Thermodynamic Evaluation of the bis(μ -oxo)/ μ - η^2 : η^2 -peroxo Equilibrium

<u>Peter L. Vajda¹</u>, Lanying Quant-Hatcher¹, Patrick Wick², Andreas D. Zuberbühler², Kenneth D. Karlin¹

¹Department of Chemistry, Johns Hopkins University ²Department of Chemistry, University of Basel

An interesting phenomenon in copper-dioxygen chemistry, is the rapid equilibrium between a $[Cu_2^{II}(O_2)]^{2+} \mu - \eta^2 : \eta^2$ -peroxo, and a $[Cu_2^{III}(O)_2]$ bis $(\mu$ -oxo) species, which can be influenced by several factors (e.g. temperature, solvent, electronic effects). Previously we have shown that by tuning the redox potential of a copper(I) complex $[Cu(R-PYAN)(CH_3CN)]B(C_6F_5)_4$ (R-PYAN = N-[2-(4-R-pyridin-2-yl)-ethyl]-N,N',N'-trimethyl-propane-1,3-diamine) the equilibrium shifts towards the bis $(\mu$ -oxo) isomer when R= electron donating groups. Full stopped-flow kinetic characterization of the oxygenation reaction of $[Cu(OMe-PYAN)(CH_3CN)]B(C_6F_5)_4$ (1) has been conducted in different solvents to further investigate the thermodynamics of oxygen binding and the ensuing $[Cu_2^{II}(O_2)]^{2+}/[Cu_2^{III}(O)_2]$ equilibrium. In acetone, 1 reacts with O_2 at low temperature $(-90\ ^{\circ}C)$ predominantly forming the dicopper(III) bis $(\mu$ -oxo) (2^{oxo}) complex, while at higher temperatures $(>-30\ ^{\circ}C)$ the side-on peroxo (2^{peroxo}) isomer is the major species formed. This temperature dependence allowed for the calculation of the thermodynamic parameters for 2^{peroxo} . $\Delta H^{\circ} = -14.7\ kJ/mol \pm 0.1$, $\Delta S^{\circ} = -68.2\ J/mol \pm 0.4$.