
Development of Asymmetric Sulfoxidation Catalysts based on Functional Models of Vanadium Depedent Haloperoxidases

Curtis J. Schneider, ^a Jeff Kampf, ^a Luca De Gioia, ^c and Vincent L. Pecoraro ^{a,b}

^aDepartment of Chemistry, University of Michigan, Ann Arbor, MI, USA ^bBiophysics Research Division, University of Michigan, Ann Arbor, MI, USA ^cDepartment of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy

Vanadium dependent haloperoxidases (VHPO) are a class of enzymes capable of oxidizing both halides and organic sulfides. The oxidation of organic sulfides proceeds stereoselectively, yielding chiral sulfoxides. Previously the Pecoraro group developed a set of tripodal amine complexes capable of oxidizing both halides and organic sulfides. To further

develop the modeling chemistry of VHPO, two sterically hindered O₃N tripodal amine including (1S)-N-(1-phenyl-1-hydroxyethyl) iminodiacetic acid N,N-(diacetic (H₃pheida) and acid)-(1S,2R)norephedrine (H₃pheida^{2-Me}). The oxovanadium(IV) complex of H₃pheida has been crystallographically characterized and shows a coordination mode identical to the vanadium(IV) analogue of an established functional model K[VO(O₂)Hheida]. A set of N₂O₂ tripodal amine complexes based on N-(2aminoethyl)iminodiacetic acid have also been synthesized to explore the factors influencing the stability of protonated monoperoxo-oxovanadium(V) complexes. Additionally we will report on recent density functional calculations on these systems.

CJS acknowledges the Chemical Biology Interface Training Grant for support.