

Kinetic and Structural Studies on Metallo-β-Lactamase ImiS

Narayan Sharma¹, Patrick A. Crawford¹, Sowmya Chandrasekar¹, David L. Tierney², Alison Costello², Ke-Wu Yang¹, Brian Bennett³, and Michael W. Crowder¹

¹Department of Chemistry and Biochemistry, Miami University, ²Department of Chemistry, University of New Mexico, and ³National Biomedical EPR Center, Department of Biophysics, Medical College of Wisconsin

Bacterial resistance to antibiotics is a growing public health concern. Zn(II)-containing β -lactamases (metallo- β -lactamases, M β L's) contain 1-2 moles of Zn(II) per mole of enzyme, hydrolyze all known cephalosporins, carbapenems, and penicillins, are not inhibited by clavulanic acid and other classical β -lactamase inhibitors, and have no known clinically-useful inhibitor towards them. Previous studies have shown that there is significant structural and mechanistic diversity among the M β L's, leading to the grouping of the enzymes into three distinct subclasses. The objective of our research is to probe the mechanism and structure of a representative enzyme from each of the distinct M β L subclasses in an effort to uncover common structural and mechanistic properties of the enzymes. This work describes our studies on a subclass B2 M β L, ImiS from *Aeromonas veronii bv. sobria*. EPR, ¹H NMR, UV-Vis, and EXAFS studies reveal that the catalytic site in ImiS is the consensus Zn_2 site in the M β L's. Presteady state kinetic studies reveal that the B2 M β L's utilize a novel reaction mechanism to catalyze the hydrolysis of carbapenems.

