Copper And Zinc Interaction with Alzheimer's Disease β-Amyloid

Ashley I. Bush

Oxidation Disorders Laboratory, Mental Health Institute of Victoria, Australia; Genetics & Aging Research Unit, Massachusetts General Hospital, Charlestown, MA

 $A\beta$ is the principal component of amyloid plaque which is the hallmark of Alzheimer's disease (AD) neuropathology. We have characterized $A\beta$ as a metalloprotein, with selective high-affinity binding sites for zinc (Ka \approx 100 nM) and copper (Ka \approx 10 attoM). Genetic ablation of the ZnT3 transporter, which loads zinc into the glutamatergic synapse, abolishes amyloid deposition in a mouse model for AD.

A β binds Cu and Zn through a site that involves oligomeric peptide assembly, and imidazole bridging. When synthetic A β binds copper, it is highly redox-active. Biological reducing agents such as dopamine, cholesterol and vitamin C are recruited for electron donation, so that the A β /Cu complex acts as a catalyst generating H₂O₂ (Km= 5 μ M, Vmax= 30 nM/min). The toxicity of A β species is proportional to the peptide's ability to reduce Cu or Fe and generate H₂O₂ (A β 42> A β 40 >rat A β). H₂O₂ is a freely permeable pro-oxidant and is the chemical source of much of the oxidation damage that is abundantly evident in AD brain. Where cholesterol is the substrate for H₂O₂ production, it is specifically oxidized by A β :Cu complexes into forms that are markedly increased in AD post-mortem brain tissue compared to age-matched normal and neurological disease control tissue.

Chelators of copper and zinc both disaggreagate $A\beta$ deposits from post-mortem human brain and also inhibit redox activity and H_2O_2 production. We have found that one such orally bioavailable chelator, clioquinol, markedly inhibits brain amyloid pathology in transgenic mice. This compound recently completed a successful pilot phase 2 clinical trial in AD, where cognitive decline significantly arrested.

The interactions described for $A\beta$, may be applicable to other protein targets implicated in other age-related degenerative diseases such as cataracts, Parkinson's disease, and amyotrophic lateral sclerosis.