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Discrepancy

Universe: U= [1,…,n]         

Subsets: S1,S2,…,Sm

Color elements  red/blue so each

set is colored as evenly as possible.

Given : [n] ! { -1,+1}  

Disc (𝜒) = maxS |i2S (i)|  = maxS | 𝑆 |

Disc (set system) = min𝜒 maxS | 𝑆 |

S1

S2

S3

S4



Matrix Notation

Rows: sets

Columns: elements

Given any matrix A, 

find coloring 𝑥 ∈ −1,1 𝑛, to minimize 𝐴𝑥 ∞



Applications

CS:  Computational Geometry,  Approximation, Complexity, 

Differential Privacy, Pseudo-Randomness, …

Math: Combinatorics, Optimization, Finance, Dynamical Systems, 

Number Theory, Ramsey Theory, Algebra,  Measure Theory, …



Hereditary Discrepancy

Discrepancy a useful measure of  complexity of  a set system

Hereditary discrepancy: 

herdisc (U,S) = max𝑈′⊆𝑈 disc (U’, S|U’) 

Robust version of discrepancy

(99% of  problems: bounding disc = bounding herdisc) 

A1

A2

…

1 2 … n

A’1

A’2

…

1’ 2’ … n’

But not so robust 𝑆𝑖 = 𝐴𝑖 ∪ 𝐴’𝑖

Discrepancy = 0 



Rounding

Lovasz-Spencer-Vesztermgombi’86: Given any matrix A, and 

𝑥 ∈ 𝑅𝑛, can round x to   𝑥 ∈ 𝑍𝑛

s.t. 𝐴𝑥 –𝐴 𝑥 ∞ < Herdisc 𝐴
 𝑥

Ax=bx
Intuition: Discrepancy is like

rounding ½ integral solution to 0 or 1.

Can do dependent (correlated) rounding based on A.

For approximation algorithms: need algorithms for 

discrepancy

Bin packing: OPT +  𝑂(log OPT)   [Rothvoss’13]

Herdisc(A) = 1 iff A is TU matrix.



Rounding

Lovasz-Spencer-Vesztermgombi’86: Given any matrix A, and 

𝑥 ∈ 𝑅𝑛, can round x to   𝑥 ∈ 𝑍𝑛 s.t. 𝐴𝑥 –𝐴 𝑥 ∞ <
Herdisc 𝐴

Proof:  Round the bits  of x one by one.

𝑥1:  blah .0101101       

𝑥2:  blah .1101010

…

𝑥𝑛:  blah .0111101

Error =   herdisc(A) ( 
1

2𝑘 +
1

2𝑘−1 + … +
1

2
)   

 𝑥

Ax=b

A

(-1)

(+1)

Key Point: Low discrepancy

coloring guides our updates!

x



Rounding

Only shows existence of good rounding

How to actually find it?

Thm [B’10]:  Error  = 𝑂 log𝑚 log 𝑛 herdisc(A)



Ordering with small prefix sums

Vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑑 𝑣 ∞ ≤ 1  𝑖 𝑣𝑖 = 0

Find a permutation 𝜋 such that each prefix sum has small norm

i.e.  𝑀𝑎𝑥𝑘 𝑣𝜋 1 + …+ 𝑣𝜋 𝑘 ∞
is minimized

d=1   numbers in [-1,1]      e.g.    0.7  -0.2 -0.9  0.8, 0.7 …

What would a random ordering give?

d=2 0.7   , 0.8   ,  -0.8  , …    can we get 𝑂(1)
-0.4    0.6       0.5

(Posed  by Reimann,  solved by Steinitz in 1913, called Steinitz problem)



Steinitz Problem

Given 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑑 with   𝑖 𝑣𝑖 = 𝟎

Find permutation to minimize norm of prefix sums

𝑚 𝜋 = max
𝑘

𝑣𝜋 1 + … + 𝑣𝜋 𝑘

Discrepancy of prefix sums: Given ordering find signs to minimize

norm of signed prefix sums

𝜋 𝑣1𝑣2𝑣3𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣1𝑣3𝑣4𝑣8𝑣7𝑣6𝑣5𝑣2

+  - +  +   - - - +

𝑚 𝜋
𝑚 𝜋 + 𝑓 𝑑

2



Sparsification

Original motivation: Numerical Integration/ Sampling

How well can you approximate a region by discrete points ?

Discrepancy:

Max over rectangles R

|(# points in R) – (Area of R)| 

Use this to sparsify

Quasi-Monte Carlo integration:  Huge area  (finance, …)

Error  MC  ≈
1

𝑛
QMC  ≈

𝑑𝑖𝑠𝑐

𝑛



Tusnady’s problem

Input: n points placed arbitrarily in a grid.

Sets =  axis-parallel rectangles

Discrepancy: max over rect. R    ( |# red in R - # blue in R| )

Random gives about O(n1/2 log1/2 n)

Very long line of work

O(log4 n)   [Beck 80’s]

...

O(log2.5 n) [Matousek’99]

O(log2 n)   [B., Garg’16]

O(log1.5 n) [Nikolov’17]



Questions around Discrepancy bounds

Combinatorial: Show good coloring exists

Algorithmic: Find coloring in poly time

Lower bounds on discrepancy

Approximating discrepancy



Combinatorial (3 generations)

0)  Linear Algebra (Iterated Rounding) 

[Steinitz, Beck-Fiala, Barany, …]

1)  Partial Coloring Method: 

Beck/Spencer early 80’s:  Probabilistic Method + Pigeonhole

Gluskin’87:  Convex Geometric Approach

Very versatile (black-box)

Loss adds over O(log n) iterations 

2)  Banaszczyk’98: Based on a deep convex geometric result

Produces full coloring directly (also black-box)  



Brief History  (combinatorial)

Method Tusnady

(rectangles)

Steinitz

(prefix sums)

Beck-Fiala

(low deg. system)

Linear Algebra log4 𝑛 d k

Partial Coloring log2.5 𝑛
[Matousek’99]

d1/2 log n k1/2 log n

Banaszczyk log1.5 𝑛
[Nikolov’17]

(d log n)1/2

[Banaszczyk’12]

(k log n)1/2

[Banaszczyk’98]

Lower bound log 𝑛 d1/2 k1/2



Brief History (algorithmic)

Partial Coloring now constructive

Bansal’10:            SDP + Random walk 

Lovett Meka’12:  Random walk + linear algebra

Rothvoss’14:        Sample and Project (geometric)

Many others by now [Harvey, Schwartz, Singh],  [Eldan, Singh]

Method Tusnady

(rectangles)

Steinitz

(prefix sums)

Beck-Fiala

(low deg. system)

Linear Algebra log4 𝑛 d k

Partial Coloring log2.5 𝑛
[Matousek’99]

d1/2 log n k1/2 log n

Banaszczyk log1.5 𝑛
[Nikolov’17]

(d log n)1/2

[Banaszczyk’12]

(k log n)1/2

[Banaszczyk’98]

Lower bound log 𝑛 d1/2 t1/2



Algorithmic aspects (2)

Beck-Fiala   (B.-Dadush-Garg’16)    (tailor made algorithm)

General Banaszczyk (B.-Dadush-Garg-Lovett’18)

Method Tusnady

(rectangles)

Steinitz

(prefix sums)

Beck-Fiala

(low deg. system)

Linear Algebra log4 𝑛 d K

Partial Coloring log2.5 𝑛
[Matousek’99]

d1/2 log n k1/2 log n

Banaszczyk log1.5 𝑛 log2 𝑛
[Nikolov’17] [BDG16]

(d log n)1/2 [BDGL]

[Banaszczyk’12]

(k log n)1/2 [BDG’16]

[Banaszczyk’98]

Lower bound log 𝑛 d1/2 k1/2



Linear Algebraic approach

Start with x(0) = (0,…,0)  coloring.

Update at each step t

If a variable reaches -1 or 1,  fixed forever.

x(t) =  x(t-1)  +  y(t)  

Update y(t) obtained by solving  By(t) = 0

B cleverly chosen.

Beck-Fiala:  B =  rows with size > k     (on floating variables)

Row has 0 discrepancy as long as it is big. 

(no control once it becomes of size <= k).   

x

−1,1 𝑛cube



Partial Coloring 



Spencer’s problem

Spencer Setting:  Discrepancy of any set system on 

n elements and m sets?

[Spencer’85]: (independently by Gluskin’87)

For m = n discrepancy · 6n1/2   

Tight: Cannot beat 0.5 n1/2 (Hadamard Matrix). 

Random coloring gives O n log n 1/2

Proof:  For set S,    Pr [disc(S) ≈ 𝑐|𝑆|1/2 ]  ≈ exp −𝑐2

Set  c = O log n 1/2 and apply union bound. 

Tight. Random gives Ω n log n 1/2 with very high prob.

𝑆1

𝑆2
…
𝑆𝑚

1 2 … n



Beating random coloring

[Beck, Spencer 80’s]: Given an m x n matrix A, there is a partial 

coloring satisfying    𝑎𝑖𝑥 ≤ 𝜆𝑖 𝑎𝑖 2

provided   𝑖 𝑔(𝜆𝑖) ≤
𝑛

5

Union bound:   𝑖 𝑒
−𝜆𝑖

2
< 1

n/5 vs 1  very powerful

Can demand  discrepancy 0  for ≈ Ω 𝑛 rows.

(while still having control on other rows).

Combines strengths of probability + linear algebra

𝑔 𝜆𝑖 ≈ ln
1

𝜆𝑖
if 𝜆𝑖 < 1

≈ 𝑒−𝜆𝑖
2

if 𝜆𝑖≥ 1



Spencer’s O(n1/2) result

Partial Coloring suffices: For any set system with m sets,  there exists

a coloring on ¸ n/2 elements with discrepancy 

Δ= O(n1/2 log1/2 (2m/n)) [For m=n,  disc = O(n1/2)]

Algorithm for total coloring:

Repeatedly apply partial coloring lemma  

Total discrepancy  

O( n1/2 log1/2 2 )       [Phase 1]

+ O( (n/2)1/2 log1/2 4 )   [Phase 2] 

+ O((n/4)1/2 log1/2 8 )   [Phase 3]

+ …                               = O(n1/2) 



Beck Fiala

Thm: Partial coloring  𝑂 𝑘1/2 , so Full coloring 𝑂 𝑘1/2 log 𝑛

Total number of 1’s in matrix  ≤ 𝑛𝑘

Why can we set  Δ = 𝑘1/2 ?

 𝑖 𝑔(𝜆𝑖) ≤
𝑛

5
𝜆𝑖 =

Δ

|𝑆𝑖|

n sets of size k                 n g(1)        ≈ 𝑛

n/t  sets of size  tk
𝑛

𝑡
𝑔

1

𝑡
1
2

≈ (𝑛/𝑡) log 𝑡

tn sets of size  k/t         𝑡𝑛 𝑔 𝑡1/2 ≈ 𝑡𝑛 𝑒−𝑡

𝑔 𝜆𝑖 ≈ ln
1

𝜆𝑖
if 𝜆𝑖 < 1/2

≈ 𝑒−𝜆𝑖
2

if 𝜆𝑖≥ 1/2



Proving Partial Coloring Lemma



A geometric view

Spencer’85: Any 0-1  matrix (n x n ) has disc ≤ 6 𝑛

Gluskin’87: Convex geometric approach

Consider polytope P(t)  =  −𝑡 𝟏 ≤ 𝐴𝑥 ≤ 𝑡 𝟏

P(t) contains a point in  −1,1 𝑛 for t = 6 𝑛

Gluskin’87: If K symmetric, convex with large (Gaussian) volume

(> 2−𝑛/100) then K contains a point with many coordinates {-1,+1} 

d-dim Gaussian Measure: 𝛾𝑑 𝑥 =  exp − 𝑥 2/2 (2𝜋)−𝑑/2

𝛾𝑑 𝐾 : Pr (𝑦1, … , 𝑦𝑚) ∈ 𝐾 each 𝑦𝑖 iid  N(0,1)

What is the Gaussian volume of −1,1 𝑛 cube

K

−1,1 𝑛 cube

𝑎𝑖𝑥 ≤ 𝑡

𝑎𝑖𝑥 ≥ −𝑡



A geometric view

Gluskin’87: If K symmetric, convex with large (Gaussian) volume

(> 2−𝑛/100) then K contains a point with many coordinates {-1,+1} 

Proof: Look at  K+x for all 𝑥 ∈ −1,1 𝑛

Total volume of shifts = 2Ω 𝑛 𝛾𝑛 𝐾 + 𝑥 ≥ 𝛾𝑛 𝐾 exp − 𝑥 2/2

Some point 𝑧 lies in 2Ω 𝑛 copies

𝑧 = 𝑘 + 𝑥 and  𝑧 = 𝑘’ + 𝑥’ where 𝑥, 𝑥’ have large hamming distance

Gives  (𝑥 − 𝑥′)/2 = (𝑘 − 𝑘′)/2 ∈ 𝐾.

K



Gluskin for Polytopes

Gluskin’87: If K symmetric, convex with large (Gaussian) volume

(> 2−𝑛/100) then K contains a point with many coordinates {-1,+1} 

Consider polytope P  =  { |𝑎𝑖𝑥| ≤ Δ𝑖 , 𝑖 ∈ 𝑚 }   

For what Δ𝑖 Gaussian volume large enough?

Sidak’s Thm:  𝛾𝑛 𝐾 ∩ 𝑆𝑙𝑎𝑏 ≥ 𝛾𝑛 𝐾 𝛾𝑛 𝑆𝑙𝑎𝑏

𝛾𝑛(𝑃) ≥ Π𝑖 𝛾𝑛(𝑆𝑙𝑎𝑏𝑖) 𝑆𝑙𝑎𝑏𝑖 = |𝑎𝑖𝑥| ≤ 𝑡

Gaussian correlation Thm (Royen’14): Any convex symmetric K, S

𝛾𝑛 𝐾 ∩ 𝑆 ≥ 𝛾𝑛 𝐾 𝛾𝑛 𝑆

𝑎𝑖𝑥 ≤ 𝑡

𝑎𝑖𝑥 ≥ −𝑡



Volume of a slab

Sidak’s Thm:  𝛾𝑛(𝑃) ≥ Π𝑖 𝛾𝑛(𝑆𝑙𝑎𝑏𝑖) 𝑆𝑙𝑎𝑏𝑖 = |𝑎𝑖𝑥| ≤ 𝑡

Useful to normalize  𝑡 = 𝜆 𝑎𝑖 2

Lemma:  𝛾𝑛 𝑆𝑙𝑎𝑏 =   exp(-g(𝜆))

Proof: Can assume 𝑎𝑖 = 𝑎𝑖 𝑒1 (rotational invariance of Gaussian)

Pr[ |𝑎𝑖𝑥| ≤ 𝜆 𝑎𝑖 2] =  Pr 𝑔1 ≤ 𝜆 =  1 − exp −𝜆2 𝜆 ≥ 1

≈ 𝜆 𝜆 < 1 

Sidak’s Lemma,𝛾𝑛 𝑃 ≥ 2−𝑛/100

gives the result.



Algorithmic Partial Coloring



Useful View

Independent rounding.

A (complicated) view

Brownian motion in cube.

Same as random coloring

Each coordinate independent

start

𝑥𝑡−1 Δ𝑥𝑡

𝑥1, … , 𝑥𝑛

Cube: {-1,+1}n

dimension: element

vertex: coloring



Useful View

If additional constraints.

Can tailor walk accordingly.

Pick covariance matrix for Δ𝑥𝑡

(slow down towards bad regions)

Design barrier functions

…

start

𝑥𝑡−1

Δ𝑥𝑡

𝑥1, … , 𝑥𝑛

Cube: {-1,+1}n

dimension: element

vertex: coloring

𝑎𝑖𝑥 ≤ 𝜆𝑖 𝑎𝑖 2

𝑎𝑖𝑥 ≥ −𝜆𝑖 𝑎𝑖 2



Lovett Meka Algorithm

Random walk,  𝛾 N(0,1) in each dimension

a) Fix j if  𝑥𝑗 = ±1

b) If row 𝑎𝑖 gets tight (disc(𝑎𝑖) = 𝜆𝑖 𝑎𝑖 2)

Move in subspace  𝑎𝑖x = 𝜆𝑖 𝑎𝑖 2

(not violate discrepancy)

Thm [LM’12] : Given an m x n matrix A,  can  a partial coloring

𝑥 ∈ −1,1 𝑛 with Ω 𝑛 of them  ±1

𝑎𝑖𝑥 ≤ 𝜆𝑖 𝑎𝑖 2 for each row i, provided   𝑖 𝑒
−𝜆𝑖

2

≤
𝑛

5

start



Lovett Meka Algorithm

Random walk,  𝛾 N(0,1) in each dimension

a) Fix j if  𝑥𝑗 = ±1

b) If row 𝑎𝑖 gets tight (disc(𝑎𝑖) = 𝜆𝑖 𝑎𝑖 2)

Move in subspace  𝑎𝑖x = 𝜆𝑖 𝑎𝑖 2

(not violate discrepancy)

Idea: Walk makes progress as long as dimension = Ω 𝑛

After 
10

𝛾2 steps: Ω 𝑛 variables must have hit ±1

Pr[ Row 𝑎𝑖 tight]  ≈ exp −𝜆𝑖
2

As  𝑖 𝑒𝑥𝑝 −𝜆𝑖
2 ≤

𝑛

5
so  n/5 tight rows in expectation

start



Another Algorithm
(general convex bodies, not just polytopes)



Algorithmic version

Rothvoss’14:  Pick a random y, return closest point x in K∩ −1,1 𝑛

K y

Idea: Measure concentration

If  𝛾𝑛(𝐾) ≥ ½

𝛾𝑛 𝐾 + 𝑡𝐵2 ≥ 1 − 𝑒−𝑡2/2 (halfspace)

𝛾𝑛 𝐾 ≥ 2−𝜖𝑛 dist(y, K) ≈ 𝜖𝑛 1/2

dist(y, Cube )  ≈ 𝑛
So dist(y, K∩ −1,1 𝑛)  ≥ 𝑛

Suppose x has only 𝛿𝑛 coordinates  ±1. 

Would get same x if  body 𝐾’ = 𝐾 ∩ 𝛿𝑛 slabs

But by Sidak 𝛾𝑛(𝐾′) ≈ 2−(𝜖+𝛿)𝑛

so  𝑑𝑖𝑠𝑡 𝑦, 𝐾’ ≈ (𝜖 + 𝛿) 𝑛 1/2 (gives contradiction)

x



Partial Coloring

Eldan, Singh’14: Pick a random direction c;

optimize max 𝑐 ⋅ 𝑥 over K∩ −1,1 𝑛

K



Approximating Discrepancy



Vector Discrepancy

Exact: Min t

−𝑡 ≤  𝑗 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑡 for all rows i

𝑥𝑗 ∈ −1,1 for each j

SDP:   vecdisc(A)

min t

 𝑖 𝑎𝑖𝑗𝑣𝑗 2
≤ 𝑡 for all rows i

𝑣𝑗 2
= 1 for each j



Is vecdisc a good relaxation?

Not directly.  vecdisc(A) = 0 even if disc(A) very large

[Charikar, Newman, Nikolov’11]

NP-Hard: Whether disc(A) = 0  or  Ω( 𝑛)  for Spencer’s setting?

Also implies vecdisc not a good relaxation.

There must exist set systems where   disc(A) = Ω( 𝑛) 

(but  any polynomial time  computable function returns  0)



Still SDP can be useful

Discrepancy a useful measure of  complexity of  a set system

Let hervecdisc(A)  =  max
𝑆

vecdisc( 𝐴|𝑆 )

Hervecdisc(A) ≤ herdisc(A)

Thm [B’10]:  Algorithm disc(A)  = 𝑂 log𝑚 log 𝑛 hervecdisc(A)

A1

A2

…

1 2 … n

A’1

A’2

…

1’ 2’ … n’

But not so robust 𝑆𝑖 = 𝐴𝑖 ∪ 𝐴’𝑖

Discrepancy = 0 



Rounding Application

Lovasz-Spencer-Vesztermgombi’86: Given any matrix A, and 𝑥 ∈
𝑅𝑛, can round x to   𝑥 ∈ 𝑍𝑛 s.t. 𝐴𝑥 –𝐴 𝑥 ∞ < Herdisc 𝐴

Gives algorithmic  𝐴𝑥 –𝐴 𝑥 ∞ < 𝑂 log𝑚 log 𝑛 Herdisc 𝐴



Algorithm (at high level)

Cube: {-1,+1}n

Analysis: Few steps to reach a vertex (walk has high variance)

Disc(Si)  does a random walk (with low variance)

start

finish

Algorithm: “Sticky” random walk

Each step generated by rounding a suitable SDP

Move in various dimensions correlated, e.g.  t
1 + t

2 ¼ 0

Each dimension: An Element

Each vertex: A  Coloring



An SDP 

Hereditary disc.  ) the following SDP is always feasible

SDP:

Low discrepancy: |i 2 Sj
vi |2  · 2

|vi|
2 =  1

Rounding: 

Pick random Gaussian g = (g1,g2,…,gn) 

each coordinate gi is iid  N(0,1)

For each i, consider i = g ¢ vi

Obtain vi 2 Rn



Properties of Rounding

Lemma: If g 2 Rn is random Gaussian.  For any v 2 Rn,     

g ¢ v is distributed as N(0, |v|2)

Pf:      N(0,a2) + N(0,b2) = N(0,a2+b2)            g¢ v = i v(i) gi » N(0,  i v(i)2)

1. Each i » N(0,1) 

2. For each set S,  

i 2 S i = g ¢ (i2 S vi) » N(0, · 2)

(std deviation ·)

SDP:

|vi|
2 = 1

|i2 S vi|
2 ·2

Recall:   i = g ¢ vi

’s mimics a low discrepancy coloring (but is not {-1,+1})



Algorithm Overview 

Construct coloring iteratively.

Initially: Start with coloring  x0 = (0,0,0, …,0)  at t = 0.

At Time t: Update coloring as xt = xt-1 +  (t
1,…,t

n)

( tiny:  1/n suffices)

x(i)

xt(i) =  (1
i + 2

i + … + t
i)

Color of element i:  Does random walk

over time with step size ¼  N(0,1)

Fixed if reaches -1 or +1.

time

-1

+1

Set S:   xt(S) = i 2 S xt(i)  does a random walk w/ step  N(0,· 2)



Analysis

Consider time T = O(1/2)

Claim 1: With prob. ½, at least n/2 variables reach  -1 or +1.

Pf: Each element doing random walk with size ¼ .

) Everything colored in O(log n) rounds.

Claim 2: Each set has  O() discrepancy in expectation per round.

Pf: For each S, xt(S) doing random walk with step size ¼  

Log n rounds  +  Union bounds over m sets gives

O(𝜆 log 𝑛 log𝑚 1/2)  bound



Recap

At each step of walk, formulate SDP on unfixed variables.

SDP is feasible

Gaussian Rounding -> Step of walk

Properties of walk:

High Variance -> Quick convergence

Low variance for discrepancy on sets -> Low discrepancy



Approximating Herdisc

CNN’11:  Discrepancy was hard to approximate  (not very robust)

Can we approximate herdisc(A)

(not even clear if in NP, do to check if herdisc(A) ≤ 𝑡) 

Hervecdisc 𝐴 ≤ herdisc 𝐴 ≤ 𝑂( log 𝑛 log𝑚 1/2) Hervecdisc 𝐴
For any  restriction 𝐴|𝑆, can find coloring of S

With discrepancy  𝑂( log 𝑛 log𝑚 1/2 ) hervecdisc(𝐴)

But: Not clear how to compute hervecdisc(A) efficiently.



Matousek Lower Bound

Thm (Lovasz Spencer Vesztergombi’86): herdisc 𝐴 ≥ detlb(A)

detlb(A):  max
𝑘

max
𝑘×𝑘 submatrix 𝐵 of 𝐴

det 𝐵 1/𝑘

Conjecture (LSV’86):  Herdisc ≤ O(1) detlb

Remark: For TU Matrices, Herdisc(A) =1, detlb = 1

(every submatrix has det -1,0 or +1)



Detlb

Hoffman: Detlb(A) ≤ 2             herdisc 𝐴 ≥
log 𝑛

log log 𝑛

Palvolgyi’11: Ω log𝑛 gap

Matousek’11:   herdisc(A) ≤O(log n log𝑚) detlb.

Idea: Algorithm ->     hervecdisc is within log of herdisc

SDP Duality ->   Dual Witness for large hervecdisc(A).

Dual Witness ->  Submatrix with large determinant.



For a matrix A, let r(A) = max  row length (ℓ2 𝑛𝑜𝑟𝑚)

c(A)  = max column length

𝛾2(𝐴) = min r(B) c(C)  over all factorizations A= BC

Theorem:  
1

log m
𝛾2(𝐴) ≤ herdisc(A)  ≤ 𝛾2(𝐴) log𝑚

𝛾2 is computable using  an SDP    (can assume r(B) = c(C))

𝐴𝑖𝑗 =  𝑤𝑖 ⋅ 𝑣𝑗

|𝑤𝑖|2 ≤ 𝑡 , |𝑣𝑗|2 ≤ 𝑡 for all   𝑖 ∈ 𝑚 , 𝑗 ∈ 𝑛



Beyond  Partial Coloring



Annoying loss of O(log n)

to get full coloring



Ideal case

Beck-Fiala Setting:  At most n/10 big  (>10k)  sets                 

Partial Coloring:  0  for big sets. 

About  𝑠1/2 for  small sets of size s.

Ideal case:  Discrepancy = 𝑘1/2 + (𝑘/2)1/2 + (𝑘/4)1/2 + …

big

Size = k 

Size k/2 

Size  k/4 

“Ideal” life cycle of a set



What can go wrong 

Trouble: A set can get 𝑘1/2discrepancy,  but very few elements 

colored.

big

Size = k 

Size = k - 𝑘1/2

Size = k – 2𝑘1/2



Banaszczyk’s full coloring method



Discrepancy

Given an  𝑚 × 𝑛 matrix A, 

find 𝑥 ∈ −1,1 𝑛, to minimize

disc(A) = 𝐴𝑥 ∞

Vector balancing view:  Given vectors 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑚

find 𝑥 ∈ −1,1 𝑛 to minimize  𝑖 𝑥𝑖𝑣𝑖 ∞

Rows: sets

Columns: elements



Banaszczyk’s Theorem

Thm: Let A have columns 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑚,   𝑣𝑖 2 ≤ 1/5

K = symmetric convex body with 𝛾𝑚 𝐾 ≥
1

2

∃ 𝑥 ∈ −1,1 𝑛 s.t. Ax ∈ 𝐾
K

𝑣1

𝑣2



Banaszczyk’s Theorem

Cube:   K = O log𝑚 1/2 −1,1 𝑚 γm K ≥ 1/2

Gives  O 𝑘 log 𝑛 1/2 for Beck-Fiala easily

Scale matrix by  
1

𝑘1/2 (length of columns ≤ 1)

∃ signed sum w/ ℓ∞-norm O log𝑚 1/2 (and 𝑚 ≤ 𝑛𝑡)

Surprising results for various bodies K.



Proof idea

Given 𝑣1, … , 𝑣𝑛,  each 𝑣𝑖 < 1/5.    𝛾𝑚 𝐾 ≥
1

2

Goal: Find signing   𝑖 𝑥𝑖𝑣𝑖 ∈ 𝐾

Key observation:  Signing exists iff

Some signing of 𝑣2, … . , 𝑣𝑛 with sum in  

(𝐾 + 𝑣1) ∪ (𝐾 − 𝑣1).

Convexify:

Remove regions of K width < 2 𝑣1 along 𝑣1

Lose and gain volume.  

(non-trivial) computation to show volume stays ≥ ½

K

𝑣1

𝑣2

𝑣3

𝑣4

𝐾 + 𝑣1

𝐾 − 𝑣1



Algorithmic history

Banaszczyk based approaches:

[B., Dadush, Garg’16]: 𝑂 log 𝑛 1/2 algorithm for   Komlos problem 

[B., Dadush, Garg, Lovett 18]: algorithm for general Banaszczyk.



Recall trouble with Partial Coloring

Trouble: A set can get 𝑡1/2discrepancy,  but very few elements 

colored.

big

Size = t 

Size = t – 𝑡1/2

Size = t – 2𝑡1/2

Beck Fiala Setting



Lovett Meka Algorithm

Random walk,  𝛾 N(0,1) in each dimension

a) Fix j if  𝑥𝑗 = ±1

b) If row 𝑎𝑖 gets tight (disc(𝑎𝑖) = 𝜆𝑖 𝑎𝑖 2)

Move in subspace  𝑎𝑖x = 𝜆𝑖 𝑎𝑖 2

(not violate discrepancy)

start



Correlations in Lovett-Meka

Consider set S  = {1,2,…,k}

Ideal case: If randomly color each element  

Progress = k discrepancy ≈ 𝑘1/2

Suppose move in subspace  𝑥1 = 𝑥2 = ⋯ = 𝑥𝑘

E.g. if have constraints  𝑥1 - 𝑥2 = 0,         𝑥2 - 𝑥3= 0, …  

Can only color all  +1 or all -1.

Progress = k  discrepancy = k

In Lovett-Meka, such sets hit subspace at 𝑘1/2 discrepancy, but 

progress is only 𝑘1/2



Suggests a solution

Used for algorithmic 𝑂 𝑘1/2 log1/2 𝑛 bound for Beck-Fiala

[B., Dadush, Garg’16]

Can we design a walk that moves in some subspace, but still looks 

quite “random”?

E.g.  If constrained to move in subspace  𝑥1 = 𝑥2 = ⋯ = 𝑥𝑘

Just set Δ𝑥𝑖 = 0 for i=1,2,..,t

Can still do a random walk for  i = k+1,..,n.



Smarter covariance matrices

Property 1:  𝑤𝑇 Δ𝑥 = 0 ∀𝑤 ∈ 𝑊

𝐸 𝑤𝑇Δ𝑥 Δ𝑥𝑇𝑤 = 0 or    𝑤𝑇𝑌𝑤 = 0

Property 2:  Still looks almost independent. 

For any direction 𝑐 = (𝑐1, … , 𝑐𝑛)

𝐸[  𝑖 𝑐𝑖Δ𝑥𝑖
2
] ≤

1

𝛿
 𝑖 𝑐𝑖

2 𝐸 Δ𝑥𝑖
2

𝑐𝑇𝑌 𝑐 ≤
1

𝛿
𝑐𝑇𝑑𝑖𝑎𝑔 𝑌 𝑐 ∀𝑐 ∈ 𝑅𝑛.

𝑌 ≼
1

𝛿
𝑑𝑖𝑎𝑔 𝑌

Covariance matrix 

𝑌 𝑖, 𝑗 = 𝐸 Δ𝑥𝑖 , Δ𝑥𝑗

x

-1/+1 cube

W: arbitrary subspace  dim(W) ≤ 1 − 𝛿 𝑛
Need to walk in 𝑊⊥

𝑊⊥



Can find such a good walk

Key Thm:   If  dim 𝑊 ≤ 1 − 𝛿 𝑛

There is a non-zero solution Y to the SDP

𝑤𝑇𝑌𝑤 = 0 ∀𝑤 ∈ 𝑊

𝑌 ≼
1

𝛿
𝑑𝑖𝑎𝑔 𝑌

𝑌 ≽ 0

Proof: Using SDP duality 

Use this to design the walk   Δ𝑥 = 𝑌1/2𝑔



Getting Concentration

Thm: Upon termination the 0-1 solution satisfies concentration for 

every linear constraint

Fix 𝑐 = 𝑐1, … , 𝑐𝑛 . Then  𝑐𝑥 evolves as a martingale

Key idea: Use sub-isotropic updates to control error during walk

Need “Freedman type” martingale analysis

must use intrinsic variance  (avoid dependence on time steps).

Potential:     𝑖 𝑐𝑖𝑥𝑖 − 𝜆  𝑖 𝑐𝑖
2 1 − 𝑥𝑖

2 evolves nicely.



Algorithm for Beck-Fiala

Time t:  If  𝑛𝑡 variables  alive, at most  𝑛𝑡/10 big rows

Pick W = span of these constraints.

Run the SDP walk.

No phases, continue till all variables -1/+1  (i.e. 𝑛𝑡 = 0).

If row big = discrepancy 0

When becomes small,  just like a random walk. 

“Freedman type” martingale analysis  (avoid dependence on time 

steps),  gives  the result.



General Banaszczyk 



Making Banaszczyk Algorithmic

Thm [Banaszczyk 97]: Input 𝑣1, … , 𝑣𝑛 ∈ 𝑅𝑑,   𝑣𝑖 2 ≤ 1

∀ convex body K, with 𝛾𝑑 𝐾 ≥
1

2

∃ coloring 𝑥 ∈ −1,1 𝑛 s.t.  𝑖 𝑥 𝑖 𝑣𝑖 ∈ 5𝐾

Coloring depends on the convex body K.

How is K specified?   (input size could be exponential)

Idea [Dadush, Garg, Lovett, Nikolov’16]: Minimax Thm. (2-player game)

Universal distribution on colorings that works for all convex bodies

K

𝑣1

𝑣2



Equivalent formulation

Alternate formulation [Dadush, Garg, Lovett, Nikolov’16]: 

∃ distribution on colorings 𝑥 ∈ −1,1 𝑛,

s.t. Y =   𝑖 𝑥 𝑖 𝑣𝑖 is ≈ N(0,1) in every direction

𝑌 ∈ 𝑅𝑑 is  𝜎-subgaussian if  in all directions 𝜃 ∈ 𝑅𝑑 , 𝜃 2 = 1,    

〈𝜃, 𝑌〉 has same tails as 𝑁 0, 𝜎2 i.e.  Pr 〈𝜃, 𝑌〉 ≥ 𝜆 ≤ 2 exp −𝜆2/2𝜎2

Lemma: Y ∈ 𝐾 (for K convex, 𝛾𝑑 𝐾 ≥
1

2
)  with constant prob.

Suffices to sample x implicitly from such a distribution.

No body K 

anymore

O(1) subgaussian



Goal: ∃ distribution on colorings 𝑥 ∈ −1,1 𝑛,

s.t. random vector Y =   𝑖 𝑥 𝑖 𝑣𝑖 is  O(1) subgaussian

∀𝜃 ∈ 𝑆𝑚−1, 〈𝑌, 𝜃〉 =  𝑖 𝑥 𝑖 〈𝑣𝑖 , 𝜃〉 decays like N(0,1).

Special cases:

1) 𝑣𝑖 are Orthogonal:  Random ± coloring 𝑥𝑖 works

As   𝑖 𝑐𝑖𝑥𝑖 ≈ 𝑁 0, 𝑖 𝑐𝑖
2

Var(〈𝑌, 𝜃〉) =  𝑖 𝑣𝑖 , 𝜃
2 ≤ 𝜃 2 ≤ 1

2) All equal vectors 

𝑣1 = ⋯ = 𝑣𝑛 = 𝑣 random coloring bad:   Ω 𝑛 in direction v

Need dependent coloring:   n/2  +1’s   and n/2   -1’s



Gram Schmidt Walk

Algorithm:  Consider vectors 𝑣1, … , 𝑣𝑛

Write  𝑣𝑛 = 𝑐1𝑣1 + …𝑐𝑛−1𝑣𝑛−1 + 𝑤𝑛

where 𝑤𝑛 ∈ 𝑠𝑝𝑎𝑛 𝑣1, … , 𝑣𝑛−1
⊥

Let direction 𝑐 = 𝑐1, … , 𝑐𝑛−1 , −1

Update coloring x as 𝛿c s.t. 𝐸 𝛿 = 0

i.e.  Δ𝑥 = +𝛿1𝑐 or   −𝛿2 𝑐

Key Point:  Δ𝑌 =  𝑖 Δ𝑥 𝑖 𝑣𝑖 = 𝛿( 𝑖=1
𝑛−1 𝑐𝑖𝑣𝑖 − 𝑣𝑛)  =  −𝛿𝑤𝑛. 

As  𝛿 ≤ 2 and 𝐸 𝛿 = 0

Δ 𝑌, 𝜃 evolves as a martingale with variance    O( 𝜃,𝑤𝑛
2)

x

𝑣1

𝑣2

𝑣3
𝑤3

𝛿1

𝛿2



Proof Idea (ideal case)

𝑣1, … , 𝑣𝑛 Suppose pivot is the one to freeze every time                  

Pivot 𝑣𝑛 Δ𝑌: 𝛿𝑛𝑤𝑛

Pivot 𝑣𝑛−1 Δ𝑌: 𝛿𝑛−1 𝑤𝑛−1

….

𝑤1, … , 𝑤𝑛 obtained by Gram Schmidt process.

𝑤1 = 𝑣1  𝑤1 = 𝑤1/|𝑤1|

𝑤2 = 𝑣2 – 〈𝑣2,  𝑤1〉  𝑤1  𝑤2 = 𝑤2/|𝑤2|

𝑤3 = 𝑣3 – 〈𝑣3,  𝑤1〉  𝑤1 - 〈𝑣3,  𝑤2〉  𝑤2  𝑤3 = 𝑤3/|𝑤3|

𝑌 = 𝛿𝑛𝑤𝑛 + 𝛿𝑛−1𝑤𝑛−1 + ⋯+ 𝛿1 𝑤1

𝑉𝑎𝑟 𝑌, 𝜃 =  

𝑖

𝛿𝑖
2 𝑤𝑖 , 𝜃

2 ≤  

𝑖

𝛿𝑖
2  𝑤𝑖 , 𝜃

2 ≤ 4 𝜃 2 = 4



Some more details

𝑣1, … , 𝑣5, … , 𝑣𝑛 No reason why pivot should get fixed.

Suppose 𝑣5 gets fixed. 

𝑤𝑛 becomes 𝑤𝑛
′ which can be longer.

Proof idea:  Can charge increase in 𝑤𝑛
2 to 𝑣5 disappearing.

Track evolution of 𝐸 𝑒𝜆〈𝜃,𝑌〉 by a suitable  potential   

and show 𝐸 𝑒𝜆〈𝜃,𝑌〉 = 𝑒𝑂 𝜆2
for each 𝜃, 𝜆

(Recall Z is 𝜎-subgaussian iff 𝐸 𝑒𝜆𝑍 = 𝑒𝑂 𝜆2𝜎2
for all  𝜆)



Thanks for your attention!


