Kinetics and DFT Studies on the Reaction of Copper(II) Complexes Supported by *N,N*-Bis(2-quinolylmethyl)amine Tridentate Ligands toward H₂O₂

<u>Takao Osako</u>, ^a Shigenori Nagatomo, ^c Teizo Kitagawa, ^c Christopher J. Cramer ^b and Shinobu Itoh ^a

^aDepartment of Chemistry, Graduate School of Science, Osaka City University ^bDepartment of Chemistry and Supercomputer Institute, University of Minnesota ^cOkazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences

Kinetics and DFT studies on the reaction of copper(II) complexes supported by bulky tridentate ligands $L1^R$ (N,N-bis(2-quinolylmethyl)amine tridentate ligands) toward H_2O_2 have been investigated in detail.

The copper(II) complexes exhibit a square pyramidal structure containing a coordinated solvent molecule at an equatorial position and a weakly coordinated counter anion (or water) at an axial position. They reacted readily with H_2O_2 at a low temperature to give

mononuclear hydroperoxo copper(II) complexes. Stopped-flow kinetics and DFT studies have suggested that, in the initial stage of the reaction, deprotonated hydrogen peroxide attacks the cupric ion, presumably from the axial position, to give a hydroperoxo copper(II) complex retaining the coordinated solvent molecule ($\mathbf{H}^{\mathbf{R}_{\bullet}}\mathbf{S}$). $\mathbf{H}^{\mathbf{R}_{\bullet}}\mathbf{S}$ then loses the solvent to give a tetragonal copper(II)-hydroperoxo complex ($\mathbf{H}^{\mathbf{R}}$), in which the –OOH group may occupy an equatorial position (Scheme 1). The copper(II)-hydroperoxo complex $\mathbf{H}^{\mathbf{R}}$ exhibits a relatively high O–O bond stretching vibration at 900 cm⁻¹ compared to other previously reported examples.

Scheme 1.

Sol = Solvent Molecule