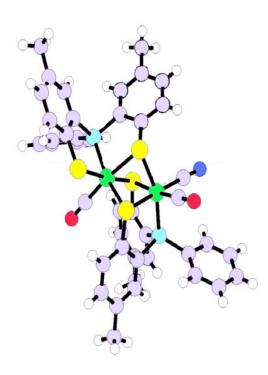
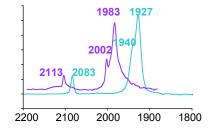
Mixed Valence Fe Thiolate Dimers with CO and CN⁻ Ligation Model for Di-Iron Centers in [FeFe]-Hydrogenase Enzymes

<u>Doris Y. Melgarejo</u>, Gina M.Chiarella, and Stephen A. Koch Chemistry Department, State University of New York at Stony Brook


Environmental and energetic concerns have helped drive studies of [FeFe]-hydrogenase enzymes, capable of hydrogen production. Searching for mimics for the binuclear Fe-Fe active center, Iron complexes containing carbonyl, cyanide and thiolate (PS2') ligands have been synthesized.


The precursor [Fe^{II}(PS2')(CO)₃] is prepared using Fe(CO)₄Br₂ and PS2', a bis-thiophenyl-phenyl phosphine. It dimerizes into a brown dimer, [Fe₂(PS2')₂(CO)₄], and a green asymmetric dimer [Fe₂(PS2')₂(CO)₃]

The cyanation of $[Fe_2PS2')_2(CO)_3]$ yields $[Fe^{II}Fe^{II}(PS2')_2CN(CO)_2]^{1-}$ which mimics the Fe-Fe active center of H_2 -ases. Irons are bridged by PS2' ligands, one Fe attaches CO and CN^- , the other Fe completes its hexacoordination with a single CO.

The H₂-ase catalysis implies redox transformations at the Fe sites. Electrochemical and chemical oxidation of the mimic reveals a catalytic prospect.

The structure of the oxidized [Fe^{II}Fe^{III}(PS2')₂(CN)(CO)₂] shows a shortened Fe-Fe distance. Fe-CO, Fe-CN lengths change accordingly to a delocalized mixed valence compound, also revealed by shifts in IR spectra. Characterization includes X-ray crystallography, FTIR, NMR, and Mass spectroscopy.

