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Abstract

Discrepancy theory is an area of mathematics that studies how well continuous
objects can be approximated by discrete ones, and it has various connections to prob-
lems in combinatorics, optimization and computer science. E.g. how well a fractional
solution to a linear program can be rounded to an integral one. In these notes, we look
at some results and techniques that have been useful in combinatorial optimization,
such as rounding techniques based on random walks and linear algebra and tools from
convex geometry to show existence of and find integer points in convex bodies.

1 Introduction

Combinatorial discrepancy deals with the following question. Given a universe of elements
U = {1, . . . , n} and some collection S = {S1, . . . , Sm} of subsets Si of U . Find a red-blue
coloring of points in U such that each set in S is colored as evenly as possible. More
formally, given a −1,+1 coloring x = (x1, . . . , xn) of points in U , the discrepancy of
coloring x is

disc(S, x) = max
j∈m
|
∑
i∈Sj

xi|

The discrepancy of S is defined as the minimum discrepancy over all colorings

disc(S) = min
x∈{−1,1}n

disc(S, x).

Letting A denote the m× n incidence matrix of (U,S), we have

disc(S) = disc(A) := min
x∈{−1,1}n

‖Ax‖∞

This also defines discrepancy for arbitrary real matrices A. Typically results in discrepancy
are stated for set systems, but most of the techniques extend to general matrices.

2 Applications

We now discuss some motivating applications. For much more we refer to [12, 6].
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2.1 Rounding

Typically in approximation algorithms, one takes a fractional solution to a problem, and
tries to round it suitably to an integral one. The following relates the rounding error to
discrepancy.

Theorem 2.1 (Lovász, Spencer, and Vesztergombi [11]). For any x ∈ Rn satisfying
Ax = b, there is a x̃ ∈ Zn with ‖x̃− x‖∞ < 1, such that ‖A(x− x̃)‖∞ ≤ herdisc(A).

Here herdisc(A) is the hereditary discrepancy of A, defined as follows.

Definition 1. For a subset of columns S ⊆ [n], let A|S be A restricted to S. Then

herdiscA = max
S⊂[n]

disc(A|S) = max
S⊂[n]

min
x∈{−1,1}n

‖Ax‖∞

is the maximum discrepancy over all column restrictions A|S of A.

It is a more robust version of discrepancy that is monotone under taking subset of
columns. But for almost all problems, any technique for bounding discrepancy implies the
same result for hereditary discrepancy.

The main idea behind Theorem 2.1 is this. Suppose x is 1/2-integral (i.e. each xi has
fractional part 0 or 1/2), and let S be the subset of variables with fractional part 1/2,
then the low discrepancy coloring of elements of S can be used to round the elements up
or down.

Formally, let y be ±1 coloring of S with disc(A|S). Then, observe that x′ = x+ y/2 is
integral, and the rounding error satisfies

‖Ax′ −Ax‖∞ = ‖A(y/2)‖∞ =
1

2
disc(A|S) ≤ 1

2
herdisc(A),

Proof. (Theorem 2.1) Fix an integer k, and consider the first k bits of the fractional part
of each xi. Applying the idea described above to the least significant bit, makes this bit
0 for each xi, and introduces at most 2−k herdisc(A) error.

We now repeat this for the k−1-th bits1 and so on, until all the k bits of the fractional
part are 0. This gives overall error

∑1
`=k 2−` herdisc(A) ≤ herdisc(A), and the result

follows by letting k go to infinity.

2.2 Ordering with small prefix sums

Let v1, . . . , vn be vectors in Rd with ‖vi‖ ≤ 1 for each i ∈ [n], and
∑

i vi = 0. We wish to
find an ordering of these vectors so that norm of each prefix sum is small. The is called
the Steinitz problem and has a fascinating history, see [3] for a nice survey, with many
surprising applications in scheduling and optimization. The following is a classic result.

Theorem 2.2. (Steinitz). For any v1, . . . , vn satisfying the properties above, there is a
permutation π with m(π) = O(d), where m(π) = maxk ‖

∑k
i=1 vπ(i)‖.

1these may have changed from those in x, due to carry over from rounding the k-th bit.
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Remark 2.3. This result actually holds for any norm ‖ · ‖.

The idea will be to start from an arbitrary ordering, and iteratively improve it using
a low discrepancy coloring. Formally, consider following discrepancy problem.

Definition 2 (Discrepancy of prefix sums.). Given an ordered list of vectors w1, . . . , wn ∈
Rd with norm ‖wi‖ ≤ 1, find x ∈ {−1,+1}n that minimizes maxk∈[n] ‖

∑k
i=1 siwi‖.

We have the following.

Theorem 2.4. An f(d) bound for discrepancy of prefix sums implies an f(d) bound for
the Steinitz problem.

Proof. Let v1, . . . , vn be vectors satisfying the condition of Steinitz lemma. We will give
a procedure below that given any ordering π of the vi, finds another ordering π′ with
m(π′) ≤ (m(π) + f(d))/2. So as long as m(π) > f(d), m(π′) reduces by at least 1, and
repeating this eventually gives an ordering π̃ with m(π̃) ≤ f(d).

The Procedure. Let π be some ordering of the vectors, and for this ordering, let
s ∈ {−1, 1}n be a coloring with discrepancy of prefix sums at most f(d). Let P denote
the set of indices i with si = 1, and N be those with si = −1. The permutation π′ is
defined by first listing the indices in P (in the order of π) and then listing the indices in
N (in the reverse order of π).

Example. Let π be the ordering v1 v2 v3 v4 v5 v6 v7 v8. Suppose in the signed sum
v1, v4, v6, v7 are colored +1 and v2, v3, v5, v8 are colored −1. Then the ordering by π′ is
v1 v4 v6 v7 v8 v5 v3 v2.

Claim 1. m(π′) ≤ (m(π) + f(d))/2.

Proof. The key point is that for any k ∈ [n],
∑k

i=1 vi +
∑k

i=1 sivi = 2
∑

i∈P∩[k] vi.

As ‖
∑k

i=1 vi +
∑k

i=1 sivi‖ ≤ ‖
∑k

i=1 vi‖+ ‖
∑k

i=1 sivi‖ ≤ m(π) + f(d), by the triangle
inequality, this gives that

‖
∑

i∈P∩[k]

vi‖ ≤ (m(π) + f(d))/2,

i.e. every prefix sum in π′ (ending at an index in P ) has norm (m(π) + f(d))/2.
Similarly, as

∑k
i=1 vi −

∑k
i=1 sivi = 2

∑
i∈N∩[k] vi, for each k ∈ [n]

‖
∑

i∈N∩[k]

vi‖ ≤ (m(π) + f(d))/2.

As the order of the indices in N is reversed in π′, this gives taht any suffix of π′ (starting
at an index in N) has norm (m(π) + f(d))/2. But as

∑
i vi = 0, any prefix [k] of π′ has

the same norm as the suffix [n] \ [k].
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2.3 Sparsification

An important use of discrepancy is to replace a universe of elements by a much smaller
one, that scales well for the sets we care about.

To see the idea, suppose there is a zero-discrepancy coloring. Let U ′ be points colored
+ (or only −). Then |U ′| = |U |/2 (we can ensure this by adding the set S = U), and
each set S restricted to U ′ has S/2 elements. In general, small discrepancy allows one to
iterated this process to get very interesting results. For example,

1. Given an undirected graph G = (V,E), the set system with edges as elements and
sets all cuts woud correspond to graph sparsification. One can decompose the com-
plete graph into Ω(n) expanders with degree O(1).

2. For set systems with VC dimension d, one can find a O(d/ε log(1/ε)) universe that
hits each set of size at least εn.

3. In numerical integration for a region R (say of volume 1), we want to replace R
by a set of n points P that approximate R for some test sets S, in the sense that
vol(R ∩ S) is close to 1

n |P ∩ S|.

3 Linear Algebraic Methods

In the following sections we look at various methods to upper bound discrepancy. The first
is based on a simple linear algebraic idea, but it often gives surprisingly powerful results.
More generally, this technique is called iterated rounding, and has several applications in
combinatorial optimization, a great reference is [10].

The method. We start with the coloring x(0) = 0n, which is then updated over sev-
eral iterations 1, . . . , T until the final coloring x(T ) has all variables −1,+1. During the
intermediate steps t, the variables xi(t) can take (fractional) values in the range [−1, 1].
At the beginning of time t, we call a variable i floating if xi(t− 1) ∈ (−1, 1).

The update at time t. Pick some subset S(t) of the floating variables at time t, and
consider any linear system

B(t)y = 0, y ∈ Rn, yi = 0 for i ∈ [n] \ S(t).

The idea is that if B(t) has fewer than |S(t)| rows, then this system has a non-zero
solution y(t), and we can update the solution x(t − 1) in the direction y(t) until some
variable reaches −1 or +1 to get x(t), i.e.

x(t+ 1) = x(t) + δy(t)

where δ > 0 is the largest real that ensures that x(t+ 1) ∈ [−1, 1]n.
All the ingenuity in this method lies in choosing B(t), at each time t. Note that once

a variable reaches −1 or 1, it is fixed and never updated anymore. The algorithm takes
at most n steps as at least one floating variable reaches ±1 in each step. Let us consider
a few examples to make this more concrete.
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3.1 The Beck-Fiala Problem

Let S be a set system on n elements where each elements lies in at most k sets. One of
the most important open problems in discrepancy is the following.

Beck Fiala Conjecture. disc(S) = O(k1/2).

We show a 2k − 1 bound using the linear algebraic method. The best known bound
independent of n is 2k − Ω(log∗ k) [5].

Theorem 3.1 ([4]). disc(S) ≤ 2k − 1.

Proof. Let A denote the incidence matrix of S, where the rows correspond to sets and
columns to elements. By our assumption, each column has at most k ones.

To apply the linear algebraic method, consider some iteration t and let F (t) be the
floating variables. We pick S(t) = F (t), and B(t) to be the rows with more than k
elements. As each element in S(t) lies in at most k rows, counting the number of 1’s in
the submatrix B(t)× S(t), we have |B(t) < |S(t)|.

As long as a set has more than k floating elements, its discrepancy remains 0. But,
once a set has at most k floating elements, no matter how these variables are rounded in
subsequent iterations, the additional discrepancy will be less than 2k (e.g. if all floating
variables are −0.99 but get rounded to 1). As discrepancy of a set system is integral, we
get the bound 2k − 1.

3.2 Discrepancy of prefix sums (Steinitz problem)

Recall the discrepancy of prefix sums problem. We are given v1, . . . , vn ∈ Rd with ‖vi‖ ≤ 1
for i ∈ [n]. The goal is to find s ∈ {−1, 1}n with minimum maxk∈[n] ‖

∑k
i=1 sivi‖.

Theorem 3.2. The discrepancy of prefix sums is at most 2d.

Proof. We apply the linear algebraic method. Consider some iteration t, and let S(t) =
{i1, i2, . . . , id+1} be the subset of the floating variables with the d + 1 smallest indices
(if there are d or fewer floating variables, we round them arbitrarily and terminate the
algorithm). Let B be d× n matrix with columns vi.

For any k ∈ [n], consider the prefix sum
∑k

i=1 xi(t)vi. The key observation is that as
long as S(t) is contained in [k], the update at time t satisfies

k∑
i=1

yi(t)vi =
∑

i∈[k]∩S(t)

yi(t)vi =
∑

i∈[n]∩S(t)

yi(t)vi = By(t) = 0,

which ensures that the discrepancy of the prefix remains 0.
At the first time when S(t) is not contained in [k], there can be at most d floating

variables with indices in [k], and no matter how they are rounded in subsequent iterations,
the discrepancy incurred can be at most 2d.
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4 Partial Coloring Technique

The partial coloring technique is one of the most powerful and widely applicable technique
in discrepancy, and gives a very non-trivial way to go beyond the probabilistic method
and union bound. Let us first consider what a random coloring gives us, for a set system
U = [n] and S = {S1, . . . , Sm}.

Random Coloring. Suppose each element i ∈ [n] is colored independently −1 or +1
with probability 1/2. By standard Chernoff bounds, for any set S,

Pr[disc(S) ≥ ∆S ] ≤ 2 exp

(
−

∆2
S

2|S|

)
A union bound argument directly gives the following.

Theorem 4.1 (Union Bound.). Let ∆j > 0 be given for each set Sj, j ∈ [m]. If the ∆j

satisfy the condition ∑
j

2 exp

(
−

∆2
j

2|Sj |

)
< 1 (1)

then there is a coloring with discrepancy at most ∆j for each set Sj.

If the right hand side of (1) is say 0.9 (or 1 − n−O(1)), this gives a polynomial time
algorithm to find such a coloring.

Partial Coloring Lemma. The partial coloring lemma below looks similar, but can
give substantially better discrepancy bounds than Theorem 4.1.

Theorem 4.2. Let ∆j > 0 be given for each set Sj, j ∈ [m]. Suppose the ∆j satisfy the
condition ∑

j∈[m]

g

(
∆j√
|Sj |

)
≤ n

5
(2)

where

g(λ) =

{
Ke−λ

2/9 if λ > 0.1
K ln(λ−1) if λ ≤ 0.1

and K is some absolute constant. Then there is a partial coloring that assigns ±1 to at
least n/10 variables (and 0 to the rest), with discrepancy at most ∆j for each j ∈ [m].

A key difference from Theorem 4.1 is that the condition (2) has n/5 on the right side,
while (1) has 1. This gives substantially more power. For example, in Theorem 4.1 we
cannot set ∆j <

√
Sj even for a single set, while Theorem 4.2 allows us to set ∆j < 1 for

O(n/ log n) sets (which give a partial coloring with 0 discrepancy for all of those sets!).
The original proofs of Theorem 4.2 we all non-algorithmic, and based on the pigeonhole

method and counting. More recently, several algorithmic variants have been discovered,
and we shall consider these later.
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4.1 Applications

Spencer’s six standard deviations result. The partial coloring method was devel-
oped in the form above by Spencer [14], to show the following result, solving a problem
proposed by Erdös.

Theorem 4.3. Any set system on n elements and n sets has discrepancy O(
√
n).

A union bound argument gives the bound O(
√
n log n), which is actually tight for a

random coloring. So, Spencer’s result removes the
√

log n factor. This is the best possible
up to constants, as there exist set systems with discrepancy at least Ω(

√
n).

Proof. The coloring is constructed in phases i = 0, 1, . . ., where in each phase i we apply
the partial coloring lemma to the system restricted to the ni remaining uncolored elements.
So, n0 = n and ni+1 ≤ (0.9)ni and hence ni+1 ≤ (0.9)n.

As there are n sets and ni elements in phase i, setting ∆S = c(ni log(2n/ni))
1/2 for

each set S, with c large enough constant, satisfies (2) as,

ng(λ) ≤ nK exp

(
−λ

2

9

)
= Kn exp

(
−c

2

9
log

(
2n

ni

))
≤ Kn

( ni
2n

)c2/9
≤ ni

5
,

and so there is some partial coloring with discrepancy c(ni log(2n/ni))
1/2 for each set in

phase i. Summing up over the phases, the total discrepancy is at most

∑
i

c(ni log(2n/ni))
1/2 ≤

∑
i

c

(
n(0.9)i log

(
2n

n(0.9)i

))1/2

= O(n1/2)

More generally for m ≥ n, the method gives the bound O(
√
n log(m/n), which is also

tight up to O(1) factors.

Beck Fiala problem. A set system has degree k if each element lies in at most k sets.

Theorem 4.4. Any set system with degree k has discrepancy O(
√
k log n).

Proof. We will show that there exists a partial coloring with discrepancy O(
√
k). As there

are O(log n) partial coloring phases this will give the result. So we set ∆S = c
√
k for each

set S for some c = O(1), and show that the condition (2) holds.
This follows by noting that there are most nk/2` sets of size in [2`, 2`+1), as each

element lies in at most k sets. Using that a sets of size s ≤ k contributes e−Ω(k/s) to the
left hand side of (2), and O(ln(s/k)) if s > k, a simple but slightly tedious computation
(that we can leave as an exercise) gives the result.

Remark 4.5. Unlike in the Spencer’s result, here the O(
√
k) error does not decrease over

the partial coloring phases (as k does not reduce over the phases).
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Steinitz Problem. We show an O(
√
d log n) for discrepancy of prefix sums in the `∞

norm. For much more on other norms see [8, 2, 3]. It suffices to show the following.

Theorem 4.6. There is a partial coloring with discrepancy O(d1/2).

Remark 4.7. While Theorem 4.2 only considers set systems, the same result holds with
|Sj | replaced by ‖aj‖2 (the `2 norm of the j-th row of A).

We leave this as a guided exercise.

4.2 Proof of Partial Coloring Lemma

A nice exposition of Spencer’s original proof, based on the pigeonhole principle and the
entropy method is in [1]. Here we describe the independent proof due to Gluskin based
on convex geometry.

Geometric View of Discrepancy. The following is a simple but very useful observa-
tion that connects geometry to discrepancy.

Observation 4.8. The discrepancy of an m× n matrix A with rows ai is ∆ if and only
if the polytope P = {x : |aix| ≤ ∆, i ∈ [m]}, contains some point in {−1, 1}n.

So proving Theorem 4.2 is equivalent to showing that the polytope P = {x : |aix| ≤
∆i, i ∈ [m]}, contains some point in {−1, 0, 1}n with at least n/10 non-zero coordinates,
if ∆i for i ∈ [m] satisfy (2).

Gluskin’s Theorem. A convex body K is symmetric if x ∈ K implies −x ∈ K. The
standard gaussian measure on the real line is given by the probability density γ(x) =
(1/
√

2π)e−x
2/2. The n-dimensional gaussian measure is given by the density

γn(x1, . . . , xn) =
n∏
i=1

γ(xi) =
1

(2π)n/2
e−

∑
i x

2
i /2.

The gaussian measure γn has several interesting properties. In particular, it is rotationally
invariant, and only depends on the euclidean distance ‖x‖2.

Gluskin proved the following more general theorem, which as we show below, will
imply Theorem 4.2 (with different constants).

Theorem 4.9 (Gluskin [9]). Any symmetric convex body K in Rn with γn ≥ 2−n/5,
contains a {−1, 0, 1}n with at least n/10 non-zero coordinates.

The idea of the proof is simple. For x ∈ Rn, let Kx := K + x denote K shifted by x.
Consider the 2n copies Kx for x ∈ {−1/2, 1/2}n, then there is some point y ∈ Rn where
2Ω(n) copies overlap. So there exist x, x′ ∈ {−1/2, 1/2}n differing in Ω(n) coordinates such
that y ∈ Kx and y ∈ Kx′ . We then show that the point x − x′ ∈ {−1, 0, 1}n satisfies the
required conditions.

Before proving Theorem 4.9, we need some simple facts.
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Lemma 4.10. For any x ∈ Rn and any symmetric body K, γn(K + x) ≥ e−‖x‖2γn(K).

Proof. As K is symmetric, let us see how the average density of y and −y changes on
shifting by x.

1

2
(γn(y + x) + γn(x− y)) ≥ (γn(y − x)γn(y + x))1/2 (AM-GM)

= (2π)−n/2e−(‖x−y‖2+‖x+y‖2)/4 = e−‖x‖
2/2γn(y)

where the last step uses that ‖x−y‖2 = ‖x‖2+‖y‖2−2〈x, y〉 and similarly for ‖x+y‖2.

Lemma 4.11. Any subset of {0, 1}n of size 2n/2 contains some vector with

Let h(α) = α log2 α+ (1− α) log2(1− α) be the binary entropy function.

Lemma 4.12. Let X = {x : x ∈ {0, 1}n, ‖x‖1 ≤ αn}. Then |X| < 2h(α)n. In particular,
for α = 1/10, |X| ≤ 2n/2.

Proof. Let us sample a random vector Y = (Y1, . . . , Yn) in X. The entropy of Y is
H(Y ) = log |X|. By sub-additivity of entropy

H(Y ) ≤
∑
i

H(Yi) = nh(Y1) ≤ nh(α)

as each coordinate Yi has value 1 with probability at most α.

Proof. (Theorem 4.9) For x ∈ Rn, let Kx = {k+x : k ∈ K} denote the body K shifted by
x. Consider the 2n shifted bodies Kx for x ∈ {−1/2, 1/2}n. By Lemma 4.10, γn(Kx) ≥
e−n/8γn(K) for each such x. So the total gaussian measure of these 2n bodies is at least
2ne−n/8γn(K) ≥ 2n/2.

As γn(Rn) = 1, there must be some point y that lies in at least 2n/2 different Kx. By
Lemma 4.12, there exist some x, x′ with hamming distance at least n/10 such that y lies
in both Kx′ and Kx. We claim that z = x− x′) satisfies the conditions.

First, z has all coordinates in {−1, 0, 1} at least n/10 are non-zero. Second, as y = x+k
and y = x′+k′ for some k, k′ ∈ K, we have x−x′ = k−k′ ≤ 2K (as −k′ ∈ K by symmetry
of K) and hence z ∈ K.

Recovering the bound for Polytopes. Define a strip Sv,λ as 〈x, v〉 ≤ λ. The polytope
P is the intersection of strips ∩i∈[m]Sai,∆i . The lemma below lower bounds the Gaussian
measure of a convex body by a strip.

Lemma 4.13. (Sidak-Khatri) For any symmetric convex body K and slab S

γn(K ∩ S) ≥ γn(K)γn(S)

The proof is quite simple can be found here [8].
This gives that

γn(P ) ≥
∏
i

γn(Sai,∆i).
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Estimating Volume of P . We first give an estimate on the volume of a slab γn(Sai,∆i).
By rotational symmetry of the Gaussian, we can assume that ai = ‖ai‖2e1. So, for

∆i = λi‖ai‖2, the volume is about 1 − e−λ2i /2. Using 1 − ε ≈ e−ε. For large λi, this is
roughly exp(exp(−λ2

i /2).
On the other hand, for λi � 1, as the one dimensional gaussian measure roughly

uniformly distributed in an interval or size 1 around the origin, the volume of the slice is
roughly 1/λi.

So the condition, we need for γn(P ) ≥ 2−n/5, upon taking logarithm precisely becomes
(2).

5 Rothvoss’ Algorithm

Let K be the convex body with γ(K) ≥ 2−εn, for ε > 0 small enough. Let C = [−1, 1]n

be the cube.

Algorithm. Sample a random point according to γn. Find the closest point y ∈ K ∩C
to x. Output y.

Solving for y is a convex optimization problem, and so this gives an efficient algorithm.
Rothvoss showed that y gives the desired point.

Theorem 5.1 (Rothvoss [13]). With high probability y has at least Cε coordinates ±1.

The proof is a very elegant application of concentration of measure and Lemma 4.13.
It is very readable and we refer the reader to [13].

Another algorithm. A related algorithm due to [7] is the following:
Pick a random direction c and optimize

max c · y, y ∈ K ∩ C
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