Sodium Borohydride Reduction of F_{430} Generates a New Cofactor Species : F_{330}

<u>Mishtu Dey</u>¹, Ryan C. Kunz¹, Yih-Chern Horng¹, Jennifer L. Craft², Thomas C. Brunold², and Stephen W. Ragsdale¹

Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the final step in the biological synthesis of methane. MCR contains an essential cofactor at the active site, which is a redox-active nickel tetrahydrocorphin, Coenzyme F₄₃₀. The active form of MCR contains Ni(I)-F₄₃₀. F₄₃₀ is the most reduced tetrapyrrole in nature, containing only five double bonds. UV-visible, magnetic circular dichroism (MCD), mass spectroscopic, and ¹H and 2-dimensional NMR results demonstrate that the tetrapyrrole ring can undergo two-electron reduction to generate a species, called F₃₃₀, with an absorption peak at 330 nm. Two protons, one exchangeable and one non-exchangeable, are incorporated when F₄₃₀ is reduced with sodium borohydride, while two deuteriums (one exchangeable and one non-exchangeable) are incorporated when sodium borodeuteride is the reducing agent. ¹H-NMR spectroscopy has been used to localize the position on the tetrapyrrole ring at which the hydride addition occurs. ¹H-NMR and MCD spectroscopic and computational results indicate F₃₃₀ contains a low spin, most likely divalent Ni center. Thus, the conversion of F₄₃₀ to F₃₃₀ involves tetrapyrrole ring reduction but not metal-centered reduction. On the other hand, generation of the active Ni(I) form of the coenzyme with Ti(III) citrate, known as red1, involves a one-electron metal-centered reduction and not tetrapyrrole ring reduction. Computational work indicates that both ring reduction and metal center reduction cause similar shifts in the UV-visible spectra.

¹Department of Biochemistry, University of Nebraska Lincoln, and ²Department of Chemistry, University of Wisconsin, Madison