CMB degeneracies
are too strong to allow constraints by the CMB alone, so
we have again folded in supernova distance data (which
does not directly constrain Ωe). We see that unlensed
power spectra including polarization information can in-
deed tightly constrain early dark energy. Adding lensed
CMB information in fact mostly constrains further w0,
having minimal effect on Ωe. Recall from §II A that out
to z ≈ 2, the early dark energy model looks very much
like a standard w0-wa model that would not give appre-
ciable early dark energy density. Thus, early dark energy
is too early for even the broad redshift kernel of CMB
lensing to have significant sensitivity to it.

Figure 10 exhibits the analogous situation for differ-
ent systematic limits lmax. Again in contrast to the
ΛCDM case, here the constraints continue to improve
for higher lmax, although less rapidly for lmax

>∼ 3000.
The fully marginalized uncertainties for the lmax = 2000,
full lensing case are σ(

∑

mν) = 0.047, σ(w0) = 0.018,
σ(Ωe) = 0.0019. This is an impressive constraint on the
early dark energy density, able to give definite guidance
to the nature of dark energy, ruling out classes of models.

Because CMBpol would have much better polarization
measurements than Planck, it will constrain Ωe better
by a factor 2.2, as shown in Fig. 11. The area of the
dark energy properties’ confidence contour improves by
a factor 3.9.

Finally, we summarize our results for the dark energy
and neutrino mass uncertainties in Table II for the three
cosmological models considered, assuming lmax = 2000.
However, one should see the figures for the full contours.
Due to degeneracies in the presence of dynamical dark
energy, we add supernova data in these cases to con-
strain the dark energy equation of state, although the
uncertainties on Ωe and

∑

mν are not strongly affected.

Model Experiment σ(w0) σ(wa) σ(Ωe) σ(Σmν) [eV]

ΛCDM Planck – – – 0.11

ΛCDM CMBpol – – – 0.036

w0-wa Planck+SN 0.073 0.32 – 0.13

w0-wa CMBpol+SN 0.066 0.25 – 0.041

w0-Ωe Planck+SN 0.032 – 0.0041 0.15

w0-Ωe CMBpol+SN 0.018 – 0.0019 0.047

TABLE II: Uncertainties in parameters beyond standard
ΛCDM for Planck and CMBpol. In all cases, we use un-
lensed temperature and polarization spectra and the optimal
quadratic estimator of the lensing spectrum to extract cosmo-
logical information from the CMB data. For cases involving
dynamical dark energy we fold in supernova distance infor-
mation from a SNAP-like JDEM experiment, although this
mostly affects only the uncertainties on w0, wa.

VI. SHORTCUT FOR JOINT DARK ENERGY
CONSTRAINTS

As seen in Section IV, when CMB and supernova data
are combined, we can obtain strong constraints on the
nature of dark energy. While the supernova data depen-
dence on cosmological parameters is straightforward, cal-
culating a CMB Fisher matrix can be quite time consum-
ing. The procedure requires computing multiple CMB
spectra using a Boltzmann code (CMBeasy in our case)
for different values within a set of cosmological parame-
ters in order to obtain the derivatives of the observables
with respect to the cosmological parameters.

To investigate a range of cosmological models it would
therefore be quite useful to have a shortcut to calcu-
lating the constraints on the dark energy parameters
w0, wa, ΩDE from CMB data. One such shortcut is his-
torically well known, the shift parameter [49] to encap-
sulate the information in the temperature power spec-
trum acoustic peaks. However, as polarization data gets
added, other parameters have been suggested as addi-
tions, e.g. the acoustic peak scale lA [1], although [50]
showed that the shift parameter is still quite accurate.
Here we investigate the cosmological constraints from
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Conclusions - CMB lensing

‣Is an important new probe of cosmology

‣Provides measurement of DA(z), and P(k, z), at z~2-3....

‣...and therefore helps in extending low-z lever arm on DE

‣The (lensing) source is at exactly known redshift z≈1100

‣Helps break degeneracy between DE and curvature 

‣Helps improve constraints on sum of neutrino masses

‣Probes the decelerating epoch; sensitive to surprises such 
as early dark energy (Ωearly)


