Initial characterization of a microbial prolyl-4-hydroxylase

Lee M. Hoffart, 1 Robert B. Guyer, 1 J. Martin Bollinger, Jr., 1,2 and Carsten Krebs, 1,2

The $Fe(II)/\alpha$ -ketoglutarate-dependent dioxygenases utilize the activation of O_2 at a mononuclear non-heme Fe center to perform hydroxylation of their substrates coupled to the decarboxylation of α -ketoglutarate. It is presumed, though not established, that all of these enzymes employ a common mechanism and many intermediates have been proposed for the reaction. Recently, the first of these intermediates was observed in taurine: α -ketoglutarate dioxygenase.

We have begun studying a reputed microbial prolyl-4-hydroxylase in an attempt to demonstrate that distinct members of the Fe(II)/ α -ketoglutarate-dependent dioxygenase family employ a common mechanism. Evidence suggests that this reputed prolyl-4-hydroxylase is indeed a mononuclear Fe containing enzyme, which binds α -ketoglutarate to form a chromophore reminiscent of the ligand-to-metal charge transfer band observed in other members of the family. The protein promotes decarboxylation of α -ketoglutarate. Initial characterization of this enzyme will be presented.

¹ Department of Biochemistry and Molecular Biology and ² Department of Chemistry, The Pennsylvania State University