Arginine Linked Rhenium Wires for Inducible Nitric Oxide Synthase

Yen Hoang Le Nguyen¹, Wendy Bittner¹, Michael A. Marletta², Jay R. Winkler¹, and Harry B. Gray¹

¹Division of Chemistry and Chemical Engineering, California Institute of Technology, ²Department of Chemistry, University of California, Berkeley

We are investigating the catalytic mechanism of mammalian inducible nitric oxide synthase (iNOS), an enzyme that produces L-citrulline and nitric oxide (NO) from L-arginine and O_2 . We have designed and synthesized L-arginine based substrates (wires) to characterize intermediates produced by laser-induced electron transfer to the active site. [Re(CO)₃(4,7-dimethyl-phenanthroline)(imidazole- C_8 -NH-L-arginine-NO₂)] [BF₄] (1) binds in the protein channel with a $K_d = 6 \pm 4 \mu M$. A second binding site is observed with a $K_d = 17 \pm 5 \mu M$; after laser excitation, transient absorption measurements show that Fe(III) is reduced to Fe(II) in less than 10 ns. Rhenium N-hydroxyarginine and N-methoxyarginine wire analogs (2,3) will probe the second turnover of the catalytic cycle with the goal of elucidating the hydrogen source (N-OH versus N^{ω} -H) as well as determining whether neutral or anionic NO is formed.