Discrepancy and Optimization

Nikhil Bansal
IPCO Summer School (lecture 2)
www.win.tue.nl/~nikhil/ipco-slides.pdf
(notes coming)

Discrepancy

Universe: $\mathrm{U}=[1, \ldots, \mathrm{n}]$
Subsets: $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{m}}$
Color elements red/blue so each set is colored as evenly as possible.

Given χ : $[\mathrm{n}] \rightarrow\{-1,+1\}$
Disc $(\chi)=\max _{S}\left|\sum_{i \in S} \chi(i)\right|=\max _{S}|\chi(S)|$
Disc $($ set system $)=\min _{\chi} \max _{S}|\chi(S)|$

Matrix Notation

Incidence matrix $A=\left(\begin{array}{cccc}1 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0\end{array}\right) \quad \begin{aligned} & \text { Rows: sets } \\ & \text { Columns: elements }\end{aligned}$

Given any matrix A, find coloring $x \in\{-1,1\}^{n}$, to minimize $|A x|_{\infty}$

$$
\rightarrow(111)
$$

Applications

CS: Computational Geometry, Approximation, Complexity, Differential Privacy, Pseudo-Randomness, ...

Math: Combinatorics, Optimization, Finance, Dynamical Systems, Number Theory, Ramsey Theory, Algebra, Measure Theory, ...

Hereditary Discrepancy

Discrepancy a useful measure of complexity of a set system

But not so robust

Hereditary discrepancy:

$$
\text { herdisc }(\mathrm{U}, \mathrm{~S})=\max _{U^{\prime} \subseteq U} \quad \operatorname{disc}\left(\mathrm{U}^{\prime}, \mathrm{S}_{\mathrm{S}^{\prime}}\right)
$$

Robust version of discrepancy
(99% of problems: bounding disc $=$ bounding herdisc)

Rounding

Lovasz-Spencer-Vesztermgombi'86: Given any matrix A, and $x \in R^{n}$, can round x to $\tilde{x} \in Z^{n}$ s.t. $|A x-A \tilde{x}|_{\infty}<\operatorname{Herdisc}(A)$

Intuition: Discrepancy is like rounding $1 / 2$ integral solution to 0 or 1 .

Can do dependent (correlated) rounding based on A.

For approximation algorithms: need algorithms for discrepancy
Bin packing: OPT $+\tilde{O}(\log$ OPT $) \quad$ [Rothvoss'13]
$\operatorname{Herdisc}(\mathrm{A})=1$ iff A is TU matrix.

Rounding

Lovasz-Spencer-Vesztermgombi'86: Given any matrix A, and $x \in R^{n}$, can round x to $\tilde{x} \in Z^{n}$ s.t. $|A x-A \tilde{x}|_{\infty}<$ Herdisc(A)

Proof: Round the bits of x one by one.

x_{1} : blah $.0101101 \leftarrow \quad(-1)$ x_{2} : blah . 1101010
$x_{n}:$ blah $.0111101 \leftarrow \quad(+1)$
Key Point: Low discrepancy coloring guides our updates!

Error $=\operatorname{herdisc}(\mathrm{A})\left(\frac{1}{2^{k}}\right.$

Rounding

Only shows existence of good rounding

How to actually find it?

Thm [B'10]: Error $=O(\sqrt{\log m \log n})$ herdisc(A)

Ordering with small prefix sums

Vectors $v_{1}, \ldots, v_{n} \in R^{d}$

$$
|v|_{\infty} \leq 1 \quad \sum_{i} v_{i}=0
$$

Find a permutation π such that each prefix sum has small norm i.e. $\operatorname{Max}_{k}\left|v_{\pi(1)}+\ldots+v_{\pi(k)}\right|_{\infty}$ is minimized
$\mathrm{d}=1$ numbers in $[-1,1] \quad$ e.g. $0.7-0.2-0.9 \quad 0.8,0.7 \ldots$
What would a random ordering give?

$$
\mathrm{d}=2 \quad\left[\begin{array}{c}
0.7 \\
-0.4
\end{array}\right],\left[\begin{array}{c}
0.8 \\
0.6
\end{array}\right],\left[\begin{array}{c}
-0.8 \\
0.5
\end{array}\right], \ldots \quad \text { can we get } O(1)
$$

(Posed by Reimann, solved by Steinitz in 1913, called Steinitz problem)

Steinitz Problem

Given $v_{1}, \ldots, v_{n} \in R^{d}$ with $\sum_{i} v_{i}=\mathbf{0}$
Find permutation to minimize norm of prefix sums
$m(\pi)=\max _{k}\left|v_{\pi(1)}+\ldots+v_{\pi(k)}\right|$

Discrepancy of prefix sums: Given ordering find signs to minimize norm of signed prefix sums
$\pi \quad v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8}$

$$
v_{1} v_{3} v_{4} v_{8} v_{7} v_{6} v_{5} v_{2}
$$

$m(\pi)$

$$
\frac{m(\pi)+f(d)}{2}
$$

Sparsification

Original motivation: Numerical Integration/ Sampling How well can you approximate a region by discrete points?

Discrepancy:
Max over rectangles R
|(\# points in R) - (Area of R$) \mid$

Use this to sparsify
Quasi-Monte Carlo integration: Huge area (finance, ...)

Error $\mathrm{MC} \approx \frac{1}{\sqrt{n}}$
$\mathrm{QMC} \approx \frac{d i s c}{n}$

Tusnady's problem

Input: n points placed arbitrarily in a grid. Sets $=$ axis-parallel rectangles

Discrepancy: max over rect. R (|\# red in R - \# blue in $\mathrm{R} \mid$)

Random gives about $\mathrm{O}\left(\mathrm{n}^{1 / 2} \log ^{1 / 2} \mathrm{n}\right)$

Very long line of work
$\mathrm{O}\left(\log ^{4} \mathrm{n}\right)$ [Beck 80's]
$\mathrm{O}\left(\log ^{2.5} \mathrm{n}\right)$ [Matousek' 99$]$
$\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ [B., Garg' 16]
$\mathrm{O}\left(\log ^{1.5} \mathrm{n}\right)$ [Nikolov'17]

Questions around Discrepancy bounds

Combinatorial: Show good coloring exists
Algorithmic: Find coloring in poly time

Lower bounds on discrepancy
Approximating discrepancy

Combinatorial (3 generations)

0) Linear Algebra (Iterated Rounding)
[Steinitz, Beck-Fiala, Barany, ...]
1) Partial Coloring Method:

Beck/Spencer early 80's: Probabilistic Method + Pigeonhole Gluskin'87: Convex Geometric Approach

Very versatile (black-box)

Loss adds over $\mathrm{O}(\log \mathrm{n})$ iterations
2) Banaszczyk'98: Based on a deep convex geometric result Produces full coloring directly (also black-box)

Brief History (combinatorial)

Method	Tusnady (rectangles)	Steinitz (prefix sums)	Beck-Fiala (low deg. system)
Linear Algebra	$\log ^{4} n$	d	k
Partial Coloring	$\log ^{2.5} n$ $\left[\right.$ Matousek $\left.^{\prime} 99\right]$	$\mathrm{d}^{1 / 2} \log \mathrm{n}$	$\mathrm{k}^{1 / 2} \log \mathrm{n}$
Banaszczyk	$\log ^{1.5} n$ $[$ Nikolov'17]	$(\mathrm{d} \log \mathrm{n})^{1 / 2}$ $[$ Banaszczyk'12]	$(\mathrm{k} \log \mathrm{n})^{1 / 2}$ $[$ Banaszczyk'98]
Lower bound	$\log n$	$\mathrm{~d}^{1 / 2}$	$\mathrm{k}^{1 / 2}$

Brief History (algorithmic)

Partial Coloring now constructive
Bansal' 10: \quad SDP + Random walk
Lovett Meka' 12: Random walk + linear algebra
Rothvoss'14: Sample and Project (geometric)
Many others by now [Harvey, Schwartz, Singh], [Eldan, Singh]

Method	Tusnady (rectangles)	Steinitz (prefix sums)	Beck-Fiala (low deg. system)
Linear Algebra	$\log ^{4} n$	d	k
Partial Coloring	$\log ^{2.5} n$ $\left[\right.$ Matousek'99] 2	$\mathrm{d}^{1 / 2} \log \mathrm{n}$	$\mathrm{k}^{1 / 2} \log \mathrm{n}$
Banaszczyk	$\log ^{1.5} n$ $[$ Nikolov'17]	$(\mathrm{d} \log \mathrm{n})^{1 / 2}$ [Banaszczyk'12]	$(\mathrm{k} \log \mathrm{n})^{1 / 2}$ [Banaszczyk'98]

Algorithmic aspects (2)

Beck-Fiala (B.-Dadush-Garg'16) (tailor made algorithm)
General Banaszczyk (B.-Dadush-Garg-Lovett'18)

Method	Tusnady (rectangles)	Steinitz (prefix sums)	Beck-Fiala (low deg. system)
Linear Algebra	$\log ^{4} n$	d	K
Partial Coloring	$\log ^{2.5} n$ $[$ Matousek'99]	$\mathrm{d}^{1 / 2} \log \mathrm{n}$	$\mathrm{k}^{1 / 2} \log \mathrm{n}$
Banaszczyk	$\log ^{1.5} n \quad \log ^{2} n$ $[$ Nikolov'17] $[$ BDG16]	$(\mathrm{d} \log \mathrm{n})^{1 / 2}[\mathrm{BDGL}]$ $[$ Banaszczyk'12]	$(\mathrm{k} \log \mathrm{n})^{1 / 2}\left[\mathrm{BDG}^{\prime} 16\right]$ $[$ Banaszczyk'98] $]$
Lower bound	$\log n$	$\mathrm{~d}^{1 / 2}$	$\mathrm{k}^{1 / 2}$

Linear Algebraic approach

Start with $\mathrm{x}(0)=(0, \ldots, 0)$ coloring.

Update at each step t
If a variable reaches -1 or 1 , fixed forever.
$\mathrm{x}(\mathrm{t})=\mathrm{x}(\mathrm{t}-1)+\mathrm{y}(\mathrm{t})$
Update $\mathrm{y}(\mathrm{t})$ obtained by solving $\mathrm{By}(\mathrm{t})=0$
B cleverly chosen.

$\{-1,1\}^{n}$ cube

Beck-Fiala: $\mathrm{B}=$ rows with size $>\mathrm{k} \quad$ (on floating variables) Row has 0 discrepancy as long as it is big. (no control once it becomes of size $<=\mathrm{k}$).

Partial Coloring

Spencer's problem

Spencer Setting: Discrepancy of any set system on n elements and m sets?
[Spencer'85]: (independently by Gluskin'87)
For $\mathrm{m}=\mathrm{n}$ discrepancy $\leq 6 \mathrm{n}^{1 / 2}$

Tight: Cannot beat $0.5 \mathrm{n}^{1 / 2}$ (Hadamard Matrix).

Random coloring gives $\mathrm{O}(\mathrm{n} \log \mathrm{n})^{1 / 2}$
Proof: For set $S, \operatorname{Pr}\left[\operatorname{disc}(S) \approx c|S|^{1 / 2}\right] \approx \exp \left(-c^{2}\right)$ Set $\mathrm{c}=\mathrm{O}(\log \mathrm{n})^{1 / 2}$ and apply union bound.

Tight. Random gives $\Omega(\mathrm{n} \log \mathrm{n})^{1 / 2}$ with very high prob.

Beating random coloring

[Beck, Spencer 80's]: Given an $m \times n$ matrix A, there is a partial coloring satisfying $\quad\left|a_{i} x\right| \leq \lambda_{i}\left|a_{i}\right|_{2}$
provided $\sum_{i} g\left(\lambda_{i}\right) \leq \frac{n}{5}$

$$
\begin{aligned}
g\left(\lambda_{i}\right) & \approx \ln \left(\frac{1}{\lambda_{i}}\right) \text { if } \lambda_{i}<1 \\
& \approx e^{-\lambda_{i}^{2}} \quad \text { if } \lambda_{i} \geq 1
\end{aligned}
$$

Union bound: $\sum_{i} e^{-\lambda_{i}^{2}}<1$
$\mathrm{n} / 5$ vs 1 very powerful
Can demand discrepancy 0 for $\approx \Omega(n)$ rows. (while still having control on other rows).

Combines strengths of probability + linear algebra

Spencer's O(n $\left.{ }^{1 / 2}\right)$ result

Partial Coloring suffices: For any set system with m sets, there exists a coloring on $\geq n / 2$ elements with discrepancy

$$
\Delta=\mathrm{O}\left(\mathrm{n}^{1 / 2} \log ^{1 / 2}(2 \mathrm{~m} / \mathrm{n})\right) \quad\left[\text { For } \mathrm{m}=\mathrm{n}, \text { disc }=\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)\right]
$$

Algorithm for total coloring:

Repeatedly apply partial coloring lemma
Total discrepancy
$\mathrm{O}\left(\mathrm{n}^{1 / 2} \log ^{1 / 2} 2\right) \quad$ [Phase 1]
$+\mathrm{O}\left((\mathrm{n} / 2)^{1 / 2} \log ^{1 / 2} 4\right) \quad[$ Phase 2]
$+\mathrm{O}\left((\mathrm{n} / 4)^{1 / 2} \log ^{1 / 2} 8\right) \quad$ [Phase 3]
$+\ldots \quad=O\left(\mathrm{n}^{1 / 2}\right)$

Beck Fiala

Thm: Partial coloring $O\left(k^{1 / 2}\right)$, so Full coloring $O\left(k^{1 / 2} \log n\right)$

Total number of 1's in matrix $\leq n k$ Why can we set $\Delta=k^{1 / 2}$?

n sets of size k

$$
\mathrm{ng}(1) \quad \approx n
$$

n / t sets of size tk

$$
\frac{n}{t} g\left(\frac{1}{t^{\frac{1}{2}}}\right) \approx(n / t) \log t
$$

tn sets of size k / t

$$
\operatorname{tn} g\left(t^{1 / 2}\right) \approx \operatorname{tn} e^{-t}
$$

Proving Partial Coloring Lemma

A geometric view

Spencer'85: Any 0-1 matrix ($\mathrm{n} \times \mathrm{n}$) has disc $\leq 6 \sqrt{n}$
Gluskin'87: Convex geometric approach

Consider polytope $\mathrm{P}(\mathrm{t})=-t \mathbf{1} \leq A x \leq t \mathbf{1}$ $\mathrm{P}(\mathrm{t})$ contains a point in $\{-1,1\}^{n}$ for $\mathrm{t}=6 \sqrt{n}$

Gluskin'87: If K symmetric, convex with large (Gaussian) volume (> $2^{-n / 100}$) then K contains a point with many coordinates $\{-1,+1\}$
d-dim Gaussian Measure: $\gamma_{d}(x)=\exp \left(-|x|^{2} / 2\right)(2 \pi)^{-d / 2}$ $\gamma_{d}(K): \operatorname{Pr}\left[\left(y_{1}, \ldots, y_{m}\right) \in K\right]$ each y_{i} iid $\mathrm{N}(0,1)$

What is the Gaussian volume of $[-1,1]^{n}$ cube

A geometric view

Gluskin'87: If K symmetric, convex with large (Gaussian) volume ($>2^{-n / 100}$) then K contains a point with many coordinates $\{-1,+1\}$

Proof: Look at $\mathrm{K}+\mathrm{x}$ for all $x \in\{-1,1\}^{n}$
Total volume of shifts $=2^{\Omega(n)}$

$$
\gamma_{n}(K+x) \geq \gamma_{n}(K) \exp \left(-|x|^{2} / 2\right)
$$

Some point z lies in $2^{\Omega(n)}$ copies
$z=k+x$ and $z=k^{\prime}+x^{\prime}$ where x, x^{\prime} have large hamming distance Gives $\left(x-x^{\prime}\right) / 2=\left(k-k^{\prime}\right) / 2 \in K$.

Gluskin for Polytopes

Gluskin'87: If K symmetric, convex with large (Gaussian) volume (> $2^{-n / 100}$) then K contains a point with many coordinates $\{-1,+1\}$

Consider polytope $\mathrm{P}=\left\{\left|a_{i} x\right| \leq \Delta_{i}, i \in[m]\right\}$ For what Δ_{i} Gaussian volume large enough?

Sidak's Thm: $\gamma_{n}(K \cap S l a b) \geq \gamma_{n}(K) \gamma_{n}(S l a b)$

$\gamma_{n}(P) \geq \Pi_{i} \gamma_{n}\left(\right.$ Slab $\left._{i}\right) \quad$ Slab $_{i}=\left|a_{i} x\right| \leq t$

Gaussian correlation Thm (Royen'14): Any convex symmetric K, S $\gamma_{n}(K \cap S) \geq \gamma_{n}(K) \gamma_{n}(S)$

Volume of a slab

Sidak's Thm: $\gamma_{n}(P) \geq \Pi_{i} \gamma_{n}\left(\right.$ Slab $\left._{i}\right) \quad$ Slab $_{i}=\left|a_{i} x\right| \leq t$

Useful to normalize $t=\lambda\left|a_{i}\right|_{2}$

Lemma: $\gamma_{n}(S l a b)=\exp (-g(\lambda))$
Proof: Can assume $a_{i}=\left|a_{i}\right| e_{1}$ (rotational invariance of Gaussian)

$$
\begin{aligned}
\operatorname{Pr}\left[\left|a_{i} x\right| \leq \lambda\left|a_{i}\right|_{2}\right]=\operatorname{Pr}\left[g_{1} \leq \lambda\right] & =1-\exp \left(-\lambda^{2}\right) & & \lambda \geq 1 \\
& \approx \lambda & & \lambda<1
\end{aligned}
$$

Sidak's Lemma, $\gamma_{n}(P) \geq 2^{-n / 100}$ gives the result.

Algorithmic Partial Coloring

Useful View

Independent rounding.
Cube: $\{-1,+1\}^{\mathrm{n}}$
A (complicated) view
Brownian motion in cube.

Same as random coloring
Each coordinate independent

Useful View

If additional constraints. Can tailor walk accordingly.

Pick covariance matrix for Δx^{t} (slow down towards bad regions)

Design barrier functions

Lovett Meka Algorithm

Random walk, $\gamma \mathrm{N}(0,1)$ in each dimension
a) Fix j if $x_{j}= \pm 1$
b) If row a_{i} gets tight $\left(\operatorname{disc}\left(a_{i}\right)=\lambda_{i}\left|a_{i}\right|_{2}\right)$

Move in subspace $a_{i} \mathrm{x}=\lambda_{i}\left|a_{i}\right|_{2}$
(not violate discrepancy)

Thm [LM' 12] : Given an $\mathrm{m} \times \mathrm{n}$ matrix A, can a partial coloring $x \in[-1,1]^{n} \quad$ with $\Omega(n)$ of them ± 1
$\left|a_{i} x\right| \leq \lambda_{i}\left|a_{i}\right|_{2}$ for each row i, provided $\sum_{i} e^{-\lambda_{i}^{2}} \leq \frac{n}{5}$

Lovett Meka Algorithm

Random walk, $\gamma \mathrm{N}(0,1)$ in each dimension
a) Fix j if $x_{j}= \pm 1$
b) If row a_{i} gets tight $\left(\operatorname{disc}\left(a_{i}\right)=\lambda_{i}\left|a_{i}\right|_{2}\right)$

Move in subspace $a_{i} \mathrm{x}=\lambda_{i}\left|a_{i}\right|_{2}$
(not violate discrepancy)

Idea: Walk makes progress as long as dimension $=\Omega(n)$
After $\frac{10}{\gamma^{2}}$ steps: $\Omega(n)$ variables must have hit ± 1
$\operatorname{Pr}\left[\right.$ Row a_{i} tight $] \approx \exp \left(-\lambda_{i}^{2}\right)$
As $\sum_{i} \exp \left(-\lambda_{i}^{2}\right) \leq \frac{n}{5}$
so $\mathrm{n} / 5$ tight rows in expectation

Another Algorithm

(general convex bodies, not just polytopes)

Algorithmic version

Rothvoss' 14 : Pick a random y , return closest point x in $\mathrm{K} \cap[-1,1]^{n}$
Idea: Measure concentration
If $\gamma_{n}(K) \geq 1 / 2$
$\gamma_{n}\left(K+t B_{2}\right) \geq 1-e^{-t^{2} / 2} \quad$ (halfspace)

$$
\begin{array}{lc}
\gamma_{n}(K) \geq 2^{-\epsilon n} & \operatorname{dist}(\mathrm{y}, \mathrm{~K}) \approx(\epsilon n)^{1 / 2} \\
& \operatorname{dist}(\mathrm{y}, \operatorname{Cube}) \approx \sqrt{n} \\
& \operatorname{So~} \operatorname{dist}\left(\mathrm{y}, \mathrm{~K} \cap[-1,1]^{n}\right) \geq \sqrt{n}
\end{array}
$$

Suppose x has only δn coordinates ± 1.
Would get same x if body $K^{\prime}=K \cap \delta n$ slabs
But by Sidak $\gamma_{n}\left(K^{\prime}\right) \approx 2^{-(\epsilon+\delta) n}$ so $\operatorname{dist}\left(y, K^{\prime}\right) \approx((\epsilon+\delta) n)^{1 / 2}$
(gives contradiction)

Partial Coloring

Eldan, Singh' 14 : Pick a random direction c; optimize max $c \cdot x$ over $\mathrm{K} \cap[-1,1]^{n}$

Approximating Discrepancy

Vector Discrepancy

Exact: Min t
$-t \leq \sum_{j} a_{i j} x_{j} \leq t \quad$ for all rows i
$x_{j} \in\{-1,1\}$
for each j

SDP: vecdisc(A) $\min t$
$\left|\sum_{i} a_{i j} v_{j}\right|_{2} \leq t \quad$ for all rows i
$\left|v_{j}\right|_{2}=1 \quad$ for each j

Is vecdisc a good relaxation?

Not directly. vecdisc(A) $=0$ even if $\operatorname{disc}(A)$ very large
[Charikar, Newman, Nikolov'11]
NP-Hard: Whether $\operatorname{disc}(\mathrm{A})=0$ or $\Omega(\sqrt{n})$ for Spencer's setting?

Also implies vecdisc not a good relaxation.

There must exist set systems where $\operatorname{disc}(\mathrm{A})=\Omega(\sqrt{n})$
(but any polynomial time computable function returns 0)

Still SDP can be useful

Discrepancy a useful measure of complexity of a set system

But not so robust

Let hervecdisc(A) $=\max _{S} \quad \operatorname{vecdisc}\left(A_{\mid S}\right)$
Hervecdisc $(\mathrm{A}) \leq$ herdisc (A)
$\operatorname{Thm}\left[\mathrm{B}^{\prime} 10\right]: \operatorname{Algorithm} \operatorname{disc}(\mathrm{A})=O(\sqrt{\log m \log n})$ hervecdisc(A)

Rounding Application

Lovasz-Spencer-Vesztermgombi' 86 : Given any matrix A, and $x \in$ R^{n}, can round x to $\tilde{x} \in Z^{n}$ s.t. $|A x-A \tilde{x}|_{\infty}<\operatorname{Herdisc}(A)$

Gives algorithmic $|A x-A \tilde{x}|_{\infty}<O(\sqrt{\log m \log n}) \operatorname{Herdisc}(A)$

Algorithm (at high level)

Cube: $\{-1,+1\}^{\mathrm{n}}$

Each dimension: An Element Each vertex: A Coloring

Algorithm: "Sticky" random walk
Each step generated by rounding a suitable SDP Move in various dimensions correlated, e.g. $\delta_{1}^{\mathrm{t}}+\delta^{\mathrm{t}} \approx 0$

Analysis: Few steps to reach a vertex (walk has high variance) $\operatorname{Disc}\left(\mathrm{S}_{\mathrm{i}}\right)$ does a random walk (with low variance)

An SDP

Hereditary disc. $\lambda \Rightarrow$ the following SDP is always feasible

SDP:

Low discrepancy: $\left|\sum_{i \in S_{j}} \mathrm{v}_{\mathrm{i}}\right|^{2} \leq \lambda^{2}$

$$
\left|v_{i}\right|^{2}=1
$$

Rounding:

Obtain $v_{i} \in R^{n}$

Pick random Gaussian $g=\left(g_{1}, \mathrm{~g}_{2}, \ldots, \mathrm{~g}_{\mathrm{n}}\right)$
each coordinate g_{i} is iid $N(0,1)$

For each i, consider $\eta_{i}=g \cdot v_{i}$

Properties of Rounding

Lemma: If $g \in R^{n}$ is random Gaussian. For any $v \in R^{n}$, $\mathrm{g} \cdot \mathrm{v}$ is distributed as $\mathrm{N}\left(0,|\mathrm{v}|^{2}\right)$
Pf: $\quad \mathrm{N}\left(0, \mathrm{a}^{2}\right)+\mathrm{N}\left(0, \mathrm{~b}^{2}\right)=\mathrm{N}\left(0, \mathrm{a}^{2}+\mathrm{b}^{2}\right) \quad \mathrm{g} \cdot \mathrm{v}=\sum_{\mathrm{i}} \mathrm{v}(\mathrm{i}) \mathrm{g}_{\mathrm{i}} \sim \mathrm{N}\left(0, \sum_{\mathrm{i}} \mathrm{v}(\mathrm{i})^{2}\right)$

Recall: $\eta_{\mathrm{i}}=\mathrm{g} \cdot \mathrm{v}_{\mathrm{i}}$

SDP:

1. Each $\eta_{\mathrm{i}} \sim \mathrm{N}(0,1)$
2. For each set S,

$$
\begin{aligned}
& \left|v_{i}\right|^{2}=1 \\
& \left|\sum_{i \in S} v_{i}\right|^{2} \leq \lambda^{2}
\end{aligned}
$$

$\sum_{\mathrm{i} \in \mathrm{S}} \eta_{\mathrm{i}}=\mathrm{g} \cdot\left(\sum_{\mathrm{i} \in \mathrm{S}} \mathrm{v}_{\mathrm{i}}\right) \sim \mathrm{N}\left(0, \leq \lambda^{2}\right)$
(std deviation $\leq \lambda$)
η 's mimics a low discrepancy coloring (but is not $\{-1,+1\}$)

Algorithm Overview

Construct coloring iteratively.
Initially: Start with coloring $\mathrm{x}_{0}=(0,0,0, \ldots, 0)$ at $\mathrm{t}=0$.
At Time t : Update coloring as $\mathrm{x}_{\mathrm{t}}=\mathrm{x}_{\mathrm{t}-1}+\gamma\left(\eta_{1}^{\mathrm{t}}, \ldots, \eta_{\mathrm{n}}^{\mathrm{t}}\right)$
(γ tiny: 1/n suffices)

$\mathrm{x}_{\mathrm{t}}(\mathrm{i})=\gamma\left(\eta_{\mathrm{i}}^{1}+\eta_{\mathrm{i}}^{2}+\ldots+\eta_{\mathrm{i}}^{\mathrm{t}}\right)$
Color of element i: Does random walk over time with step size $\approx \gamma \mathrm{N}(0,1)$

Fixed if reaches -1 or +1 .

Set $S: \quad x_{t}(S)=\sum_{i \in S} x_{t}(i)$ does a random walk w/ step $\gamma N\left(0, \leq \lambda^{2}\right)$

Analysis

Consider time $\mathrm{T}=\mathrm{O}\left(1 / \gamma^{2}\right)$

Claim 1: With prob. $1 / 2$, at least $\mathrm{n} / 2$ variables reach -1 or +1 . Pf: Each element doing random walk with size $\approx \gamma$.
\Rightarrow Everything colored in $\mathrm{O}(\log \mathrm{n})$ rounds.

Claim 2: Each set has $O(\lambda)$ discrepancy in expectation per round. Pf: For each $S, x_{t}(S)$ doing random walk with step size $\approx \gamma \lambda$

Log n rounds + Union bounds over m sets gives $\mathrm{O}\left(\lambda(\log n \log m)^{1 / 2}\right)$ bound

Recap

At each step of walk, formulate SDP on unfixed variables. SDP is feasible
Gaussian Rounding -> Step of walk

Properties of walk:
High Variance -> Quick convergence
Low variance for discrepancy on sets -> Low discrepancy

Approximating Herdisc

CNN'11: Discrepancy was hard to approximate (not very robust)

Can we approximate herdisc(A)
(not even clear if in NP, do to check if herdisc(A) $\leq t$)
$\operatorname{Hervecdisc}(A) \leq \operatorname{herdisc}(A) \leq O\left((\log n \log m)^{1 / 2}\right) \operatorname{Hervecdisc}(A)$
For any restriction $A_{\mid S}$, can find coloring of S
With discrepancy $O\left((\log n \log m)^{1 / 2}\right)$ hervecdisc (A)

But: Not clear how to compute hervecdisc(A) efficiently.

Matousek Lower Bound

Thm (Lovasz Spencer Vesztergombi'86): $\operatorname{herdisc}(A) \geq \operatorname{detlb}(\mathrm{A})$ $\operatorname{detlb}(\mathrm{A}): \max _{k} \max _{\{k \times k \text { submatrix } B \text { of } A\}} \operatorname{det}(B)^{1 / k}$

Conjecture (LSV'86): Herdisc $\leq \mathrm{O}$ (1) detlb

Remark: For TU Matrices, $\operatorname{Herdisc}(\mathrm{A})=1, \operatorname{detlb}=1$
(every submatrix has det $-1,0$ or +1)

Detlb

Hoffman: Detlb(A) ≤ 2
$\operatorname{herdisc}(A) \geq\left(\frac{\log n}{\log \log n}\right)$
Palvolgyi'11: $\Omega(\log n)$ gap

Matousek'11: herdisc(A) $\leq \mathrm{O}(\log \mathrm{n} \sqrt{\log m})$ detlb.

Idea: Algorithm -> hervecdisc is within log of herdisc SDP Duality -> Dual Witness for large hervecdisc(A). Dual Witness -> Submatrix with large determinant.

For a matrix A , let $\mathrm{r}(\mathrm{A})=$ max row length (ℓ_{2} norm)

$$
\mathrm{c}(\mathrm{~A})=\text { max column length }
$$

$\gamma_{2}(A)=\min r(B) c(C)$ over all factorizations $A=B C$

Theorem: $\frac{1}{\log \mathrm{~m}} \gamma_{2}(A) \leq \operatorname{herdisc}(\mathrm{A}) \leq \gamma_{2}(A) \sqrt{\log m}$
γ_{2} is computable using an SDP (can assume $\mathrm{r}(\mathrm{B})=\mathrm{c}(\mathrm{C})$)
$A_{i j}=w_{i} \cdot v_{j}$
$\left|w_{i}\right|_{2} \leq t, \quad\left|v_{j}\right|_{2} \leq t \quad$ for all $i \in[m], j \in[n]$

Beyond Partial Coloring

Annoying loss of $\mathrm{O}(\log n)$ to get full coloring

Ideal case

Beck-Fiala Setting: At most $\mathrm{n} / 10$ big (>10k) sets

Partial Coloring: 0 for big sets.
About $s^{1 / 2}$ for small sets of size s.
"Ideal" life cycle of a set

big
\square Size $=k$
\square

Size k/2

\square Size k/4

Ideal case: Discrepancy $=k^{1 / 2}+(k / 2)^{1 / 2}+(k / 4)^{1 / 2}+\ldots$

What can go wrong

\square Size $=k$

$\square \quad$ Size $=\mathrm{k}-2 k^{1 / 2}$

Trouble: A set can get $k^{1 / 2}$ discrepancy, but very few elements colored.

Banaszczyk's full coloring method

Discrepancy

Given an $m \times n$ matrix A, find $x \in\{-1,1\}^{n}$, to minimize $\operatorname{disc}(\mathrm{A})=|A x|_{\infty}$
Incidence matrix $A=\left(\begin{array}{cccc}1 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \text { Rows: sets } \\ \text { Columns: elements } & 1 & \cdots & 0\end{array}\right)$

Vector balancing view: Given vectors $v_{1}, \ldots, v_{n} \in R^{m}$ find $x \in\{-1,1\}^{n}$ to minimize $\left|\sum_{i} x_{i} v_{i}\right|_{\infty}$

Banaszczyk’s Theorem

Thm: Let A have columns $v_{1}, \ldots, v_{n} \in R^{m},\left|v_{i}\right|_{2} \leq 1 / 5$
$\mathrm{K}=$ symmetric convex body with $\gamma_{m}(K) \geq \frac{1}{2}$
$\exists x \in\{-1,1\}^{n}$ s.t. $\mathrm{Ax} \in K$

Banaszczyk’s Theorem

Cube: $\mathrm{K}=\mathrm{O}(\log m)^{1 / 2}[-1,1]^{m} \quad \gamma_{\mathrm{m}}(\mathrm{K}) \geq 1 / 2$

Gives $O(k \log n)^{1 / 2}$ for Beck-Fiala easily

Scale matrix by $\frac{1}{k^{1 / 2}} \quad$ (length of columns ≤ 1)
\exists signed sum $\mathrm{w} / \ell_{\infty}$-norm $\mathrm{O}(\log m)^{1 / 2}$
(and $m \leq n t)$

Surprising results for various bodies K.

Proof idea

Given v_{1}, \ldots, v_{n}, each $\left|v_{i}\right|<1 / 5 . \quad \gamma_{m}(K) \geq \frac{1}{2}$ Goal: Find signing $\sum_{i} x_{i} v_{i} \in K$

Key observation: Signing exists iff Some signing of v_{2}, \ldots, v_{n} with sum in $\left(K+v_{1}\right) \cup\left(K-v_{1}\right)$.

Convexify:

Remove regions of K width $<2\left|v_{1}\right|$ along v_{1}
Lose and gain volume. (non-trivial) computation to show volume stays $\geq 1 / 2$

Algorithmic history

Banaszczyk based approaches:
[B., Dadush, Garg' 16]: $O(\log n)^{1 / 2}$ algorithm for Komlos problem
[B., Dadush, Garg, Lovett 18]: algorithm for general Banaszczyk.

Recall trouble with Partial Coloring

Beck Fiala Setting

\square
\square
\square

Trouble: A set can get $t^{1 / 2}$ discrepancy, but very few elements colored.

Lovett Meka Algorithm

Random walk, $\gamma \mathrm{N}(0,1)$ in each dimension
a) Fix j if $x_{j}= \pm 1$
b) If row a_{i} gets tight $\left(\operatorname{disc}\left(a_{i}\right)=\lambda_{i}\left|a_{i}\right|_{2}\right)$

Move in subspace $a_{i} \mathrm{X}=\lambda_{i}\left|a_{i}\right|_{2}$
(not violate discrepancy)

Correlations in Lovett-Meka

Consider set $\mathrm{S}=\{1,2, \ldots, \mathrm{k}\}$

Ideal case: If randomly color each element

$$
\text { Progress }=\mathrm{k} \quad \text { discrepancy } \approx k^{1 / 2}
$$

Suppose move in subspace $x_{1}=x_{2}=\cdots=x_{k}$

$$
\text { E.g. if have constraints } x_{1}-x_{2}=0, \quad x_{2}-x_{3}=0, \ldots
$$

Can only color all +1 or all -1 .
Progress $=\mathrm{k} \quad$ discrepancy $=\mathrm{k}$

In Lovett-Meka, such sets hit subspace at $k^{1 / 2}$ discrepancy, but progress is only $k^{1 / 2}$

Suggests a solution

Used for algorithmic $O\left(k^{1 / 2} \log ^{1 / 2} n\right)$ bound for Beck-Fiala
[B., Dadush, Garg'16]

Can we design a walk that moves in some subspace, but still looks quite "random"?
E.g. If constrained to move in subspace $x_{1}=x_{2}=\cdots=x_{k}$

Just set $\Delta x_{i}=0$ for $\mathrm{i}=1,2, . ., \mathrm{t}$
Can still do a random walk for $\mathrm{i}=\mathrm{k}+1, . ., \mathrm{n}$.

Smarter covariance matrices

W: arbitrary subspace $\operatorname{dim}(\mathrm{W}) \leq(1-\delta) n$
Need to walk in W^{\perp}

Property 1: $w^{T}(\Delta x)=0 \quad \forall w \in W$ -1/+1 cube

$$
E\left[w^{T} \Delta x \Delta x^{T} w\right]=0 \quad \text { or } \quad w^{T} Y w=0
$$

Covariance matrix $Y(i, j)=E\left[\Delta x_{i}, \Delta x_{j}\right]$

Property 2: Still looks almost independent.
For any direction $c=\left(c_{1}, \ldots, c_{n}\right)$

$$
\begin{aligned}
& E\left[\left(\sum_{i} c_{i} \Delta x_{i}\right)^{2}\right] \leq \frac{1}{\delta} \sum_{i} c_{i}^{2} E\left[\Delta x_{i}^{2}\right] \\
& c^{T} Y c \leq\left(\frac{1}{\delta}\right) c^{T} \operatorname{diag}(Y) c \quad \forall c \in R^{n} . \\
& Y \preccurlyeq\left(\frac{1}{\delta}\right) \operatorname{diag}(Y)
\end{aligned}
$$

Can find such a good walk

Key Thm: If $\operatorname{dim}(W) \leq(1-\delta) n$
There is a non-zero solution Y to the SDP
$w^{T} Y w=0 \quad \forall w \in W$
$Y \preccurlyeq\left(\frac{1}{\delta}\right) \operatorname{diag}(Y)$
$Y \succcurlyeq 0$
Proof: Using SDP duality

Use this to design the walk $\Delta x=Y^{1 / 2} g$

Getting Concentration

Thm: Upon termination the $0-1$ solution satisfies concentration for every linear constraint

Fix $c=\left(c_{1}, \ldots, c_{n}\right)$. Then $c x$ evolves as a martingale

Key idea: Use sub-isotropic updates to control error during walk

Need "Freedman type" martingale analysis must use intrinsic variance (avoid dependence on time steps).

Potential: $\quad \sum_{i} c_{i} x_{i}-\lambda \sum_{i} c_{i}^{2}\left(1-x_{i}^{2}\right) \quad$ evolves nicely.

Algorithm for Beck-Fiala

Time t : If n_{t} variables alive, at most $n_{t} / 10$ big rows
Pick $\mathrm{W}=$ span of these constraints.

Run the SDP walk.
No phases, continue till all variables $-1 /+1$ (i.e. $n_{t}=0$).

If row big $=$ discrepancy 0
When becomes small, just like a random walk.
"Freedman type" martingale analysis (avoid dependence on time steps), gives the result.

General Banaszczyk

Making Banaszczyk Algorithmic

Thm [Banaszczyk 97]: Input $v_{1}, \ldots, v_{n} \in R^{d},\left|v_{i}\right|_{2} \leq 1$ \forall convex body K , with $\gamma_{d}(K) \geq \frac{1}{2}$
\exists coloring $x \in\{-1,1\}^{n}$ s.t. $\sum_{i} x(i) v_{i} \in 5 K$
K

Coloring depends on the convex body K.
How is K specified? (input size could be exponential)

Idea [Dadush, Garg, Lovett, Nikolov'16]: Minimax Thm. (2-player game) Universal distribution on colorings that works for all convex bodies

Equivalent formulation

Alternate formulation [Dadush, Garg, Lovett, Nikolov'16]:
\exists distribution on colorings $x \in\{-1,1\}^{n}$,
s.t. $\mathrm{Y}=\sum_{i} x(i) v_{i}$ is $\approx \underset{\sim}{\mathrm{N}}(0,1)$ in every direction
$\mathrm{O}(1)$ subgaussian
$Y \in R^{d}$ is σ-subgaussian if in all directions $\theta \in R^{d},|\theta|_{2}=1$,
$\langle\theta, Y\rangle$ has same tails as $N\left(0, \sigma^{2}\right) \quad$ i.e. $\operatorname{Pr}[|\langle\theta, Y\rangle| \geq \lambda] \leq 2 \exp \left(-\lambda^{2} / 2 \sigma^{2}\right)$

Lemma: $Y \in K$ (for K convex, $\gamma_{d}(K) \geq \frac{1}{2}$) with constant prob.

Suffices to sample x implicitly from such a distribution.

Goal: \exists distribution on colorings $x \in\{-1,1\}^{n}$,
s.t. random vector $\mathrm{Y}=\sum_{i} x(i) v_{i}$ is $\mathrm{O}(1)$ subgaussian
$\forall \theta \in S^{m-1}, \quad\langle Y, \theta\rangle=\sum_{i} x(i)\left\langle v_{i}, \theta\right\rangle$ decays like $\mathrm{N}(0,1)$.

Special cases:

1) v_{i} are Orthogonal: Random \pm coloring x_{i} works

As $\sum_{i} c_{i} x_{i} \approx N\left(0, \sum_{i} c_{i}^{2}\right)$

$\operatorname{Var}(\langle Y, \theta\rangle)=\sum_{i}\left\langle v_{i}, \theta\right\rangle^{2} \leq|\theta|^{2} \leq 1$
2) All equal vectors

$v_{1}=\cdots=v_{n}=v$ random coloring bad: $\Omega(\sqrt{n})$ in direction v
Need dependent coloring: $n / 2+1$'s and $n / 2-1$'s

Gram Schmidt Walk

Algorithm: Consider vectors v_{1}, \ldots, v_{n} Write $v_{n}=c_{1} v_{1}+\ldots c_{n-1} v_{n-1}+w_{n}$
 where $w_{n} \in \operatorname{span}\left(v_{1}, \ldots, v_{n-1}\right)^{\perp}$

Let direction $c=\left(c_{1}, \ldots, c_{n-1},-1\right)$
Update coloring x as $\delta \mathrm{c}$ s.t. $E[\delta]=0$
i.e. $\Delta x=+\delta_{1} c$ or $-\delta_{2} c$

Key Point: $\Delta Y=\sum_{i} \Delta x(i) v_{i}=\delta\left(\sum_{i=1}^{n-1} c_{i} v_{i}-v_{n}\right)=-\delta w_{n}$.

As $\delta \leq 2$ and $E[\delta]=0$
$\Delta\langle Y, \theta\rangle$ evolves as a martingale with variance $\mathrm{O}\left(\left\langle\theta, w_{n}\right\rangle^{2}\right)$

Proof Idea (ideal case)

v_{1}, \ldots, v_{n}
Pivot v_{n}
Pivot v_{n-1}

Suppose pivot is the one to freeze every time
$\Delta Y: \delta_{n} w_{n}$
$\Delta Y: \delta_{n-1} w_{n-1}$
w_{1}, \ldots, w_{n} obtained by Gram Schmidt process.

$$
\begin{array}{ll}
w_{1}=v_{1} & \widehat{w}_{1}=w_{1} /\left|w_{1}\right| \\
w_{2}=v_{2}-\left\langle v_{2}, \widehat{w}_{1}\right\rangle \widehat{w}_{1} & \widehat{w}_{2}=w_{2} /\left|w_{2}\right| \\
w_{3}=v_{3}-\left\langle v_{3}, \widehat{w}_{1}\right\rangle \widehat{w}_{1}-\left\langle v_{3}, \widehat{w}_{2}\right\rangle \widehat{w}_{2} & \widehat{w}_{3}=w_{3} /\left|w_{3}\right| \\
Y & =\delta_{n} w_{n}+\delta_{n-1} w_{n-1}+\cdots+\delta_{1} w_{1}
\end{array} \quad .
$$

Some more details

$v_{1}, \ldots, x_{5}, \ldots, v_{n}$
No reason why pivot should get fixed.

Suppose v_{5} gets fixed.
w_{n} becomes w_{n}^{\prime} which can be longer.

Proof idea: Can charge increase in $\left|w_{n}\right|^{2}$ to v_{5} disappearing.

Track evolution of $E\left[e^{\lambda\langle\theta, Y\rangle}\right]$ by a suitable potential and show $E\left[e^{\lambda\langle\theta, Y\rangle}\right]=e^{O\left(\lambda^{2}\right)} \quad$ for each θ, λ
(Recall Z is σ-subgaussian iff $E\left[e^{\lambda Z}\right]=e^{O\left(\lambda^{2} \sigma^{2}\right)}$ for all λ)

Thanks for your attention!

