The Effect of NO on the Kinetics and Mechanism of Oxidation of Amines and Peptides by Central Ni(III) Ions

Dror Shamir¹, Israel Zilbermann^{1,2}, Eric Maimon^{1,2}, Haim Cohen ^{1,3} and <u>Dan</u>
<u>Meyerstein</u>^{1,3}

- 1. Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 2. Nuclear Research Centre Negev, Beer-Sheva, Israel;
- 3. Biological Chemistry Department, College of Judea and Samaria, Ariel, Israel

Recently it was suggested that Ni(III)(cyclam), Ni^{III}L, oxidizes NH₂CH₃ via:

$$Ni^{III}L(H_{2}O)_{2}^{3+} + 2NH_{2}CH_{3} \longrightarrow LNi^{III}(NH_{2}CH_{3})_{2}^{3+} \longrightarrow LNi^{III}(NHCH_{3})(NH_{2}CH_{3})^{2+}$$

$$2Ni^{II}L^{2+} + 3NH_{2}CH_{3} + NH_{4}^{+} + CH_{2}O \longrightarrow LNi^{III}(NH_{2}CH_{3})_{2}^{3+}, H_{2}O \longrightarrow LNi^{II}(NHCH_{3})(NH_{2}CH_{3})^{2+}$$

In parallel it was shown that intramolecular reductive nitrosylation of a Cu"(cyclam-derivative) results in the N-nitrolysation of the cyclam ligand. It seemed therefore of interest to study the effect of NO on the rate of oxidation of NH₂CH₃ by Ni^{III}L. Indeed the addition of NO to the reaction mixture accelerates considerably the reaction rate and changes the rate law from second order to first order in Ni^{III}L. Furthermore the observed rate constant is proportional to [OH] in the pH range 4-7. Similar effects are obtained when NO is added to a solution containing Ni^{III}(glycylglycylglycine). The results suggest that also in these systems reductive N-nitrolysation takes place. Analogous experiments with Cu(III)(peptide) are in progress.