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Overview of this lecture

•Aimed at a fairly new cosmologist (but with 
basic cosmology background!) 

•[If you are a practicing cosmologist, you 
probably know 85-90% or more of what is in 
these notes] 

•Some details might be swept under the rug (or 
perhaps “wrong”); technical details (and 
citations) occasionally skipped 

•Focus on: 1) dark energy, 2) massive neutrinos, 
3) primordial non-Gaussianity 

•Based on (and plots from) relevant material in 
my textbook 

•Another relevant reading: D. Weinberg et al, 
“Observational Probes of DE”, Phys Rept, 2013



Part I:  
What “theorist’s observables”  

that DESI measures 
are sensitive to DE/mν/fNL



How do we describe the large-scale structure 
and constrain cosmological model?

Harvard-Cfa survey; 
de Lapparent, Geller & Huchra (1986)

SDSS/BOSS survey
SDSS/BOSS collaboration 



The galaxy (≃matter) power spectrum!



Linear galaxy power spectrum 𝛥g2(k)

Δ2
g(k, a) ≡

k3Pg(k)
2π2

Principal sensitivity to cosmo parameters comes from: 

•growth function  (D is linear growth, g 
is growth suppression, i.e. value relative to EdS) 

•transfer function T(k) 

•(for non-Gaussianity only): galaxy bias b 

•[Also anisotropic power spectrum, not shown above, RSD 
will be discussed in a bit]
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Growth function 
D(z) or g(z)

Probes that measure 

growth rate  

are particularly valuable 
(why?)

f(a) ≡
d ln D
d ln a

-1.4 -1.2 -1 -0.8 -0.6
w

0

-1

-0.5

0

0.5

1

w
a

D(z) or g(z)

H(z)

dD/dη

dg/dz

r(z)

r
2
(z)/H(z)

Cooray, Huterer & Baumann (2004)



Transfer function
BAOs barely visible

small-scale 
suppression 
in some DM 
models

Main feature 
is transition 
scale 
from RD to 
MD
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Lyman-alpha forest

Note that Lyman-alpha forest also measures 
essentially the matter power spectrum —  

and isolates the BAO in it

 Ned Wright's cosmology tutorial



Redshift-space distortions

P(k)(s) = b2 [1 + βμ2]2 P(k) where β ≡
f
b

; μ ≡ k̂ ⋅ ̂rz = kz /k

s∥ = Δz
H(z)

s⊥ = dA(z)θ

θ

Real space Redshift space
Small-scale  

motions

Large-scale  
infall

Kaiser 
effect

"Fingers of God” 
effect

Line  
of  

sight
⇒

⇒

growth rate!Kaiser (1987) formula:



Redshift Space Distortions
Kaiser RSD formula (roughly ok at large scales):

μ0, μ2, μ4 terms become 
the monopole (l=0), 
quadrupole (l=2) and 
hexadecapole (l=4), 
respectively

P(k)(s) = b2 [1 + βμ2]2 P(k)



In addition to the power spectrum (BAO and RSD), let 
me mention very briefly these DESI probes/combinations: 

1. Peculiar velocities 
2. Bispectrum (of galaxy distribution) 
3. Gravitational lensing and 3x2 cosmology



1. Peculiar velocities
Consider a galaxy at redshift z; then czobs ≈ cz + vpec

•Imagine now that you measure redshifts and distances 
.  

•The former gets you zobs, them latter gives you z 

•[Getting distances is the hard part; use type Ia 
supernovae or Tully-Fisher relation] 

•Hence you get a (noisy) measurement of vpec 

•Correlating these vpec, get a measurement of the velocity 
power spectrum, since  (in linear theory), it 
follows that  

•…and hence pecvel are sensitive to  

r(z) ≃ cz /H0

∇ ⋅ v = aHfδ
⟨vv⟩ ∝ f 2P(k) ∝ f 2σ2

8

fσ8 ≡ f(z)σ8(z)



1. Peculiar velocities

Huterer, Astron. Astrophys. Rev. (2023)



Fourier space:

Harmonic space:

ha�1m1a�2m2a�3m3i ⌘ Bm1m2m3
�1�2�3

h�~k1
�~k2

�~k3
i = (2⇡)3 �(3)(~k1 + ~k2 + ~k3)B(~k1,~k2,~k3)

So depends on six numbers (describing a triangle in 3D 
space); the angle-averaged version, , 
still depends on three numbers (recall P(k) depends on 
just k)

B(k1, k2, k3) or Bℓ1,ℓ2,ℓ3

2. Bispectrum (of galaxies)



•Challenging to measure (lots of triangles) 
•Challenging to theoretically predict, both B and its Cov matrix  
•Challenging to control systematics in (!)  
•Proportional to galaxy bias cubed — both a problem and a 

feature 
•Years of promises (the “bispectrum winter”), but recent 

progress, and also 
•DESI will have likely be making major advances in 

measurements of, and constraints from, the bispectrum

2. Bispectrum (of galaxies)

In principle a major source of 
cosmological information at quasi-

linear and nonlinear scales!  
But:



3. Gravitational lensing and 3x2 cosmology

Can correlate: 
1. galaxy position with 

galaxy position (galaxy 
clustering) 

2. galaxy shape with 
galaxy shape (weak 
lensing) 

3. galaxy position with 
galaxy shape (galaxy-
galaxy lensing)

gg  gs
gs  ss[ [

g

s
(shear of

background galaxies;
5 redshift bins)

(positions of
foreground galaxies;

5 redshift bins)

“3x2 (point-function)” 
clustering measurements:

image: LSST science book 3x2 analysis
in a picture
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3. Gravitational lensing and 3x2 cosmology9

FIG. 5. Multi-probe
correlation matrix
for a joint data
vector of cosmic
shear, galaxy–galaxy
lensing, and galaxy
clustering including
the non-Gaussian
terms, with the
same ordering as the
data vector shown in
Fig. 3. The upper left
triangle shows the
correlation matrix
obtained from 1200
lognormal realiza-
tions (see Sect. III B
for details), the lower
right shows the cor-
relation matrix of the
non-Gaussian halo
model covariance
(see Sect. III A).
We recommend a
zoom factor of ∼ 5
to inspect structures
within the matrix.

A. Halo Model Covariances

The covariance of two angular two-point functions
Ξ,Θ ∈ {w, γt, ξ+, ξ−} is related to the covariance of the
angular power spectra by

Cov
(
Ξij(θ), Θkm(θ′)

)
=

∫
dl l

2π
Jn(Ξ)(lθ)

∫
dl′ l′

2π
Jn(Θ)(l

′θ′)
[
CovG

(
Cij

Θ (l), Ckm
Ξ (l′)

)
+CovNG

(
Cij

Θ (l), Ckm
Ξ (l′)

)]
,

(15)

with Cξ+ ≡ Cξ− ≡ Cκκ, Cγt ≡ Cδgκ and Cw ≡ Cδgδg
in the notation of Eqs. (5), and where the order of the
Bessel function is given by n = 0 for ξ+, w, n = 2
for γt, and n = 4 for ξ−. We calculate the covariance

of the angular power spectra Cov
(
Cij

Θ (l), Ckm
Ξ (l′)

)
as

the sum on Gaussian CovG and non-Gaussian covariance
CovNG, which includes super-sample variance [73], as de-
tailed in Krause and Eifler [21], using the halo model to
compute the higher-order matter correlation functions.
Equation 15 gives the covariance of two-point functions
at angles θ and θ′, and does not account for the finite
width of angular bins. In practice, the covariance of two-
point functions in angular bins is often evaluated at rep-
resentative angles for each bin, assuming that the covari-
ance varies only slowly across angular bins (called the

narrow-bin approximation). The harmonic transform of
the Gaussian contribution in Eq. (15) reduces to a sin-
gle integral as different harmonic modes are uncorrelated
in the Gaussian covariance approximation. In the eval-
uation of the Gaussian covariance we split off the pure
white noise terms and transform these terms analytically
[68].

B. Covariance Validation

Most analytic models for the covariance of two-point
functions in configuration space are assume the narrow-
bin approximation, and that the maximum angular
scales are much smaller than the survey diameter [e.g.
67, 74, 75]. In the context of harmonic space correla-

Krause, Eifler et al (2017) [3x3 Cov for DES]

Covariance is non-trivial 
to calculate…

… but piece of cake for 
DESI C3 group, which will 
combine DESI with 
DES, KiDS, HSC…

J. Lange for DESI C3 WG

Also important: LSS×CMB cross-correlations!



Part II:  
How these observables 

constrain DE/mν/fNL



How DESI Constrains 
Dark Energy

[This is the “most essential” application of DESI data]



BAO in SDSS-III BOSS DR9 galaxies 11

Figure 3. The CMASS correlation function before (left) and after (right) reconstruction (crosses) with the best-fit models overplotted (solid lines). Error bars
show the square root of the diagonal covariance matrix elements, and data on similar scales are also correlated. The BAO feature is clearly evident, and well
matched to the best-fit model. The best-fit dilation scale is given in each plot, with the �2 statistic giving goodness of fit.

Figure 4. Average of the mock correlation functions before and after recon-
struction showing that the average acoustic peak sharpens up significantly
after reconstruction. This indicates that, on average, our reconstruction tech-
nique effectively removes some of the smearing caused by non-linear struc-
ture growth, affording us the ability to more precisely centroid the acoustic
peak.

where ⇤d is the measured correlation function and ⇤m(�) is the best-
fit model at each �. C is the sample covariance matrix, and we use
a fitting range of 28 < r < 200h�1 Mpc. We therefore fit over 44
points using 5 parameters, leaving us with 39 degrees-of-freedom
(dof). Assuming a multi-variate Gaussian distribution for the fitted
data (this is tested and shown to be a good approximation in Manera
et al. 2012), the probability distribution of � is

p(�) ⇤ e�⇥2(�)/2. (28)

The normalisation constant is determined by ensuring that the dis-
tribution integrates to 1. In calculating p(�), we also impose a 15
per cent Gaussian prior on log(�) to suppress values of � ⇥ 1
that correspond to the BAO being shifted to the edge of our fit-
ting range at large scales. The sample variance is larger at these

scales, and the fitting algorithm is afforded some flexibility to hide
the acoustic peak within the larger errors.

The standard deviation of this probability distribution serves
as an error estimate on our distance measurement. The standard
deviation ⇥� for the data and each individual mock catalog can be
calculated as ⇥2

� = ⌅�2⇧ � ⌅�⇧2, where the moments of � are

⌅�n⇧ =
�

d� p(�)�n . (29)

Note that ⌅�⇧ refers to the mean of the p(�) distribution in this
equation only.

In reference to the mocks, ⌅�⇧ will denote the ensemble mean
of the � values measured from each individual mock, and �̃ will
denote the median. The term “Quantiles” will denote the 16th/84th

percentiles, which are approximately the 1⇥ level if the distribution
is Gaussian. The scatter predicted by these quantiles suffers less
than the rms from the effects of extreme outliers.

5.3 Results

Using the procedure described in §5.2, we measure the shift in the
acoustic scale from the CMASS DR9 data to be � = 1.016±0.017
before reconstruction and � = 1.024± 0.016 after reconstruction.
The quoted errors are the ⇥� values measured from the probabil-
ity distributions, p(�). Plots of the data and corresponding best-
fit models are shown in Fig. 3 for before (left) and after (right)
reconstruction. We see that for CMASS DR9, reconstruction has
not significantly improved our measurement of the acoustic scale.
However, in the context of the mock catalogues, this result is not
surprising.

Fig. 5 shows the ⇥� values measured from the mocks before
reconstruction versus those measured after reconstruction from the
correlation function fits. The CMASS DR9 point is overplotted as
the black star and falls within the locus of mock points. However,
we see that before reconstruction, our recovered ⇥� for CMASS
DR9 is much smaller than the mean expected from the mocks. For
typical cases, reconstruction improves errors on �, but if one has a
“lucky” realisation that yields a low error to begin with, then recon-
struction does not produce much improvement. The mock catalog
comparison in Figure 5 shows that the BOSS DR9 data volume

c� 2011 RAS, MNRAS 000, 2–33

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

⇥
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥Bm(k/�), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter � as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2hMpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
�

n

W (ki, kn)P (kn)m �W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2�2
nl/2 + 1, (34)

where the damping scale ⇥nl is a fitted parameter. We assume
a Gaussian prior on ⇥nl with width ±2h�1 Mpc, centred on
8.24h�1 Mpc for pre-reconstruction fits and 4.47h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c� 2011 RAS, MNRAS 000, 2–33

Anderson et al (BOSS collaboration), arXiv:1203.6594

In the correlation function In the power spectrum

Baryon Acoustic Oscillations



Baryon Acoustic Oscillations

• From the BAO: measure d(z)/rs [relative to some fiducial ratio]. 
We are measuring the angle of a feature  

• Which kind of distance d? Angular diameter distance! [Actually 
for transverse modes measure , for radial modes measure 

, sometimes combine them into  

• What feature? The distance at which there is a ~10% extra 
probability of galaxy pairs (the sound horizon!)

dA(z)
1/H(z) dV(z) ∝ (d2

A(z)/H(z))1/3

rs =
1

3 ∫
a*

0

da

a2H(a) 1+
3ΩB

4Ωγ
a

≃ 100 h−1Mpc

rs

d(z)
θ



Baryon Acoustic Oscillations

•rs in BAO context is usually called rd or rdrag - it is the 
sound horizon evaluated at the end of the baryon drag 
epoch (since there are ~109 photons for each baryon, the epoch 
when photons stop feeling the baryons comes earlier than the drag 
epoch when the baryons stop feeling the photons) 

•rd is independently measured (by e.g. CMB peak 
morphology;  from Planck).  

•Hence, BAO measures the distance with rd (or roughly, 
with  - or really, more like ) fixed 

147.09 ± 0.26 Mpc

ΩMh2 ΩMh3
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α⊥(z) ≡
dA(z)

rd / dfid
A (z)
rfid
d

α∥(z) ≡
H−1(z)

rd / (H−1)fid(z)
rfid
d

(common notation:)

The BOSS Collaboration, Alam et al, 1607.03155
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Redshift space distortions

Remember, in addition to the BAO, the RSD 
also provide a very helpful signal for dark energy

Reid et al (2012)

Huterer, Astron. Astrophys. Rev. (2023)



Summary  
Dark energy (in DESI) is measured by:

•BAO feature(s) 
•RSD 
•broadband P(k) [e.g. turnover position in k] 
•peculiar velocities 
•bispectrum 
•cluster counts, void abundances  
•…..



How DESI Constrains 
Neutrino Masses



Neutrino basics

(Δm2)sol ≃ 8×10−5 eV2  

(Δm2)atm ≃ 3×10−3 eV2 

•Three neutrino flavors (e, mu, tau) 
•Definitely massive (neutrino oscillations detected) 

•  

•Cosmology largely sensitive to  
•Cosmological upper bound:  (or so) 

Ωνh2 =
∑i mν,i

94eV
,

∑ mν,i

∑ mν,i < 0.15 eV

From the oscillation constraints,

∑mi = 0.06 eV*  (normal)} ∑mi = 0.11 eV*  (inverted)
*(assuming m3=0)

vs.

we conclude:

So the goal is to  
1. distinguish ∑mi of 0.06 eV from 0.11 eV 
2. distinguish ∑mi of 0.06 eV from zero eV



λFS ≃ 300 ( 1eV
mν ) Mpc; kFS ≡

2π
λFS

≃ 0.02 ( mν

1eV ) Mpc−1,

δP
P

≃ − 8fν

Neutrino free-streaming leaves 
signatures in P(k)



Neutrino masses: prospects

•Neutrino masses are in principle output of a standard 
P(k) full-shape analysis (with or without the RSD) 

•However, theoretically modeling the impact of neutrinos 
is famously challenging — need Nbody simulations, 
tricky to get sufficient precision 

•Recent progress (including by DESI members) appears to 
have largely solved the above challenge 

•Specific predictions of the effect of mν  on observables 
make these tests highly physics-y. Cosmology tests of mν: 
a great (and correspondingly cheap) complement to 
particle-physics experiments



How DESI Constrains 
Primordial non-Gaussianity



Standard Inflation, with...

1. a single scalar field 

2. the canonical kinetic term 

3. always slow rolls 

4. in Bunch-Davies vacuum 

5. in Einstein gravity

produces unobservable NG

Therefore, measurement of nonzero NG would 
point to a violation of one of the assumptions above



� = �G + fNL

�
�2

G � h�2
Gi

�

T1
T2

T3

NG from 3-point correlation function

“Local NG” (squeezed triangles) is defined as

“Local”, “Equilateral”, “orthogonal” fNL - refers to triangle shapes 
⇒ test number of fields & their interactions

Threshold for new physics: fNLany kind ≳ O(1)

Alvarez et al, arXiv:1412.4671



fNL= -5000

fNL= +5000 fNL= +500

fNL= -500
fNL= 0

(Gaussian)

Planck Temp + Pol:  fNL = − 0.9 ± 5.1

→

Simulated maps



Scale dependence of NG halo bias

Dalal, Doré, Huterer & Shirokov 2008

b(k) = bG + fNL
const

k2
Verified using a variety of theoretical 

derivations and numerical simulations.



Implications:

�b(k) = fNL(bG � 1) �c
3 ⌦MH

2
0

T (k)D(a)k2

‣ Unique 1/k2 scaling of bias; no free parameters 

‣ Straightforwardly measured (g-g, g-T,...) 

‣ Distinct from effect of all other cosmo parameters 

‣ Complements CMB measurements (LSS measures fNL at 
different scales) 

‣ Unfortunately very degenerate with imaging systematics 
(see e.g. Rezaie et al (2023) DESI paper on fNL from DESI imaging data) 

‣ Measuring it using DESI to high accuracy will require 
independently getting an independent handle on the 
imaging systematics



Summary

DESI measurements of matter power spectrum, esp 
its BAO and RSD aspects, directly probe dark energy 

Broadband matter power spectrum is sensitive to 
massive neutrinos 

While the bispectrum eventually has the most 
information to constrain primordial non-Gaussianity, 
most progress in the near term will come through the 
large-scale (1/k2) effect of fNL on galaxy bias in the 
power spectrum


