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Makeup of universe today

Dark Matter
(suspected since 1930s
established since 1970s)

Dark Energy
(suspected since 1980s
established since 1998)

Also: 
radiation (0.01%)

Baryonic Matter
(stars 0.4%,  gas 3.6%)



Some of the early
history of the Universe

is actually understood better!

Physics quite well 
understood

95% of contents only 
phenomenologically 

described



DE status ~8 years after discovery

Supernova Cosmology Project
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Matter dominated

Vacuum energy dominated

Measurements much
better, LCDM still a good fit

Physical mechanism responsible
completely unknown

Strong indirect (non-SNa Ia) 
evidence for DE from CMB+LSS

A lot of work on 
modified gravity proposals 

and observational signatures

Riess et al 1998;  Perlmutter et al 1999



Current constraints

ΩDE ≈ 0.7



What if gravity 
deviates from GR?

H2
− F (H) =

8πG

3
ρ, or H2 =

8πG

3

(
ρ +

3F (H)

8πG

)
For example:

Modified gravity Dark energy



Modified gravity proposals

• Introduce modifications to GR (typically 
near horizon scale) to explain the observed 
acceleration of the universe

• Make sure Solar System tests are passed 
(can be hard)

• Constrain the MG theory using the 
cosmological data

• Try to distinguish MG vs. “standard” DE 
(can be hard!)



Example: f(R) gravity

• Einstein equations are now 4th order

• Two classes

• fRR<0 (never Matter Dominated, long range 
forces)

• fRR>0 (MD in the past, can evade Solar system 
tests)

Carroll, Duvvuri, Trodden, Turner 2005;  Mena, Santiago & Weller 2006;
Navarro & van Acoleyen 2006;  Song, Hu & Sawicki 2006;   many others....

S =
1

16πG

∫
d4x

√
−g [R + f(R)]



• 1 extra dimension 
(“bulk”) in which only 
gravity propagates

• matter lives on the 
“brane”

• weakening of gravity 
at large distances = 
appearance of DE

Example: DGP braneworld theory

Credit: Iggy Sawicki
Dvali, Gabadadze & Porrati 2000;  Deffayet 2001



The structure of DGP

2GM=rg

r* rc

5D GR 

5D GR 

Scalar-Tensor 

4D GR

New scale r∗ =

(
rgr

2

c

)1/3

Credit: Iggy Sawicki

rc is a free parameter
(to be consistent with 
observation, rc ~ 1/H0)

Dvali, Gabadadze & Porrati 2000;  Deffayet 2001
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DGP linear growth

Lue, Scoccimarro & Starkman;  Koyama & Maartens;  Sawicki, Song & Hu
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ISW in DGP

Song, Sawicki, & Hu 2007
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So DGP is (almost) ruled out
• Disfavored at a few sigma from distances (SNe etc)

• Disfavored at a few more sigma from CMB ISW

• Decisive rule-out will come from ISW cross-correlation 
at high z:

50 100 50 100 50 100 50 100

Song, Sawicki, & Hu 2007



Dark Energy or Modified Gravity?

• A given DE and modified gravity models may both fit the expansion 
history data very well

• But they will predict different structure formation history, i.e. 
deviation from δ̈ + 2Hδ̇ − 4πρMδ = 0



• In standard GR, H(z) determines distances and growth of 
structure

• So check if this is true by measuring separately

δ̈ + 2Hδ̇ − 4πρMδ = 0

Distances
(a.k.a. kinematic probes)

(a.k.a. 0th order cosmology)

Growth
(a.k.a. dynamical probes)

(a.k.a. 1st order cosmology)



Price of ignorance of MG
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Cosmological Probes of Dark Energy 
(and Modified Gravity)



Kinematic probes: SNe Ia

Supernova Cosmology Project
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• Get pure (luminosity) distances



Sound horizonDistance to recombination

T = 2.726 K

δT

T
≈ 10

−5

Bennett et al 2003 (WMAP collaboration)

Credit: WMAP team
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Structure formation probes:
Galaxy cluster counts

• Essentially fully in the nonlinear regime (scales ~1 Mpc)

d2N

dΩ dz
= n(z)

r(z)2

H(z)
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Structure formation probes:
Weak Gravitational Lensing

• Mostly in the nonlinear regime (scales ~10 arcmin, or ~1 Mpc)

Credit: Colombi & Mellier
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More general approach
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Still more general approach: 
measure functions r(z) and g(z)

see if they are consistent

Knox, Song & Tyson 2005



Minimalist Modified Gravity vs. DE

g(a) ≡
δ

a
= exp

[∫ a

0

d ln a[ΩM (a)γ
− 1]

]

Excellent fit to standard DE growth function with

γ = 0.55 + 0.05[1 + w(z = 1)]

Huterer & Linder,  astro-ph/0608681
see also Linder & Cahn, astro-ph/0701317

∆γ = 0.13Also fits the DGP braneworld theory with

Describe deviations from GR via a single new parameter
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Constraints on the growth index

sig(w0) sig(wa) sig(gamma)

WL 0.33 1.16 0.23

+SNE 0.06 0.28 0.10

+Planck 0.06 0.21 0.044

+Clusters 0.05 0.16 0.037

Huterer & Linder, astro-ph/0608681

Recall, for DGP ∆γ = 0.13



Discarding the small-scale info
in weak lensing

Using the Nulling Tomography of weak lensing (Huterer & White 2005)
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PlanckSouth Pole Telescope

LSSTSupernova/Acceleration Probe



Conclusions 
• distinguishing dark energy from modified gravity is 

becoming one of the key goals of cosmology in years to 
come

• assuming nonlinear clustering that follows the usual  
prescription even with MG, we find that future probes can 
achieve very interesting constraints on this parameter

• restriction to linear scales severely degrades the errors, 
but well worth pursuing

• ambitious, general approach: measure functions r(z) and 
g(z), check if they are consistent

• minimalistic approach: measure a single parameter that 
describes departures between DE and MG

• bright future with upcoming powerful surveys



Physically motivated MG parametrization
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ds2 = a2(τ)
[
−(1 + 2ψ)dτ2 + (1 − 2φ)d$x2

]

ψ = (1 + ")φ ! = !0

ρDE

ρM

and assume



10
1

10
2

10
3

10
4

l

10
!6

10
!5

10
!4

10
!3

l(l
+

1)
C

l /
2!

LCDM

0.1

!0.1

Caldwell, Cooray & Melchiorri,  astro-ph/0703375

Physically motivated MG parametrization

CMB-galaxy cross-correlation
Weak lensing power spectrum


