
EPR Evidence for ¹³C-Carbonate and Calcium Binding to Mn during Photo-assembly of the Photosynthetic Water Oxidizing Complex

<u>Jyotishman Dasgupta</u>, Alexei M. Tyryshkin, Sergei V. Baranov and G. Charles Dismukes *Department of Chemistry, Princeton University, Princeton, NJ-08544 USA*

Biogenesis (or repair) of the water-oxidizing complex of photosynthetic organisms (WOC-PSII) requires (re)assembly of the active-site inorganic cluster $(Mn_4O_xCa_1Cl_y)$ from free inorganic cofactors and cofactor depleted apoWOC-PSII, by a light-dependent process called photoactivation. Using perpendicular- and parallel-mode EPR spectroscopy, we characterize the high-affinity Mn site in spinach PSII both in the Mn^{2+} and the photo-oxidized Mn^{3+} redox states. In the absence of bicarbonate and Ca^{2+} , the EPR-active form $[Mn^{3+}(OH^-)]$ exhibits pronounced

pH-induced variation in ligand field (derived symmetry from g_{eff}) and the ⁵⁵Mn hyperfine interaction reflecting A_{Z} coordination changes at the Mn³⁺ site. Upon addition of bicarbonate in absence of Ca²⁺, the pH dependence of geff disappears yielding a single value, consistent with carbonate coordination

 $\rm Mn^{3+}$ site (see Figure). Unequivocal evidence for direct coordination of $^{13}\rm C$ -carbonate to high affinity $\rm Mn^{2+}$ is provided by ESEEM spectroscopy. Binding of $\rm Ca^{2+}$ to its effector site in absence of added bicarbonate, also eliminates the pH dependence of g_{eff} and A_Z yielding a single coordination environment indicative of an alkaline form. These data are consistent with a model, shown in the Figure, in which $\rm Ca^{2+}$ binds to the high affinity $\rm Mn^{3+}$ via an ionizable ligand (XH) which could be either $\rm H_2O/OH^-/(H)CO_3^-$. This work is supported by NIH and HFSP.