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Discrepancy

Universe: U=[1,...,n]
Subsets: S,,S,,...,S,,

Color elements red/blue so each
set Is colored as evenly as possible.

Giveny: [n] — {-1,+1}
Disc (x) = maxs |2igs x ()| = maxg |x(S)]

Disc (set system) = min, maxg |y (S)|



Matrix Notation

Incidence matrix A =

Given any matrix A,
find coloring x € {—1,1}", to minimize |Ax|

Rows: sets
Columns: elements




Applications

CS: Computational Geometry, Approximation, Complexity,
Differential Privacy, Pseudo-Randomness, ...

Math: Combinatorics, Optimization, Finance, Dynamical Systems,
Number Theory, Ramsey Theory, Algebra, Measure Theory;, ...
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Hereditary Discrepancy

Discrepancy a useful measure of complexity of a set system

12..n 1'2..w
But not so robust ‘ ‘ S;=A; UA;
Discrepancy =0

Hereditary discrepancy:
herdisc (U,S) = maxyrc, disc (U, Sy)

Robust version of discrepancy
(99% of problems: bounding disc = bounding herdisc)



Rounding

Lovasz-Spencer-Vesztermgombi’86: Given any matrix A, and
x € R", canround xto x € Z"

s.t. |Ax - AX|, < Herdisc(A4)

=N

Intuition: Discrepancy is like Ax=b
rounding 2 integral solution to 0 or 1.

Can do dependent (correlated) rounding based on A.
For approximation algorithms: need algorithms for
discrepancy

Bin packing: OPT + O(log OPT) [Rothvoss’13]

Herdisc(A) = 1 iff Ais TU matrix.



Rounding

Lovasz-Spencer-Vesztermgombi’86: Given any matrix A, and
x € R", canround Xto X € Z™ s.t. |Ax - AX| o <
Herdisc(4)

=N

Proof: Round the bits of x one by one. AX=Db

x1: blah 0101101 ¢ (1

X,. blah .1101010
Key Point: Low discrepancy

coloring guides our updates!

Error = herdisc(A) (zik -



Rounding

Only shows existence of good rounding

How to actually find it?

Thm [B"10]: Error =0 (\/logmlogn) herdisc(A)



Ordering with small prefix sums

Vectors vy, ..., v, € R4 V|l <1 X,v,=0

Find a permutation mr such that each prefix sum has small norm
ie. Maxy |vgay+ -4 vgqol|_ is minimized

d=1 numbersin[-1,1] eg. 0.7 -0.2-0.9 0.8,0.7 ...

What would a random ordering give?

d=2 0.7],
-0.4

(Posed by Reimann, solved by Steinitz in 1913, called Steinitz problem)

0.8, [-0.8],... canweget 0(1)
0.6] [0.5




Steinitz Problem

Given vy, ..., v, € R* with ¥, v; =0
Find permutation to minimize norm of prefix sums
m(m) = max |vn(1) + ... + vn(k)|

Discrepancy of prefix sums: Given ordering find signs to minimize
norm of signed prefix sums

JIA V1VV3Vy Vg Vg V7 Vg
+ - + 4+ - - - +
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m(m)+ f(d)
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Sparsification

Original motivation: Numerical Integration/ Sampling
How well can you approximate a region by discrete points ?

Discrepancy:
Max over rectangles R
|(# points in R) — (Area of R)|

Use this to sparsify
Quasi-Monte Carlo integration: Huge area (finance, ...)

QMC ~ &€

1
Error MC N = —



Tusnady’s problem

Input: n points placed arbitrarily in a grid.
Sets = axis-parallel rectangles

Discrepancy: max overrect. R (|#redinR-#DblueinR|)

Random gives about O(n'2 log/2 n)

Very long line of work
O(log* n) [Beck 80°s]

O(log?® n) [Matousek’99]
O(log“n) [B., Garg’16]
O(log*® n) [Nikolov’17]




Questions around Discrepancy bounds

Combinatorial: Show good coloring exists
Algorithmic: Find coloring in poly time

Lower bounds on discrepancy
Approximating discrepancy



Combinatorial (3 generations)

0) Linear Algebra (Iterated Rounding)
[Steinitz, Beck-Fiala, Barany, ...]

1) Partial Coloring Method:
Beck/Spencer early 80’s: Probabilistic Method + Pigeonhole

Gluskin’87: Convex Geometric Approach ‘

Very versatile (black-box) @
Loss adds over O(log n) iterations

2) Banaszczyk’98: Based on a deep convex geometric result
Produces full coloring directly (also black-box)



Brief History (combinatorial)

Linear Algebra

Partial Coloring

Banaszczyk

Lower bound

log*n

log?° n d¥2 log n k2 log n
[Matousek’99]

log!®n (d log n)1/2 (k log n)1/2

[Nikolov’17] [Banaszczyk’12] [Banaszczyk’98]

lOg n d1/2 k1/2



Brief History (algorithmic)

Partial Coloring now constructive
Bansal’10: SDP + Random walk
Lovett Meka’12: Random walk + linear algebra
Rothvoss’14: Sample and Project (geometric)
Many others by now [Harvey, Schwartz, Singh], [Eldan, Singh]

Linear Algebra log*n

Partial Coloring 0g->n d1’2 log n k2 log n
<‘;&tﬂ!1sek’99] >

Banaszczyk log!®> n (d log n)12 (k log n)¥2

[Nikolov’17] [Banaszczyk’12] [Banaszczyk’98]



Algorithmic aspects (2)

Beck-Fiala (B.-Dadush-Garg’16) (tailor made algorithm)
General Banaszczyk (B.-Dadush-Garg-Lovett’18)

Linear Algebra
Partial Coloring

Banaszczyk

Lower bound

log*n

log?® d1/2 log n k2 log n
[Matousek’99]

log!®n log?n  (dlog n)¥2[BDGL] (k log n)Y2[BDG’16]
[Nikolov’17] [BDG16] [Banaszczyk’12] [Banaszczyk’98]

log n d1/2 k1/2



Linear Algebraic approach

Start with x(0) = (0,...,0) coloring.

Update at each step t
If a variable reaches -1 or 1, fixed forever.

X(t) = x(t-1) + y(1) %
Update y(t) obtained by solving By(t) =0 '
B cleverly chosen.

{—1,1}"cube

Beck-Fiala: B = rows with size >k  (on floating variables)
Row has 0 discrepancy as long as it is big.
(no control once it becomes of size <= k).



Partial Coloring



Spencer’s problem

Spencer Setting: Discrepancy of any set system on
n elements and m sets?

[Spencer’85]: (independently by Gluskin’87)
For m = n discrepancy < 6n'/?

Tight: Cannot beat 0.5 n'2 (Hadamard Matrix).

Random coloring gives O(n log n)1/2
Proof: ForsetS, Pr[disc(S) = c|S|/2] =~ exp(—c?)
Set ¢ = 0(log n)/? and apply union bound.

Tight. Random gives Q(n log n)/? with very high prob.

-------------




Beating random coloring

[Beck, Spencer 80’s]: Given an m x n matrix A, there 1s a partial
coloring satisfying |a;x| < A; |a;],

provided ¥, g(1;) <= g0 =~ (1) if 4 <1

~ e M if A>1
Union bound: ¥, e % < 1
n/5vs 1 very powerful
Can demand discrepancy 0 for =~ Q(n) rows.

(while still having control on other rows).

Combines strengths of probability + linear algebra



Spencer’s O(n/?) result

Partial Coloring suffices: For any set system with m sets, there exists
a coloring on > n/2 elements with discrepancy
A= O(n'2 log'? (2m/n)) [For m=n, disc = O(n%2)]

Algorithm for total coloring:

Repeatedly apply partial coloring lemma

Total discrepancy @ @)
O(n¥2 log¥22)  [Phase 1]

+ O((n/2)Y21og¥24) [Phase 2]
+ O((n/4)Y2 log¥2 8) [Phase 3]
+ ... = O(n'2)



Beck Fiala

Thm: Partial coloring 0(k'/2), so Full coloring 0(k/?logn )

Total number of 1’s in matrix < nk
Why can we set A = k'/? 2

1) ~In(=) if A < 1/2
g(4;) < = == 9 (/'li) l
2:9() > C s ~ e M f A= 1/2
n sets of size k ng(l) ~n
n/t sets of size tk %g (ll) ~ (n/t)logt

t2

tn sets of size kit tn g(t¥/?) =~ tne™t



Proving Partial Coloring Lemma



A geometric view

Spencer’85: Any 0-1 matrix (n x n) has disc < 6 \/n

Gluskin’87: Convex geometric approach
aix = —t

Consider polytope P(t) = —t1 <Ax <t1 B / a2< t

P(t) contains a pointin {—1,1}"fort=6+/n 7/ //
Gluskin’87: If K symmetric, convex with large (Gaussian) volume
(> 27™/100) then K contains a point with many coordinates {-1,+1}

d-dim Gaussian Measure: y,(x) = exp(—|x|?/2) (2m)~%/2
Va(K): Pr[ (¥4, ..., ¥m) € K] each y; iid N(0,1) ?

[—1,1]" cube

What is the Gaussian volume of [—1,1]™ cube



A geometric view

Gluskin’87: If K symmetric, convex with large (Gaussian) volume
(> 27™/100) then K contains a point with many coordinates {-1,+1}

R

Proof: Look at K+x forall x € {—1,1}"
Total volume of shifts = 22(m) Yu(K + x) = v, (K) exp(—|x|?/2)
Some point z lies in 22 copies

z=k+x and z=Kk"+ x where x,x’ have large hamming distance
Gives (x —x")/2=(k—k')/2 €K.



Gluskin for Polytopes

Gluskin’87: If K symmetric, convex with large (Gaussian) volume
(> 27™/100) then K contains a point with many coordinates {-1,+1}

X = —t
Consider polytope P = {|a;x| < A4;, i € [m]} 67 ax <t
For what A; Gaussian volume large enough? — /"
i / . /*

7 Ve
Sidak’s Thm: y,, (K n Slab) = y,(K)y,,(Slab)
Vn(P) = I1; ]/n(SlClbi) Slabi = |al-x| <t

Gaussian correlation Thm (Royen’14): Any convex symmetric K, S
Yan (K NS) = v (K)yn(S)



Volume of a slab

Sidak’s Thm: )/n(P) > Hi yn(Slabl) Slabi = |CliX| <t
Useful to normalize t = A |q;l,

Lemma: y,,(Slab) = exp(-g(41))
Proof: Can assume a; = |a;|e; (rotational invariance of Gaussian)

Pr[ |a;x| < Ala;l;]= Prlgy <A] = 1—exp(—/12) A=1
~ A A <1

Sidak’s Lemma,y,,(P) > 2~"/100 y m ﬂﬂ
gives the result.

-------------




Algorithmic Partial Coloring



Useful View

Independent rounding.

A (complicated) view
Brownian motion in cube.

Same as random coloring
Each coordinate independent

Cube: {-1,+1}"

start

2

dimension: element
vertex: coloring

(X1, ver) X))



Useful View

If additional constraints. a;x S\’li|ai|z

Can tailor walk accordingly. \ Cube: {-1,+1}"
\ start \ dimension: element
Ayt g vertex: coloring
Pick covariance matrix for Ax? 1|\
(slow down towards bad regions) (X1, e X)
\

a;x = —Aila;l;

Design barrier functions



Lovett Meka Algorithm

Random walk, y N(0,1) in each dimension \

a) Fixjif x; = +1 \

b) If row a; gets tight (disc(a;) = A;|a;l,) sta />\
Move in subspace a;x = 4;|a;|, \
(not violate discrepancy)

Thm [LM’12] : Given an m x n matrix A, can a partial coloring
x € [—1,1]" with Q(n) of them +1

u |3

. . 32
la;x| < A; |a;|, foreach row i, provided ;e " <



Lovett Meka Algorithm

Random walk, y N(0,1) in each dimension \

a) Fixjif x; = +1 \

b) If row a; gets tight (disc(a;) = A;|a;l,) sta />\
Move in subspace a;x = 4;|a;|, \
(not violate discrepancy)

Idea: Walk makes progress as long as dimension = (.(n)

After 1—2 steps: Q(n) variables must have hit +1
14

Pr[ Row q; tight] = exp(—/llz)
As Y exp (—17) < % so n/5 tight rows in expectation



Another Algorithm

(general convex bodies, not just polytopes)



Algorithmic version

Rothvoss’14: Pick a random vy, return closest point x in Kn [—1,1]"

Idea: Measure concentration
If y,(K) =%
Va(K + tBy) =1 — e t*/2 (halfspace)

Yn(K) = 27¢" dist(y, K) =~ (en)l/2
dist(y, Cube) = /n
So dist(y, KN [-1,1]") > +/n

Suppose X has only én coordinates +1.
Would get same x if body K’ = K N dn slabs

But by Sidak y,(K') ~ 2-(eto)n
so dist(y,K") = ((e + 8) n)'/? (gives contradiction)



Partial Coloring

Eldan, Singh’14: Pick a random direction c;
optimize max ¢ - x over Kn [—1,1]"

R



Approximating Discrepancy



Vector Discrepancy

Exact: Min t
—t <Y a;jx;<t forallrowsi
x; € {—1,1} for each |

SDP: vecdisc(A)
min t
Ziaijvj|2 <t forall rowsi

vi|, =1 for each j



Is vecdisc a good relaxation?

Not directly. vecdisc(A) = 0 even if disc(A) very large

[Charikar, Newman, Nikolov’11]
NP-Hard: Whether disc(A) =0 or Q(+y/n) for Spencer’s setting?

Also implies vecdisc not a good relaxation.

There must exist set systems where disc(A) = Q(+/n)
(but any polynomial time computable function returns 0)



Still SDP can be useful

Discrepancy a useful measure of complexity of a set system

12..n 1'2..w
But not so robust ‘ ‘ S;=A; UA;
Discrepancy =0

Let hervecdisc(A) = max  vecdisc( 4js )

Hervecdisc(A) < herdisc(A)

Thm [B’10]: Algorithm disc(A) =0 (\/logmlog n) hervecdisc(A)



Rounding Application

Lovasz-Spencer-Vesztermgombi’86: Given any matrix A, and x €
R™, canround Xto X € Z™ s.t. |Ax - AX|,, < Herdisc(4)

Gives algorithmic [Ax - AX|, < O (\/logm log n) Herdisc(A)



Algorithm (at high level)

Cube: {-1,+1}"

E

Algorithm: “Sticky” random walk

finish

Each dimension: An Element
Each vertex: A Coloring

Each step generated by rounding a suitable SDP
Move in various dimensions correlated, e.g. &, + 8, ~0

Analysis: Few steps to reach a vertex (walk has high variance)
Disc(S;) does a random walk (with low variance)



An SDP

Hereditary disc. A = the following SDP Is always feasible

SDP:
Low discrepancy: |ZieSj Vi < A2
vil> = 1
_ Obtain v; € R"
Rounding:

Pick random Gaussian g = (91,95, - -,&,)
each coordinate g; is 1id N(0,1)

For each I, consider n; =0 - v;



Properties of Rounding

Lemma: If g € R"is random Gaussian. Forany v € R",
g - v is distributed as N(O, |v[|?)
Pf:  N(0,a2) + N(0,b?) = N(0,a2+b?) g-v=2, v(i)g; ~ N(0, X v(i)?)

Recall: n; =g -V,

SDP:
1. Eachn; ~ N(0,1) vi2 =1
For each set S, 2 s Vi? <A?

2iesMi =9 Qics Vi) ~ N(O, <2?)
(std deviation <)

n’s mimics a low discrepancy coloring (but is not {-1,+1})



Algorithm Overview

Construct coloring iteratively.

Initially: Start with coloring x,=(0,0,0, ...,0) att=0.

At Time t: Update coloring as x, = X,; + v (n',...,n%)
(v tiny: 1/n suffices)

e X(D=yMi+ns+...+nb)
o S Color of element i: Does random walk
e i, Over time with step size ~ y N(0,1)
x(1)
=1 b Fixed if reaches -1 or +1.

SetS: Xx(S) =25 X(i) doesarandom walk w/ step y N(0,< A?)



Analysis
Consider time T = O(1/y?)

Claim 1: With prob. Y, at least n/2 variables reach -1 or +1.
Pf. Each element doing random walk with size ~ .

= Everything colored in O(log n) rounds.

Claim 2: Each set has O(A) discrepancy in expectation per round.
Pf: For each S, x,(S) doing random walk with step size ~ y A

Log nrounds + Union bounds over m sets gives
O(A(lognlogm)/?) bound



Recap

At each step of walk, formulate SDP on unfixed variables.
SDP is feasible
Gaussian Rounding -> Step of walk

Properties of walk:
High Variance -> Quick convergence
Low variance for discrepancy on sets -> Low discrepancy



Approximating Herdisc

CNN’11: Discrepancy was hard to approximate (not very robust)

Can we approximate herdisc(A)
(not even clear if in NP, do to check if herdisc(A) < t)

Hervecdisc(4) < herdisc(4) < 0((lognlogm)'/?) Hervecdisc(A)
For any restriction A,g, can find coloring of S
With discrepancy O((lognlogm)/?) hervecdisc(4)

But: Not clear how to compute hervecdisc(A) efficiently.



Matousek Lower Bound

Thm (Lovasz Spencer Vesztergombi’86): herdisc(4) = detlb(A)

detlb(A): max max det(B)/k
k {kxk submatrix B of A}

Conjecture (LSV’86). Herdisc < O(1) detlb

Remark: For TU Matrices, Herdisc(A) =1, detlb =1
(every submatrix has det -1,0 or +1)



Detlb

Hoffman: Detlb(A) < 2 herdisc(4) > ( log n )
loglogn

Palvolgyi’11: Q(logn) gap

Matousek’11: herdisc(A) <O(log n /logm) detlb.

Idea: Algorithm ->  hervecdisc is within log of herdisc
SDP Duality -> Dual Witness for large hervecdisc(A).
Dual Witness -> Submatrix with large determinant.



For a matrix A, let r(A) = max row length (¢, norm)
c(A) = max column length

v>(A) =min r(B) c(C) over all factorizations A= BC

1
log m

Theorem:

Y2 (A4) < herdisc(A) < y,(4) /logm

¥, 1S computable using an SDP  (can assume r(B) = ¢(C))
Aij - W;j - Uj
|Wi|2 <t, |Uj|2 <t forall i € [m],] S [Tl]



Beyond Partial Coloring



Annoying loss of O(log n)
to get full coloring



|deal case

Beck-Fiala Setting: At most n/10 big (>10k) sets

Partial Coloring: O for big sets.
About s1/2 for small sets of size s.

“Ideal” life cycle of a set

|deal case: Discrepancy = k/? + (k/2)Y?% + (k/4)Y/% + ...



What can go wrong

I big

B Size=k

B  Size=k-k1/?

B Size=k-2k1/2

Trouble: A set can get k'/2discrepancy, but very few elements
colored.



Banaszczyk’s full coloring method



Discrepancy

Given an m X n matrix A,
find x € {—1,1}", to minimize
disc(A) = |Ax|

Incidence matrix A =

Rows: sets
Columns: elements

Vector balancing view: Given vectors vy, ...,v,, € R™
find x € {—1,1}" to minimize |}, x;v;|

1
0

0 ---
1

[



Banaszczyk’s Theorem

Thm: Let A have columns vy, ...,v, € R™, |v;|, < 1/5

K = symmetric convex body with y,,, (K) = %
Jx €{—1,1}"s.t. AXE K



Banaszczyk’s Theorem

Cube: K=O(logm)Y? [-1,1]" vy, (K) >1/2

Gives O(klogn)'/? for Beck-Fiala easily

1
k1/2

3 signed sum w/ £.,-norm O(log m)/? (and m < nt)

Scale matrix by (length of columns < 1)

Surprising results for various bodies K.



Proof 1dea

Given vy, ..., vy, €ach [v;|< 1/5.  y(K) = -

Goal: Find signing ,; x;v; € K

Key observation: Signing exists iff
Some signing of v,, ...., v, with sum in
(K +v;) U (K —vy).

Convexify: K+
Remove regions of K width < 2|v,]| along v,

Lose and gain volume.

(non-trivial) computation to show volume stays > %

(%)

K —v,



Algorithmic history

Banaszczyk based approaches:
[B., Dadush, Garg’16]: O (log n)*/? algorithm for Komlos problem
[B., Dadush, Garg, Lovett 18]: algorithm for general Banaszczyk.



Recall trouble with Partial Coloring

Beck Fiala Setting

I big

B Size=t

B Size=t-t1/2

B Size=t-2t1/2

Trouble: A set can get t/2discrepancy, but very few elements
colored.



Lovett Meka Algorithm

Random walk, y N(0,1) in each dimension

a) Fixjif x; = £1

b) If row a; gets tight (disc(a;) = A;|a;l,)
Move in subspace a;x = 4;|a;|,

(not violate discrepancy)




Correlations 1n Lovett-Meka

Consider set S = {1,2,... .k}

Ideal case: If randomly color each element
Progress = k discrepancy =~ k1/2

Suppose move in subspace x; = x, = -+ = x},

E.g. if have constraints x; - x, =0, X, -x3=0, ...
Can only color all +1 or all -1.
Progress = k discrepancy = k

In Lovett-Meka, such sets hit subspace at k1/? discrepancy, but
progress is only k1/2



Suggests a solution

Used for algorithmic 0(k'/21og'/? n) bound for Beck-Fiala
[B., Dadush, Garg’16]

Can we design a walk that moves in some subspace, but still looks
quite “random™?

E.g. If constrained to move in subspace x; = x, = - = x3,

Just set Ax; = 0 for 1=1,2,..,t
Can still do a random walk for 1 = k+1,...n.



Smarter covariance matrices

W: arbitrary subspace dim(W) < (1 —6)n A wt

Need to walk in W+ X

Property 1: w/(Ax) =0 VYweW -1/+1 cube
E[WTAX AxTw] =0 or w'Yw =0 Covariance matrix

Y(l,]) = E[Axi,ij]
Property 2: Still looks almost independent.
For any direction ¢ = (cq, ..., C,,)

E[(ZiCiAxi)Z] < lZiCizE[Axiz]
c’Y ¢ < (%) c'diag(Y)c Vc € R™

Y < (%) diag(Y)



Can find such a good walk

Key Thm: If dim(W) < (1 —-48)n
There Is a non-zero solution Y to the SDP

Yw Yw e W

1_d Y
<g> iag(Y)
0

~<~<§

A\

Proof: Using SDP duality

Use this to design the walk Ax = Y1/2g



Getting Concentration

Thm: Upon termination the 0-1 solution satisfies concentration for
every linear constraint

Fixc = (cq,...,c,). Then cx evolves as a martingale
Key idea: Use sub-isotropic updates to control error during walk

Need “Freedman type” martingale analysis
must use intrinsic variance (avoid dependence on time steps).

Potential: ¥, c;x; — 4 X;¢” (1 —x?)  evolves nicely.



Algorithm for Beck-Fiala

Time t: If n, variables alive, at most n;/10 big rows
Pick W = span of these constraints.

Run the SDP walk.
No phases, continue till all variables -1/+1 (i.e. n; =0).

If row big = discrepancy 0
When becomes small, just like a random walk.

“Freedman type” martingale analysis (avoid dependence on time
steps), gives the result.



General Banaszczyk



Making Banaszczyk Algorithmic

Thm [Banaszczyk 97]: Input vy, ..., v, € R4, |v;|, <1
v convex body K, with y4(K) = %
3 coloring x € {—1,1}"*s.t. X; x(i)v; € 5K

Coloring depends on the convex body K.
How is K specified? (input size could be exponential)

Idea [Dadush, Garg, Lovett, Nikolov’16]: Minimax Thm. (2-player game)
Universal distribution on colorings that works for all convex bodies



Equivalent formulation

Alternate formulation [Dadush, Garg, Lovett, Nikolov’16]:
3 distribution on colorings x € {—1,1}", }

s.t.Y = ), x()v; is =N(0,1) inevery direction
[ | ' J
O(1) subgaussian

No body K
anymore

Y € R? is o-subgaussian if in all directions 6 € RY, 10|, = 1,
(6,Y) hassame tailsas N(0,02) ie. Pr[|(0,Y)| = 4] <2 exp(—12/20?)

Lemma: Y € K (for K convex, y4(K) = %) with constant prob.

Suffices to sample x implicitly from such a distribution.



Goal: 3 distribution on colorings x € {—1,1}",
s.t. random vector Y = »}; x(i)v; is O(1) subgaussian

ve e ST (Y,0) = Y, x(i)(v;,0) decays like N(0,1).

Special cases:

1) wv; are Orthogonal: Random + coloring x; works

As Yicix; = N(0,%;c?) ]L,
Var((Y,0)) =Y (v;,0)* < 10]* <1

2) All equal vectors %’
v, = = v, = v random coloring bad: Q(+/n) in direction v
Need dependent coloring: n/2 +1°’s andn/2 -1’s



Gram Schmidt Walk

Algorithm: Considervectorsvl,...@ vs M3y

4
I \L’
Write v, = cqv; + ...Ch—1Vp-1 + Wy V2

where w,, € span (v, ..., V_1)+

/
Let directionc = (cq,...,C_1,—1) xﬁl
Update coloring x as 6¢ s.t. E[5] =0 A
l.e. Ax = +6;¢c or =4, 02

Key Point: AY =Y, Ax() v; =8 Q- vy — v) = —6wy,.

As 6 <2 and E[6] =0
A(Y,0) evolves as a martingale with variance 0({8, w,,)?)



Proof Idea (ideal case)

Vq, e @ Suppose pivot Is the one to freeze every time
Pivot v, AY: S,wy,
PlVOt Vn-1 AY: 671—1 Whn-1

Wy, ..., W, Obtained by Gram Schmidt process.

w1 =11 Wy = wy/|wy
Wy = Uy — (U, Wy) Wy W, = wy/|w,
W3 = V3 — (U3, Wy) Wy - (U3, W) W, W3 = w3 /|ws

Y — 5an ~+ 5n—1Wn—1 + -+ 51 W1
Var ((Y,8)) = 255 (w;, 8)2 < Z(SE (9,602 < 4|0]% = 4
L L



Some more detalls

V1) oo s Ko o @ No reason why pivot should get fixed.

Suppose ve gets fixed.
w,, becomes w,, which can be longer.

Proof idea: Can charge increase in |w,,|* to v: disappearing.

Track evolution of E[e9Y)] by a suitable potential
and show E[eX01)]=¢0(**)  for each 6, 1

(Recall Z is o-subgaussian iff E[e?Z] = e(2**) forall 1)



Thanks for your attention!



