Discrepancy and Optimization

Nikhil Bansal IPCO Summer School (lecture 2) www.win.tue.nl/~nikhil/ipco-slides.pdf (notes coming)

Discrepancy

Universe: U = [1,...,n]Subsets: $S_1, S_2, ..., S_m$

Color elements red/blue so each set is colored as evenly as possible.

Given χ : [n] \rightarrow { -1,+1} Disc (χ) = max_S $|\Sigma_{i \in S} \chi(i)| = max_S |\chi(S)|$

Disc (set system) = $\min_{\chi} \max_{S} |\chi(S)|$

Matrix Notation

Incidence matrix
$$A = \begin{pmatrix} 1 & 0 & \cdots & 1 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 0 \end{pmatrix}$$

Rows: sets Columns: elements

Given any matrix A, find coloring $x \in \{-1,1\}^n$, to minimize $|Ax|_{\infty}$

Applications

CS: Computational Geometry, Approximation, Complexity, Differential Privacy, Pseudo-Randomness, ...

Math: Combinatorics, Optimization, Finance, Dynamical Systems, Number Theory, Ramsey Theory, Algebra, Measure Theory, ...

Hereditary Discrepancy

Discrepancy a useful measure of <u>complexity</u> of a set system

But not so robust

$$S_i = A_i \cup A'_i$$

Discrepancy = 0

Hereditary discrepancy:

herdisc (U,S) = $\max_{U'\subseteq U}$ disc (U', S_{|U'})

Robust version of discrepancy (99% of problems: bounding disc = bounding herdisc)

Rounding

Lovasz-Spencer-Vesztermgombi'86: Given any matrix A, and $x \in \mathbb{R}^n$, can round x to $\tilde{x} \in \mathbb{Z}^n$

s.t. $|Ax - A\tilde{x}|_{\infty} < \text{Herdisc}(A)$

Intuition: Discrepancy is like rounding $\frac{1}{2}$ integral solution to 0 or 1.

Can do dependent (correlated) rounding based on A.

For approximation algorithms: need algorithms for discrepancy Bin packing: OPT + $\tilde{O}(\log \text{OPT})$ [Rothvoss'13]

Herdisc(A) = 1 iff A is TU matrix.

Rounding

Lovasz-Spencer-Vesztermgombi'86: Given any matrix A, and $x \in \mathbb{R}^n$, can round x to $\tilde{x} \in \mathbb{Z}^n$ s.t. $|Ax - A\tilde{x}|_{\infty} < \text{Herdisc}(A)$

Proof: Round the bits of x one by one.

 x_1 : blah .0101101 \leftarrow (-1) x_2 : blah .1101010

 x_n : blah .0111101 \leftarrow (+1)

Key Point: Low discrepancy coloring guides our updates!

Error = herdisc(A)
$$\left(\frac{1}{2^k}\right)$$

Rounding

Only shows existence of good rounding

How to actually find it?

Thm [B'10]: Error = $O\left(\sqrt{\log m \log n}\right)$ herdisc(A)

Ordering with small prefix sums

Vectors $v_1, \dots, v_n \in \mathbb{R}^d$ $|v|_{\infty} \le 1$ $\sum_i v_i = 0$

Find a permutation π such that each prefix sum has small norm i.e. $Max_k |v_{\pi(1)} + ... + v_{\pi(k)}|_{\infty}$ is minimized

d=1 numbers in [-1,1] e.g. 0.7 -0.2 -0.9 0.8, 0.7 ...

What would a random ordering give?

d=2
$$\begin{bmatrix} 0.7 \\ -0.4 \end{bmatrix}, \begin{bmatrix} 0.8 \\ 0.6 \end{bmatrix}, \begin{bmatrix} -0.8 \\ 0.5 \end{bmatrix}, \dots$$
 can we get $O(1)$

(Posed by Reimann, solved by Steinitz in 1913, called Steinitz problem)

Steinitz Problem

Given $v_1, ..., v_n \in \mathbb{R}^d$ with $\sum_i v_i = \mathbf{0}$ Find permutation to minimize norm of prefix sums $m(\pi) = \max_k |v_{\pi(1)} + ... + v_{\pi(k)}|$

Discrepancy of prefix sums: Given ordering find signs to minimize norm of signed prefix sums

Sparsification

Original motivation: Numerical Integration/ Sampling How well can you approximate a region by discrete points ?

Discrepancy: Max over rectangles R |(# points in R) – (Area of R)|

Use this to sparsify Quasi-Monte Carlo integration: Huge area (finance, ...)

Error MC
$$\approx \frac{1}{\sqrt{n}}$$
 QMC $\approx \frac{disc}{n}$

Tusnady's problem

Input: n points placed arbitrarily in a grid. Sets = axis-parallel rectangles

Discrepancy: max over rect. R (|# red in R - # blue in R|)

Random gives about $O(n^{1/2} \log^{1/2} n)$

Very long line of work O(log⁴ n) [Beck 80's]

O(log^{2.5} n) [Matousek'99] O(log² n) [B., Garg'16] O(log^{1.5} n) [Nikolov'17]

Questions around Discrepancy bounds

Combinatorial: Show good coloring exists Algorithmic: Find coloring in poly time

Lower bounds on discrepancy Approximating discrepancy

Combinatorial (3 generations)

- 0) Linear Algebra (Iterated Rounding) [Steinitz, Beck-Fiala, Barany, ...]
- 1) Partial Coloring Method:

Beck/Spencer early 80's: Probabilistic Method + Pigeonhole Gluskin'87: Convex Geometric Approach

Very versatile (black-box) Loss adds over O(log n) iterations

 Banaszczyk'98: Based on a deep convex geometric result Produces full coloring directly (also black-box)

Brief History (combinatorial)

Method	Tusnady (rectangles)	Steinitz (prefix sums)	Beck-Fiala (low deg. system)
Linear Algebra	$\log^4 n$	d	k
Partial Coloring	log ^{2.5} n [Matousek'99]	$d^{1/2} \log n$	$k^{1/2} \log n$
Banaszczyk	log ^{1.5} n [Nikolov'17]	(d log n) ^{1/2} [Banaszczyk'12]	(k log n) ^{1/2} [Banaszczyk'98]
Lower bound	log n	d ^{1/2}	k ^{1/2}

Brief History (algorithmic)

Partial Coloring now constructive

Bansal'10: SDP + Random walk
Lovett Meka'12: Random walk + linear algebra
Rothvoss'14: Sample and Project (geometric)
Many others by now [Harvey, Schwartz, Singh], [Eldan, Singh]

Method	Tusnady	Steinitz	Beck-Fiala
	(rectangles)	(prefix sums)	(low deg. system)
Linear Algebra	$\log^4 n$	d	k
Partial Coloring	log ^{2.5} n [Matousek'99]	d ^{1/2} log n	$k^{1/2} \log n$
Banaszczyk	log ^{1.5} n	(d log n) ^{1/2}	(k log n) ^{1/2}
	[Nikolov'17]	[Banaszczyk'12]	[Banaszczyk'98]

Algorithmic aspects (2)

Beck-Fiala (B.-Dadush-Garg'16) (tailor made algorithm) General Banaszczyk (B.-Dadush-Garg-Lovett'18)

Method	Tusnady (rectangles)	Steinitz (prefix sums)	Beck-Fiala (low deg. system)
Linear Algebra	$\log^4 n$	d	K
Partial Coloring	log ^{2.5} n [Matousek'99]	$d^{1/2}\log n$	k ^{1/2} log n
Banaszczyk	log ^{1.5} n log ² n [Nikolov'17] [BDG16]	(d log n) ^{1/2} [BDGL] [Banaszczyk'12]	(k log n) ^{1/2} [BDG'16] [Banaszczyk'98]
Lower bound	log n	d ^{1/2}	k ^{1/2}

Linear Algebraic approach

Start with x(0) = (0, ..., 0) coloring.

Update at each step t If a variable reaches -1 or 1, fixed forever.

x(t) = x(t-1) + y(t)Update y(t) obtained by solving By(t) = 0 B cleverly chosen.

 $\{-1,1\}^n$ cube

Beck-Fiala: B = rows with size > k (on floating variables) Row has 0 discrepancy as long as it is big. (no control once it becomes of size <= k).

Partial Coloring

Spencer's problem

Spencer Setting: Discrepancy of any set system on n elements and m sets?

[Spencer'85]: (independently by Gluskin'87) For m = n discrepancy $\leq 6n^{1/2}$

Tight: Cannot beat $0.5 n^{1/2}$ (Hadamard Matrix).

Random coloring gives $O(n \log n)^{1/2}$ Proof: For set S, $\Pr[\operatorname{disc}(S) \approx c |S|^{1/2}] \approx \exp(-c^2)$ Set $c = O(\log n)^{1/2}$ and apply union bound.

Tight. Random gives $\Omega(n \log n)^{1/2}$ with very high prob.

Beating random coloring

[Beck, Spencer 80's]: Given an m x n matrix A, there is a partial coloring satisfying $|a_i x| \le \lambda_i |a_i|_2$

provided $\sum_{i} g(\lambda_{i}) \leq \frac{n}{5}$ $g(\lambda_{i}) \approx \ln\left(\frac{1}{\lambda_{i}}\right)$ if $\lambda_{i} < 1$ $\approx e^{-\lambda_{i}^{2}}$ if $\lambda_{i} \geq 1$

Union bound: $\sum_i e^{-\lambda_i^2} < 1$

n/5 vs 1 very powerful Can demand discrepancy 0 for $\approx \Omega(n)$ rows. (while still having control on other rows).

Combines strengths of probability + linear algebra

Spencer's $O(n^{1/2})$ result

Partial Coloring suffices: For any set system with m sets, there exists
a coloring on $\geq n/2$ elements with discrepancy
 $\Delta = O(n^{1/2} \log^{1/2} (2m/n))$ [For m=n, disc = $O(n^{1/2})$]

Algorithm for total coloring:

Repeatedly apply partial coloring lemma

Total discrepancy $O(n^{1/2} \log^{1/2} 2)$ [Phase 1] $+ O((n/2)^{1/2} \log^{1/2} 4)$ [Phase 2] $+ O((n/4)^{1/2} \log^{1/2} 8)$ [Phase 3] $+ \dots = O(n^{1/2})$

Beck Fiala

Thm: Partial coloring $O(k^{1/2})$, so Full coloring $O(k^{1/2} \log n)$

Total number of 1's in matrix $\leq nk$ Why can we set $\Delta = k^{1/2}$?

$$\sum_{i} g(\lambda_{i}) \leq \frac{n}{5} \qquad \lambda_{i} = \frac{\Delta}{\sqrt{|S_{i}|}} \qquad g(\lambda_{i}) \approx \ln\left(\frac{1}{\lambda_{i}}\right) \quad \text{if } \lambda_{i} < 1/2 \\ \approx e^{-\lambda_{i}^{2}} \quad \text{if } \lambda_{i} \geq 1/2$$

n sets of size k n/t sets of size tk

tn sets of size k/t

 $\begin{array}{l} \mathrm{n} \ \mathrm{g}(1) & \approx n \\ \\ \frac{n}{t} g \left(\frac{1}{t^{\frac{1}{2}}} \right) & \approx (n/t) \log t \\ \\ tn \ g \left(t^{1/2} \right) & \approx tn \ e^{-t} \end{array}$

Proving Partial Coloring Lemma

A geometric view

Spencer'85: Any 0-1 matrix (n x n) has disc $\leq 6 \sqrt{n}$ Gluskin'87: Convex geometric approach

Consider polytope P(t) = $-t \mathbf{1} \le Ax \le t \mathbf{1}$ P(t) contains a point in $\{-1,1\}^n$ for t = $6\sqrt{n}$

Gluskin'87: If K symmetric, convex with large (Gaussian) volume $(>2^{-n/100})$ then K contains a point with many coordinates $\{-1,+1\}$

d-dim Gaussian Measure: $\gamma_d(x) = \exp(-|x|^2/2) (2\pi)^{-d/2}$ $\gamma_d(K)$: Pr[$(y_1, ..., y_m) \in K$] each y_i iid N(0,1)

What is the Gaussian volume of $[-1,1]^n$ cube

 $[-1,1]^n$ cube

A geometric view

Gluskin'87: If K symmetric, convex with large (Gaussian) volume $(>2^{-n/100})$ then K contains a point with many coordinates $\{-1,+1\}$

Proof: Look at K+x for all $x \in \{-1,1\}^n$ Total volume of shifts = $2^{\Omega(n)}$ $\gamma_n(K+x) \ge \gamma_n(K) \exp(-|x|^2/2)$ Some point z lies in $2^{\Omega(n)}$ copies

z = k + x and z = k' + x' where x, x' have large hamming distance Gives $(x - x')/2 = (k - k')/2 \in K$.

Gluskin for Polytopes

Gluskin'87: If K symmetric, convex with large (Gaussian) volume $(>2^{-n/100})$ then K contains a point with many coordinates $\{-1,+1\}$

Consider polytope P = { $|a_i x| \le \Delta_i, i \in [m]$ } For what Δ_i Gaussian volume large enough?

Sidak's Thm: $\gamma_n(K \cap Slab) \ge \gamma_n(K)\gamma_n(Slab)$

 $\gamma_n(P) \ge \prod_i \gamma_n(Slab_i) \qquad Slab_i = |a_i x| \le t$

Gaussian correlation Thm (Royen'14): Any convex symmetric K, S $\gamma_n(K \cap S) \ge \gamma_n(K)\gamma_n(S)$

Volume of a slab

Sidak's Thm: $\gamma_n(P) \ge \prod_i \gamma_n(Slab_i)$ $Slab_i = |a_i x| \le t$

Useful to normalize $t = \lambda |a_i|_2$

Lemma: $\gamma_n(Slab) = \exp(-g(\lambda))$ **Proof:** Can assume $a_i = |a_i|e_1$ (rotational invariance of Gaussian) $\Pr[|a_i x| \le \lambda |a_i|_2] = \Pr[g_1 \le \lambda] = 1 - \exp(-\lambda^2)$ $\lambda \ge 1$ $\approx \lambda$ $\lambda < 1$

Sidak's Lemma, $\gamma_n(P) \ge 2^{-n/100}$ gives the result.

Algorithmic Partial Coloring

Useful View

Independent rounding.

A (complicated) view Brownian motion in cube.

Same as random coloring Each coordinate independent dimension: element start t-1 Δx^t (x_1, \dots, x_n)

Cube: $\{-1,+1\}^n$

Useful View

If additional constraints. Can tailor walk accordingly.

Pick covariance matrix for Δx^t (slow down towards bad regions)

Design barrier functions

Lovett Meka Algorithm

Random walk, $\gamma N(0,1)$ in each dimension

a) Fix j if $x_i = \pm 1$

b) If row a_i gets tight $(\operatorname{disc}(a_i) = \lambda_i |a_i|_2)$ Move in subspace $a_i x = \lambda_i |a_i|_2$ (not violate discrepancy)

Thm [LM'12]: Given an m x n matrix A, can a partial coloring $x \in [-1,1]^n$ with $\Omega(n)$ of them ± 1 $|a_i x| \le \lambda_i |a_i|_2$ for each row i, provided $\sum_i e^{-\lambda_i^2} \le \frac{n}{5}$

Lovett Meka Algorithm

Random walk, $\gamma N(0,1)$ in each dimension

a) Fix j if
$$x_i = \pm 1$$

b) If row a_i gets tight $(\operatorname{disc}(a_i) = \lambda_i |a_i|_2)$ Move in subspace $a_i x = \lambda_i |a_i|_2$ (not violate discrepancy)

Idea: Walk makes progress as long as dimension = $\Omega(n)$

After
$$\frac{10}{\gamma^2}$$
 steps: $\Omega(n)$ variables must have hit ± 1
Pr[Row a_i tight] $\approx \exp(-\lambda_i^2)$
As $\sum_i \exp(-\lambda_i^2) \leq \frac{n}{5}$ so n/5 tight rows in expectation

Another Algorithm (general convex bodies, not just polytopes)

Algorithmic version

Rothvoss'14: Pick a random y, return closest point x in $K \cap [-1,1]^n$

Idea: Measure concentration If $\gamma_n(K) \ge \frac{1}{2}$ $\gamma_n(K + tB_2) \ge 1 - e^{-t^2/2}$ (halfspace)

 $\begin{array}{ll} \gamma_n(K) \geq 2^{-\epsilon n} & \text{dist}(\mathbf{y}, \mathbf{K}) \approx (\epsilon n)^{1/2} \\ & \text{dist}(\mathbf{y}, \text{Cube}) \approx \sqrt{n} \\ & \text{So dist}(\mathbf{y}, \mathbf{K} \cap [-1, 1]^n) \geq \sqrt{n} \end{array}$

Suppose x has only δn coordinates ± 1 . Would get same x if body $K' = K \cap \delta n$ slabs

But by Sidak $\gamma_n(K') \approx 2^{-(\epsilon+\delta)n}$ so $dist(y, K') \approx ((\epsilon+\delta) n)^{1/2}$

(gives contradiction)

Partial Coloring

Eldan, Singh'14: Pick a random direction c; optimize max $c \cdot x$ over $K \cap [-1,1]^n$

Approximating Discrepancy

Vector Discrepancy

Exact: Min t

 $-t \leq \sum_{j} a_{ij} x_{j} \leq t \quad \text{for all rows i}$ $x_{j} \in \{-1, 1\} \quad \text{for each j}$

SDP: vecdisc(A) min t $|\sum_{i} a_{ij} v_{j}|_{2} \le t$ for all rows i $|v_{j}|_{2} = 1$ for each j

Is vecdisc a good relaxation?

Not directly. vecdisc(A) = 0 even if disc(A) very large

[Charikar, Newman, Nikolov'11] NP-Hard: Whether disc(A) = 0 or $\Omega(\sqrt{n})$ for Spencer's setting?

Also implies vecdisc not a good relaxation.

There must exist set systems where $\operatorname{disc}(A) = \Omega(\sqrt{n})$ (but any polynomial time computable function returns 0)

Still SDP can be useful

Discrepancy a useful measure of <u>complexity</u> of a set system

But not so robust

$$S_i = A_i \cup A'_i$$

Discrepancy = 0

Let $hervecdisc(A) = \max_{S} vecdisc(A_{|S})$ Hervecdisc(A) $\leq herdisc(A)$

Thm [B'10]: Algorithm disc(A) = $O\left(\sqrt{\log m \log n}\right)$ hervecdisc(A)

Rounding Application

Lovasz-Spencer-Vesztermgombi'86: Given any matrix A, and $x \in R^n$, can round x to $\tilde{x} \in Z^n$ s.t. $|Ax - A\tilde{x}|_{\infty} < \text{Herdisc}(A)$

Gives algorithmic $|Ax - A\tilde{x}|_{\infty} < O\left(\sqrt{\log m \log n}\right)$ Herdisc(A)

Algorithm (at high level)

Algorithm: "Sticky" random walk Each step generated by rounding a suitable SDP Move in various dimensions correlated, e.g. $\delta^{t}_{1} + \delta^{t}_{2} \approx 0$

Analysis: Few steps to reach a vertex (walk has high variance) $Disc(S_i)$ does a random walk (with low variance)

An SDP

Hereditary disc. $\lambda \Rightarrow$ the following SDP is always feasible

SDP: Low discrepancy: $|\sum_{i \in S_j} v_i|^2 \le \lambda^2$ $|v_i|^2 = 1$

Obtain $v_i \in R^n$

Rounding:

Pick random Gaussian $g = (g_1, g_2, ..., g_n)$ each coordinate g_i is iid N(0,1)

For each i, consider $\eta_i = \mathbf{g} \cdot \mathbf{v}_i$

Properties of Rounding

Lemma: If $g \in R^n$ is random Gaussian. For any $v \in R^n$,

 $\mathbf{g} \cdot \mathbf{v}$ is distributed as N(0, $|\mathbf{v}|^2$)

Pf: $N(0,a^2) + N(0,b^2) = N(0,a^2+b^2)$ $g \cdot v = \sum_i v(i) g_i \sim N(0, \sum_i v(i)^2)$

Recall: $\eta_i = g \cdot v_i$

- 1. Each $\eta_i \sim N(0,1)$
- 2. For each set S, $\sum_{i \in S} \eta_i = g \cdot (\sum_{i \in S} v_i) \sim N(0, \le \lambda^2)$ (std deviation $\le \lambda$)

$$\begin{split} & \text{SDP:} \\ & |v_i|^2 \ = 1 \\ & |\sum_{i \in \ S} \ v_i|^2 \le \lambda^2 \end{split}$$

 η 's mimics a low discrepancy coloring (but is not {-1,+1})

Algorithm Overview

Construct coloring iteratively. Initially: Start with coloring $x_0 = (0,0,0,...,0)$ at t = 0. At Time t: Update coloring as $x_t = x_{t-1} + \gamma (\eta^t_1,...,\eta^t_n)$ (γ tiny: 1/n suffices)

$$x_{t}(i) = \gamma (\eta_{i}^{1} + \eta_{i}^{2} + ... + \eta_{i}^{t})$$

Color of element i: Does random walk over time with step size $\approx \gamma N(0,1)$

Fixed if reaches -1 or +1.

Set S: $x_t(S) = \sum_{i \in S} x_t(i)$ does a random walk w/ step $\gamma N(0, \leq \lambda^2)$

Analysis

Consider time $T = O(1/\gamma^2)$

Claim 1: With prob. $\frac{1}{2}$, at least n/2 variables reach -1 or +1. Pf: Each element doing random walk with size $\approx \gamma$.

 \Rightarrow Everything colored in O(log n) rounds.

Claim 2: Each set has $O(\lambda)$ discrepancy in expectation per round. Pf: For each S, $x_t(S)$ doing random walk with step size $\approx \gamma \lambda$

Log n rounds + Union bounds over m sets gives $O(\lambda(\log n \log m)^{1/2})$ bound

Recap

At each step of walk, formulate SDP on unfixed variables. SDP is feasible Gaussian Rounding -> Step of walk

Properties of walk: High Variance -> Quick convergence Low variance for discrepancy on sets -> Low discrepancy

Approximating Herdisc

CNN'11: Discrepancy was hard to approximate (not very robust)

Can we approximate herdisc(A)(not even clear if in NP, do to check if $herdisc(A) \le t$)

 $\begin{array}{l} \operatorname{Hervecdisc}(A) \leq \operatorname{herdisc}(A) \leq O((\log n \log m)^{1/2}) \ \operatorname{Hervecdisc}(A) \\ \text{For any restriction } A_{|S}, \ \operatorname{can find coloring of S} \\ \text{With discrepancy } O((\log n \log m)^{1/2}) \ \operatorname{hervecdisc}(A) \end{array}$

But: Not clear how to compute hervecdisc(A) efficiently.

Matousek Lower Bound

Thm (Lovasz Spencer Vesztergombi'86): $herdisc(A) \ge detlb(A)$

detlb(A): $\max_{k \in \{k \times k \text{ submatrix } B \text{ of } A\}} \det(B)^{1/k}$

Conjecture (LSV'86): Herdisc $\leq O(1)$ detlb

Remark: For TU Matrices, Herdisc(A) =1, detlb = 1 (every submatrix has det -1,0 or +1)

Detlb

Hoffman: Detlb(A) ≤ 2 herdisc(A) $\geq \left(\frac{\log n}{\log \log n}\right)$ Palvolgyi'11: $\Omega(\log n)$ gap

Matousek'11: herdisc(A) $\leq O(\log n \sqrt{\log m})$ detlb.

Idea: Algorithm -> hervecdisc is within log of herdisc SDP Duality -> Dual Witness for large hervecdisc(A). Dual Witness -> Submatrix with large determinant. For a matrix A, let $r(A) = \max$ row length ($\ell_2 norm$) $c(A) = \max$ column length

 $\gamma_2(A) = \min r(B) c(C)$ over all factorizations A= BC

Theorem:
$$\frac{1}{\log m} \gamma_2(A) \leq \operatorname{herdisc}(A) \leq \gamma_2(A) \sqrt{\log m}$$

 γ_2 is computable using an SDP (can assume r(B) = c(C)) $A_{ij} = w_i \cdot v_j$ $|w_i|_2 \le t$, $|v_j|_2 \le t$ for all $i \in [m], j \in [n]$

Beyond Partial Coloring

Annoying loss of O(log n) to get full coloring

Ideal case

Beck-Fiala Setting: At most n/10 big (>10k) sets

Partial Coloring: 0 for big sets. About $s^{1/2}$ for small sets of size s.

"Ideal" life cycle of a set

Ideal case: Discrepancy = $k^{1/2} + (k/2)^{1/2} + (k/4)^{1/2} + \dots$

Trouble: A set can get $k^{1/2}$ discrepancy, but very few elements colored.

Banaszczyk's full coloring method

Discrepancy

Given an $m \times n$ matrix A, find $x \in \{-1,1\}^n$, to minimize $disc(A) = |Ax|_{\infty}$

Columns: elements

Vector balancing view: Given vectors $v_1, \dots, v_n \in \mathbb{R}^m$ find $x \in \{-1,1\}^n$ to minimize $\left|\sum_i x_i v_i\right|_{\infty}$

Banaszczyk's Theorem

Thm: Let A have columns $v_1, ..., v_n \in \mathbb{R}^m$, $|v_i|_2 \le 1/5$ $K = \text{symmetric convex body with } \gamma_m(K) \ge \frac{1}{2}$ $\exists x \in \{-1,1\}^n \text{ s.t. } Ax \in K$

Banaszczyk's Theorem

Cube: $K = O(\log m)^{1/2} [-1,1]^m \quad \gamma_m(K) \ge 1/2$

Gives $O(k \log n)^{1/2}$ for Beck-Fiala easily

Scale matrix by $\frac{1}{k^{1/2}}$ (length of columns ≤ 1) \exists signed sum w/ ℓ_{∞} -norm O(log m)^{1/2} (and $m \leq nt$)

Surprising results for various bodies K.

Proof idea

Given $v_1, ..., v_n$, each $|v_i| < 1/5$. $\gamma_m(K) \ge \frac{1}{2}$ Goal: Find signing $\sum_i x_i v_i \in K$

Convexify:

Remove regions of K width $< 2|v_1|$ along v_1

Lose and gain volume.

(non-trivial) computation to show volume stays $\geq \frac{1}{2}$

Algorithmic history

Banaszczyk based approaches:

- [B., Dadush, Garg'16]: $O(\log n)^{1/2}$ algorithm for Komlos problem
- [B., Dadush, Garg, Lovett 18]: algorithm for general Banaszczyk.

Recall trouble with Partial Coloring

Beck Fiala Setting

Trouble: A set can get $t^{1/2}$ discrepancy, but very few elements colored.

Lovett Meka Algorithm

Random walk, $\gamma N(0,1)$ in each dimension

a) Fix j if $x_j = \pm 1$

b) If row a_i gets tight $(\operatorname{disc}(a_i) = \lambda_i |a_i|_2)$ Move in subspace $a_i x = \lambda_i |a_i|_2$ (not violate discrepancy)

Correlations in Lovett-Meka

Consider set S = $\{1,2,\ldots,k\}$

Ideal case: If randomly color each element Progress = k discrepancy $\approx k^{1/2}$

Suppose move in subspace $x_1 = x_2 = \dots = x_k$ E.g. if have constraints $x_1 - x_2 = 0$, $x_2 - x_3 = 0$, ... Can only color all +1 or all -1. Progress = k discrepancy = k

In Lovett-Meka, such sets hit subspace at $k^{1/2}$ discrepancy, but progress is only $k^{1/2}$

Suggests a solution

Used for algorithmic $O(k^{1/2} \log^{1/2} n)$ bound for Beck-Fiala [B., Dadush, Garg'16]

Can we design a walk that moves in some subspace, but still looks quite "random"?

E.g. If constrained to move in subspace $x_1 = x_2 = \cdots = x_k$

Just set $\Delta x_i = 0$ for i=1,2,...,t

Can still do a random walk for i = k+1,..,n.

Smarter covariance matrices

W: arbitrary subspace $\dim(W) \le (1 - \delta)n$ Need to walk in W^{\perp}

Property 1: $w^T(\Delta x) = 0 \quad \forall w \in W$ $E[w^T \Delta x \, \Delta x^T w] = 0 \quad \text{or} \quad w^T Y w = 0$

-1/+1 cube

Covariance matrix $Y(i,j) = E[\Delta x_i, \Delta x_j]$

Property 2: Still looks almost independent. For any direction $c = (c_1, ..., c_n)$ $E[(\sum_i c_i \Delta x_i)^2] \leq \frac{1}{\delta} \sum_i c_i^2 E[\Delta x_i^2]$ $c^T Y c \leq (\frac{1}{\delta}) c^T diag(Y) c \quad \forall c \in \mathbb{R}^n.$ $Y \leq (\frac{1}{\delta}) diag(Y)$

Can find such a good walk

Key Thm: If $\dim(W) \le (1 - \delta)n$ There is a non-zero solution Y to the SDP

$$w^{T}Yw = 0 \quad \forall w \in W$$
$$Y \leq \left(\frac{1}{\delta}\right) diag(Y)$$
$$Y \geq 0$$

Proof: Using SDP duality

Use this to design the walk $\Delta x = Y^{1/2}g$

Getting Concentration

Thm: Upon termination the 0-1 solution satisfies concentration for every linear constraint

Fix $c = (c_1, ..., c_n)$. Then cx evolves as a martingale

Key idea: Use sub-isotropic updates to control error during walk

Need "Freedman type" martingale analysis must use intrinsic variance (avoid dependence on time steps).

Potential: $\sum_{i} c_{i} x_{i} - \lambda \sum_{i} c_{i}^{2} (1 - x_{i}^{2})$ evolves nicely.

Algorithm for Beck-Fiala

Time t: If n_t variables alive, at most $n_t/10$ big rows Pick W = span of these constraints.

Run the SDP walk.

No phases, continue till all variables -1/+1 (i.e. $n_t = 0$).

If row big = discrepancy 0 When becomes small, just like a random walk.

"Freedman type" martingale analysis (avoid dependence on time steps), gives the result.

General Banaszczyk

Making Banaszczyk Algorithmic

K

 v_2

Thm [Banaszczyk 97]: Input $v_1, ..., v_n \in \mathbb{R}^d$, $|v_i|_2 \leq 1$ \forall convex body K, with $\gamma_d(K) \geq \frac{1}{2}$ \exists coloring $x \in \{-1,1\}^n$ s.t. $\sum_i x(i)v_i \in 5K$

Coloring depends on the convex body K. How is K specified? (input size could be exponential)

Idea [Dadush, Garg, Lovett, Nikolov'16]: Minimax Thm. (2-player game) Universal distribution on colorings that works for all convex bodies

Equivalent formulation

Alternate formulation [Dadush, Garg, Lovett, Nikolov'16]: $\exists \text{ distribution on colorings } x \in \{-1,1\}^n,$ s.t. $Y = \sum_i x(i)v_i$ is $\approx N(0,1)$ in every direction O(1) subgaussian

 $Y \in \mathbb{R}^d$ is σ -subgaussian if in all directions $\theta \in \mathbb{R}^d$, $|\theta|_2 = 1$, $\langle \theta, Y \rangle$ has same tails as $N(0, \sigma^2)$ i.e. $\Pr[|\langle \theta, Y \rangle| \ge \lambda] \le 2 \exp(-\lambda^2/2\sigma^2)$

Lemma: $Y \in K$ (for K convex, $\gamma_d(K) \ge \frac{1}{2}$) with constant prob.

Suffices to sample x implicitly from such a distribution.
Goal: \exists distribution on colorings $x \in \{-1,1\}^n$, s.t. random vector $\mathbf{Y} = \sum_i x(i)v_i$ is O(1) subgaussian

 $\forall \theta \in S^{m-1}$, $\langle Y, \theta \rangle = \sum_i x(i) \langle v_i, \theta \rangle$ decays like N(0,1).

Special cases: 1) v_i are Orthogonal: Random \pm coloring x_i works As $\sum_i c_i x_i \approx N(0, \sum_i c_i^2)$ $Var(\langle Y, \theta \rangle) = \sum_i \langle v_i, \theta \rangle^2 \le |\theta|^2 \le 1$

2) All equal vectors

 $v_1 = \cdots = v_n = v$ random coloring bad: $\Omega(\sqrt{n})$ in direction v Need dependent coloring: n/2 + 1's and n/2 - 1's

Gram Schmidt Walk

Algorithm: Consider vectors $v_1, ..., v_n$ Write $v_n = c_1 v_1 + ... c_{n-1} v_{n-1} + w_n$ where $w_n \in span (v_1, ..., v_{n-1})^{\perp}$

Let direction $c = (c_1, ..., c_{n-1}, -1)$ Update coloring x as δc s.t. $E[\delta] = 0$ i.e. $\Delta x = +\delta_1 c$ or $-\delta_2 c$

Key Point: $\Delta Y = \sum_i \Delta x(i) v_i = \delta(\sum_{i=1}^{n-1} c_i v_i - v_n) = -\delta w_n.$

As $\delta \leq 2$ and $E[\delta] = 0$ $\Delta(Y, \theta)$ evolves as a martingale with variance $O(\langle \theta, w_n \rangle^2)$

Proof Idea (ideal case)

Suppose pivot is the one to freeze every time $\Delta Y: \ \delta_n w_n$ $\Delta Y: \ \delta_{n-1} w_{n-1}$

 w_1, \dots, w_n obtained by Gram Schmidt process.

 $w_{1} = v_{1}$ $w_{2} = v_{2} - \langle v_{2}, \widehat{w}_{1} \rangle \widehat{w}_{1}$ $\widehat{w}_{2} = w_{2} / |w_{1}|$ $\widehat{w}_{2} = w_{2} / |w_{2}|$ $\widehat{w}_{3} = v_{3} - \langle v_{3}, \widehat{w}_{1} \rangle \widehat{w}_{1} - \langle v_{3}, \widehat{w}_{2} \rangle \widehat{w}_{2}$ $\widehat{w}_{3} = w_{3} / |w_{3}|$

$$Y = \delta_n w_n + \delta_{n-1} w_{n-1} + \dots + \delta_1 w_1$$

$$Var\left(\langle Y, \theta \rangle\right) = \sum_i \delta_i^2 \langle w_i, \theta \rangle^2 \le \sum_i \delta_i^2 \langle \hat{w}_i, \theta \rangle^2 \le 4|\theta|^2 = 4$$

Some more details

 $v_1, \dots, \chi_5, \dots, v_n$ No reason why pivot should get fixed.

Suppose v_5 gets fixed. w_n becomes w'_n which can be longer.

Proof idea: Can charge increase in $|w_n|^2$ to v_5 disappearing.

Track evolution of $E[e^{\lambda\langle\theta,Y\rangle}]$ by a suitable potential and show $E[e^{\lambda\langle\theta,Y\rangle}] = e^{O(\lambda^2)}$ for each θ, λ (Recall Z is σ -subgaussian iff $E[e^{\lambda Z}] = e^{O(\lambda^2 \sigma^2)}$ for all λ)

Thanks for your attention!