ATP as a Stabilizing Ligand for High Valent Nickel Complexes

Dror Shamir¹, <u>Israel Zilbermann</u>^{1,2}, Eric Maimon^{1,2}, Haim Cohen ^{1,3} and Dan Meyerstein^{1,3}

- 1. Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 2. Nuclear Research Centre Negev, Beer-Sheva, Israel;
- 3. Biological Chemistry Department, College of Judea and Samaria, Ariel, Israel.

Anionic, hard base ligands, e.g. SO_4^{2-} , HPO_4^{2-} , $P_2O_7^{4-}$, are know to stabilize, via axial coordination, the Ni(III) complexes with tetraazamacrocycle ligands, e.g. Ni(III)(cyclam), cyclam = 1,4,8,11-tetraazacyclotetradecane. $P_2O_7^{4-}$ seems to be an optimal ligand and surprisingly electrochemical and pulse radiolysis experiments even suggest that $Ni^{IV}L(P_2O_7)^{4-4n}$ (n = 1 or 2) can be formed but is short lived. These results suggest that ATP might also form the complex $Ni^{III}L(ATP)_2^{5-}$. Indeed the stability constant for the binding of ATP to $Ni^{III}L(H_2O)_2^{3+}$ is found to be $K_{eq} = 1.2 \times 10^{11}$ M⁻², $E_{1/2} = 0.41$ V for the $Ni^{III/II}L$ couple in solutions containing 0.016M ATP at pH 7.0. This complex is stable in aerated solutions. However the electrochemical oxidation of $Ni^{II}L^{2+}$ in aerated solutions containing ATP, results in an electrochemical irreversible process. This suggests that another plausible role of ATP in biological systems is the stabilization of high valent transition metal complexes.