Formation of "Bridged Butterfly Structures" in Reduction Steps of Dioxygen on Dicopper Complex Systems

Yasuhiro Funahashi¹, Tomohide Nishikawa¹, Syuhei Yamaguchi¹, Hidekazu Arii¹, Yuji Kajita¹, Tomohiro Ozawa¹, Shun Hirota², Takehiko Tosha³, Teizo Kitagawa², and Hideki Masuda¹

¹Department of Applied Chemistry, Nagoya Institute of Technology, ²Department of Pharmacy, Kyoto Pharmaceutical University, and ³Center of Integrative Bioscience, Okazaki National Research Institutes

The metal-dioxygen adducts in active sites of non-heme diiron and dicopper proteins are formed by oxygenation of the reduced metal centers with molecular dioxygen. In general, the peroxo intermediates, $M_2(\mu\text{-}O_2)$ species, are given as the initial reaction intermediates, and high-valent $M_2(\mu\text{-}O)_2$ species are generated by way of the subsequent O-O bond cleavage in the further O_2 -reduction steps. Such the dioxygen activating metalloproteins often have pre-organized pseudo-tetrahedral coordination structures. We focused on this structural factor around the active metal cernters and introduced the pseudo-tetrahedral coordination into the biomimetic dinuclear metal complex systems activating molecular dioxygen.

In this study, we used a natural alkaloid, (-)-sparteine (\mathbf{Sp}) and its stereoisomers (α -isosparteine (α - \mathbf{Sp}) and β -isosparteine (β - \mathbf{Sp})) as bidentate ligands enforcing pseudo-tetrahedral coordination around the metal centers. X-ray studies of these copper complexes with \mathbf{Sp} revealed that these copper centers have twisted coordination structures, due to the steric requirements of the ligand. The $\mathrm{Cu^I}$ complex with \mathbf{Sp} rapidly reacted with molecular dioxygen to form the cooresponding $\mathrm{Cu^{III}}_2(\mu\text{-O})_2$ species in the organic solvents at -80 °C. These $\mathrm{Cu^{III}}_2(\mu\text{-O})_2$, with \mathbf{Sp} exhibiting unique spectroscopic properties. The characteristic low-energy LMCT bands and high-energy resonance Raman frequencies for these $\mathrm{Cu_2}(\mu\text{-O})_2$ cores were systematically shifted due to changing stereoisomers of \mathbf{Sp} . While, the $\mathrm{Cu^I}$ complex of α - \mathbf{Sp} was oxygenated to form $\mathrm{Cu^{II}}_2(\mu$ - η^2 : η^2 - $\mathrm{O_2}$) species in the presence of bridging ligands, such as a benzoate. X-ray clearly revealed that this $\mathrm{Cu^{II}}_2(\mu\text{-}\eta^2:\eta^2\text{-O}_2)$ complex with a benzoate had a "bridged butterfly structure". Dissociation of the bridging ligand caused the second structural change to the corresponding $\mathrm{Cu^{III}}_2(\mu\text{-O})_2$ species. Such the bridged core structures must have strong relevancies to the precursor of high-valent $\mathrm{O_2}$ -activating intermediate in dimetal centers of biological systems.

a) Wallar, B. J.; Lipscomb, J. D. Chem. Rev. 1996, 96, 2625. b) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013. c) Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047.