Redox State Dependent Axial Ligand Dynamics of Cytochrome c_{552} from *Nitrosomonas europaea*

Ravinder Kaur and Kara Bren

Department of Chemistry, University of Rochester

Nitrosomonas europaea cytochrome c_{552} (Ne cyt c_{552}) is a member of the cytochrome c_8 family, of which Pseudomonas aeruginosa cytochrome c_{551} (Pa cyt c_{551}) is a prototypical member. Ne cyt c_{552} and Pa cyt c_{551} have high homology in sequence and structure, but their heme substituent ¹H NMR hyperfine shifts differ substantially. Whereas Pa cyt c_{551} has the 5-CH₃ > 1-CH₃ > 8-CH₃ > 3-CH₃ heme methyl shift pattern with a large spread (~ 20 ppm) typical of the cyt c_8 family, Ne cyt c_{552} has a 5-CH₃ > 8-CH₃ > 3-CH₃ > 1-CH₃ pattern with a small (< 10 ppm) spread. We have proposed that the unusual heme methyl shift pattern of Ne cyt c_{552} results from fluxional behavior of the axial Met (1).

The observation of temperature-dependent, T_1 -independent line broadening of the heme methyl resonances of Ne cyt c_{552} supports the proposal that the axial Met is in conformational exchange in oxidized Ne cyt c_{552} (1). Interestingly, in the reduced form of Ne cyt c_{552} , only one configuration of the axial Met is indicated by the NOEs from the Met side chain to the heme substituents (2). The orientation and anisotropy of the χ tensor for oxidized Ne cyt c_{552} , calculated from pseudocontact shifts, are compared to Pa cyt c_{551} . The χ_{xx} axis for Ne cyt c_{552} is oriented at 43° relative to the iron-pyrrole II axis, which is significantly different from the value for Pa cyt c_{551} (20°), but near the value expected if the axial Met is in fast exchange between conformations similar to that seen in Pa cyt c_{551} and in the mitochondrial cyts c ($\chi_{xx} \sim 72^\circ$). The magnetic axes calculation also shows that the electronic structure of Ne cyt c_{552} is highly axial, supporting the proposal of a fluxional Met in this protein and in agreement with the HALS-type ("large g_{max} ") EPR spectrum reported for Ne cyt c_{552} (3). In addition, comparison of the measured and calculated pseudocontact shifts supports the proposal of a redox state-dependent conformational change that may influence axial Met fluxion.

- 1. Bren, K. L.; Kellogg, J. A.; Kaur, R.; Wen, X. Inorg. Chem. 2004, 43, 7934-7944.
- 2. Timkovich, R.; Bergmann, D.; Arciero, D. M.; Hooper, A. B. *Biophys. J.* **1998**, *75*, 1964-1972.
- 3. Arciero, D. M.; Peng, Q. Y.; Peterson, J.; Hooper, A. B. FEBS Lett. **1994**, 342, 217-220.