Synthesis, Characterization and Reactivity of a Dicopper(II) Complex Containing a μ - η^2 : η^2 Side-On Bound Disulfido Bridge

Debabrata Maiti, Matthew E. Helton, Kenneth D. Karlin,*

Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.

The recent discovery of a Cu₄S cluster at the active site of nitrous oxide reductase (N₂OR), an enzyme that catalyzes the terminal step in bacterial denitrification [N₂O + 2e⁻ + 2H⁺ \rightarrow H₂O + N₂], has brought about a surge of interest in copper-sulfur coordination chemistry and spectroscopy. Previously we have reported the first example of a μ - η ¹: η ¹ end-on disulfide bridged compound synthesized from a Cu(I) complex of the tetradentate ligand TMPA and S₈ (*J. Am. Chem. Soc.*, **2003**, *125*, 1160). Here we report the synthesis of a μ - η ²: η ² side-on copper disulfide compound [{(Me₂N-MePY2)Cu^{II}}₂(S₂²-)]²⁺, **1**, (Me₂N-MePY2 is a tridentate pyridyl alkylamine ligand) and its reactivity towards exogenous substrates.

The X-ray crystal structure of 1-[B(C₆F₅)₄]₂•CH₂Cl₂ shows that each copper ion is 5 coordinate, with three N-donor atoms from the ligand and two S-donor atoms from the μ - η^2 : η^2 side-on bound disulfide. Reversible sulfur binding was found by CO ligation to generate [(Me₂N-MePY2)Cu¹(CO)][B(C₆F₅)₄], **2**. Addition of 4 eq. of PPh₃ results in formation of 2 eq. of S=PPh₃ and 2 eq. of [(Me₂N-MePY2)Cu¹(PPh₃)][B(C₆F₅)₄], **3**, whereas addition of 2 eq. PPh₃ results in formation of 2 eq. S=PPh₃ stoichiometrically. PhCH₂Br does not react with complex **1**. These results indicate the electrophilic nature of the side on Cu₂S₂ core. Addition of the tetradentate ligand TMPA causes immediate formation of our previously reported μ - η^1 : η^1 end-on bound disulfide complex [{(TMPA)Cu^{II}}₂(S₂²-)]²⁺(4), thus a disulfide exchange reaction. Further studies including detailed spectroscopic, mechanistic investigation and study of N₂O reduction via coppersulfur chemistry are underway.