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Quintessence - a dynamical scalar field

Origin: particle physics (yet unknown)

History: Starting in the late 1980’s, shows up in literature as 'Rolling

Scalar field’, ’Dynamical Lambda’, 'Quintessence’.
Features:
e rolls down its (effective) potential

e provides significant energy density €2 (missing energy?).

e has negative equation of state today
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e in addition, quintessence may have other nice properties. ..
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Reconstruction Equations: r(z) — V(¢)

Assume a Universe where 23y + (29 = 1. Then, from the Friedmann

equations:

1 3 d’r /dz* 3O HE(1+ 2)3
Vel = 5@ [(dr/dz)2 T 1+2) (dr/dz)?’] T 16nG
dp  _dr/dz | 1 (1+ z)d*r/dz? B 3O HE(1 + 2)° 172
& 1 + z inG (dr/dz)? 3G

e Only need to know €2,

e 7(z) comes in only as dr/dz and d*r/dz

To demonstrate the feasibility of this approach, we use Monte Carlo

simulation.



Monte Carlo demonstration of the
potential reconstruction

Pick V(¢), QM, HO and
present KE/PE (or eq. of
state) of the field.

Compute the evolution of ¢,
a(t) and r(z) by evolving
é(t) and a(t) back in time

Y

Simulate SNela
measurements:
TSIM(ZZ') = TEXACT(ZZ') + 57'2’

or; taken from a Gaussian

Y

distribution
Repeat
1000 :
times. Fit the data with a (low-

order)  polynomial and

numerically compute V(o)

A

from the reconstruction

equations




Examples of reconstruction
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Padé Approximants:
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Summary of potential reconstruction

e Need to know only 23y and 2 =1 — Q.

e The uncertainty in the reconstruction will decrease as more super-

novae are discovered (roughly as 1/v/N).

e Inferring d?r/dz* from the data is required for reconstruction.



Reconstructing the equation of state

e No need to assume that quintessence is the missing energy!
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e This gives evidence that beyond z ~ 0.8 it is difficult to get infor-

mation about the missing component.



Optimal supernova search strategies

Q: What is the ideal distribution of supernovae in red-

shift?

Minimize A o< [det(F)] "/
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0?In L
Fij = — <a 9 >
PiOpP; [ «
_ 1 iv: O (20, a1, Q0 - ) Omp (20, Qar, QL -2 2)
Am? 1 (9p¢ (9pj
1 N
— N Z wi(zn) W (zn) (Tegmark et al., astro-ph/9804168)
m
n=1

If we represent the measurements as a sum of delta-functions
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With two parameters:

det(F) = /OOO /OOO 9(21) g(22) w* (21, 22) dz1 d2s
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The result is, for 23, — €25 case

g(z) = 0.506(z — 0.44) + 0.50 6(z — 1.00),

and for the 2y, — wg case

g(z) = 0.505(z — 0.36) + 0.50 §(z — 1.00).
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Simulating and fitting the data

e Simulated data (0=5%)

—— Fit data (4" order pol.)
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