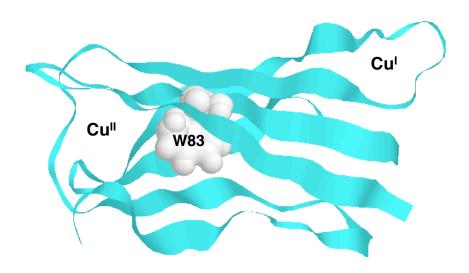
The CopC Protein from *Pseudomonas syringae*: Intermolecular Transfer of Copper Occurs from Both the Copper(I) and Copper(II) Sites

Melissa Koay, Lianyi Zhang, Binsheng Yang, Simon James,

Megan J. Maher,* Zhiguang Xiao and Anthony G. Wedd


School of Chemistry, University of Melbourne, Victoria, 3010, Australia and *School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, 2006., Australia.

The CopC protein from *Pseudomonas syringae* pathovar *tomato* is expressed as one of four proteins encoded by the operon CopABCD that is responsible for copper resistance. It is a small soluble molecule (10.5 kDa) with a β -barrel structure and features two distinct copper binding sites (see Figure²) which are highly specific for Cu^I ($K_D \sim 10^{-13}$) and Cu^{II} ($K_D < 10^{-15}$), respectively. These dissociation constants were estimated via ligand competition experiments monitored by electronic spectral and fluorescence probes.

The chemistries of the two copper sites are inter-dependent. When the Cu^{II} site is empty, the Cu^I ion is oxidized by air but when both sites are occupied, the molecule is stable in air. The availability of an unoccupied site of higher affinity induces intermolecular transfer of *either* Cu^I or Cu^{II} while maintaining free copper ion concentrations in solution at sub-*pico* molar levels.

This intriguing copper chemistry is consistent with the proposed role of CopC as a copper carrier in the oxidizing periplasmic space. These properties would allow it to exchange *either* Cu^I or Cu^{II} with its putative partners CopA, CopB and CopD, contrasting with the role of the Cu^I (only) chaperones found in the reducing cytoplasm.

- 1. Cha, J. S.; Cooksey, D. A. *PNAS USA* **1991**, *88*, 8915-9; Cooksey, D. A. *FEMS Microbiol. Rev* **1994**, *14*, 381-6.
- 2. Arnesano F., Banci L., Bertini I. and Thompsett A. R., *Structure*, 2002, 10, 1337; Arnesano F., Banci L., Bertini I., Mangani S., and Thompsett A. R., *PNAS USA*, 2003, 100, 3814.

