1. Steinitz Problem. Use the partial coloring lemma to show an $O\left(d^{1 / 2} \log n\right)$ discrepancy bound for the discrepancy for prefix sums problem, in the ℓ_{∞} norm.
[Hint: Suppose $n=2^{k}$ and for $i=0,1, \ldots, k$, partition $[n]$ into $n / 2^{i}$ intervals of size 2^{i}. Each prefix $[j]$ is a disjoint union of $O(\log n)$ such canonical intervals, at most one of each type.

Consider such intervals for each coordinate $q \in[d]$. Choose Δ_{i} for sets of size 2^{i}, so that (i) $\mid \sum_{i} \Delta_{i}=O\left(d^{1 / 2}\right)$. (ii) Partial coloring condition $\sum_{i} n_{i} g\left(\Delta_{i} / 2^{i / 2}\right) \leq n / 5$ holds, where $n_{i}=n d 2^{-i}$ is the number of sets of size 2^{i}. The calculation is easier if set sizes are considered relative to d.]
2. Vector Discrepancy. Let A be a $m \times n$ matrix with rows a_{i}. We say A has a vector discrepancy at most t, if there exists unit vectors v (in arbitrary dimensional space) satisfying

$$
\left\|\sum_{j} a_{i j} v_{j}\right\|_{2} \leq t \quad \forall i \in[m]
$$

Given a target discrepancy t, write an SDP to determine if A has vector discrepancy $\leq t$.
3. Vector Discrepancy for arbitrary set systems. Given any set system on n elements and m sets, show that it has vector discrepancy \sqrt{n}.
[Hint: Look for a very simple feasible vector solution.]
4. SDPs and Gaussian random variables. Let $g \in \mathbb{R}^{n}$ be a gaussian random vector with iid $N(0,1)$ coordinates. For any vector $u \in \mathbb{R}^{n}$, show that the random variable $X=\langle g, u\rangle$ is distributed as $N\left(0,\|u\|^{2}\right)$. For any two vectors u and v, the random variables $X=\langle g, u\rangle$ and $Y=\langle g, v\rangle$ (the g is the same for X and Y) satisfy $\mathbb{E}[X Y]=u \cdot v$.
For a PSD matrix A, let $u_{1}, \ldots, u_{n} \in \mathbb{R}^{n}$ be the vectors in its Cholesky decomposition (i.e. $A_{i j}=u_{i} \cdot u_{j}$ for all $i, j \in[n]$). Show that the random variables X_{1}, \ldots, X_{n} with $X_{i}=$ $\left\langle g, u_{i}\right\rangle$ for $i \in[n]$ are jointly gaussian (i.e. every linear combination $\sum_{i} c_{i} X_{i}$ is a Gaussian) with covariance matrix A (i.e. $A_{i j}=\mathbb{E}\left[X_{i} X_{j}\right]$).
5. Distance of random walks. Let $S=X_{1}+\ldots+X_{n}$ where X_{i} are independent mean-zero random variables satisfying $\left|X_{i}\right| \leq 1$. Show that $\mathbb{E}[|S|] \leq \sqrt{n}$.
[Hint: Consider $\mathbb{E}\left[S^{2}\right]$.]
6. (Optional). Use the probabilistic method to show that there exists a set system on n elements and m sets with discrepancy $\Omega(\sqrt{n \log (m / n)}$, and hence Spencer's bound is tight.
[Hint: Consider a random set system. For a fixed coloring x, show that the probability that each set has discrepancy $\ll \sqrt{n \log (m / n)}$ is $\ll 2^{-n}$. Why does this suffice?]
7. (Optional). Use the Lovasz Local Lemma to show a $O(\sqrt{k \log k})$ discrepancy bound for the Beck-Fiala problem, if the set sizes are also bounded by k (and the degree is also k).

