An Introduction to Semidefinite Programming for Combinatorial Optimization (Problem Session)

Samuel Burer*
IPCO Summer School
May 20-21, 2019

[^0]Exercise 1. Given $X \in \mathbb{S}_{+}^{p}$, prove there exists $Y \in \mathbb{S}_{+}^{p}$ such that $Y^{2}=X$.
Comments and Hints: Y is called the square root of X, and is usually written as $X^{1 / 2}$. To prove its existence, as a warm-up, first consider the case when X is diagonal. Then prove the general case by using the spectral decomposition $V D V^{T}$ of X, and remember that orthogonal means $V^{T} V=V V^{T}=I$.

Exercise 2. Prove $X, S \in \mathbb{S}_{+}^{p}$ implies $X \bullet S \geq 0$.
Comments and Hints: This will establish that \mathbb{S}_{+}^{p} is self-dual. To prove it, use the previous exercise along with the identities

$$
\begin{aligned}
& \operatorname{trace}\left(M^{T} N\right)=M \bullet N=N^{T} \bullet M^{T}=\operatorname{trace}\left(N M^{T}\right), \\
& \|M\|_{F}=\sqrt{M \bullet M}
\end{aligned}
$$

to show that $X \bullet S=\left\|X^{1 / 2} S^{1 / 2}\right\|_{F}^{2}$.

Exercise 3. For $X, S \in \mathbb{S}_{+}^{p}$, prove $X \bullet S=0 \Leftrightarrow X S=0$.

Comments and Hints: Prove this using the prior exercise. Note that, when X and S are diagonal, this result reduces to the well-known vector condition $x^{T} s=0 \Leftrightarrow x \circ s=0$ for $x, s \geq 0$.

Exercise 4. What is the dimension of the feasible set of the primal problem

$$
\begin{array}{ll}
\text { inf } & C \bullet X \\
\text { s.t. } & A_{i} \bullet X=b_{i} \quad \forall i=1, \ldots, m \tag{P}\\
& X \succeq 0
\end{array}
$$

assuming that the data matrices $\left\{A_{1}, \ldots, A_{m}\right\}$ are linearly independent in \mathbb{S}^{n} and that (P) is interior feasible? Assuming also that the dual problem

$$
\begin{array}{ll}
\text { sup } & b^{T} y \tag{D}\\
\text { s.t. } & C-\sum_{i=1}^{m} y_{i} A_{i} \succeq 0 .
\end{array}
$$

has an interior feasible solution, determine the dimension of the feasible set of (D). Here, dimension refers to the number of degrees of freedom of the (relative) interior of the feasible set.

Exercise 5. The following primal-dual example shows that strong duality does not hold for SDP in general:

$$
\begin{aligned}
1=\inf & X_{33} \\
\text { s.t. } & X_{11}=0 \\
& X_{12}+X_{21}+2 X_{33}=2 \\
& X \succeq 0 \\
0=\sup \quad & 2 y_{2} \\
\text { s.t. } & \left(\begin{array}{ccc}
-y_{1} & -y_{2} & 0 \\
-y_{2} & 0 & 0 \\
0 & 0 & 1-2 y_{2}
\end{array}\right) \succeq 0 .
\end{aligned}
$$

Argue that 1 and 0 are in fact the respective optimal values. Also, discuss the violation(s) of the strong-duality theorem.

Comments and Hints. One argument uses the following 2×2 determinant property of $X \in \mathbb{S}_{+}^{p}: X_{j k}^{2} \leq X_{j j} X_{k k}$ for all j, k. In particular, consider how $X_{j j}=0$ affects the j-th row and column of X.

Exercise 6. For a column vector x and nonnegative scalar t, prove

$$
\|x\| \leq t \quad \Longleftrightarrow \quad t^{2} I-x x^{T} \succeq 0
$$

Comments and Hints. This is the first step in proving that any SOCP can be modeled as an SDP; the next step (which is not part of this exercise) is to apply the Schur complement theorem, which ensures

$$
t^{2} I-x x^{T} \succeq 0 \quad \Longleftrightarrow \quad\left(\begin{array}{cc}
t & x^{T} \\
x & t I
\end{array}\right) \succeq 0
$$

To prove the exercise, apply the first definition of positive semidefiniteness: $X \in \mathbb{S}^{p}$ if and only if $v^{T} X v \geq 0$ for all $v \in \mathbb{R}^{p}$. To make the proof a little easier, you can assume without loss of generality that $\|v\|=1$.

Exercise 7. For any $\mu>0$, the point on the primal-dual central path corresponding to μ is the unique solution ($X_{\mu}, y_{\mu}, S_{\mu}$) of the following system of equations (assuming $X, S \succ 0$):

$$
\begin{aligned}
A_{i} \bullet X & =b_{i} \quad \forall i=1, \ldots, m \\
\sum_{i=1}^{m} y_{i} A_{i}+S & =C \\
X S & =\mu I .
\end{aligned}
$$

Derive a simple, closed-form expression for $X_{\mu} \bullet S_{\mu}$.

Exercise 8. An alternate form of the ϑ-number SDP relaxation is

$$
\begin{array}{ll}
\max & e e^{T} \bullet X \\
\text { s. t. } & \operatorname{trace}(X)=1 \\
& X_{i j}=0 \quad \forall \text { edges }(i, j) \\
& X \succeq 0 .
\end{array}
$$

The dual of this form is

$$
\begin{array}{ll}
\min & \lambda \\
\text { s.t. } & \lambda I+\sum_{\text {edges }(i, j)} y_{i j} E_{i j}-e e^{T} \succeq 0 .
\end{array}
$$

Prove that strong duality holds between this primal-dual pair by exhibiting positive definite feasible solutions in each problem.

Exercise 9. Given a MaxCut instance with adjacency matrix A, a compact way to write the SDP relaxation is

$$
\max \{L \bullet X: \operatorname{diag}(X)=e, X \succeq 0\}
$$

where:

- $L:=\frac{1}{4}(\operatorname{Diag}(A e)-A)$ is the Laplacian matrix of the graph;
- the operator $\operatorname{diag}(\cdot)$ extracts the diagonal of its matrix input;
- the operator $\operatorname{Diag}(\cdot)$ makes a diagonal matrix out of its vector input.

A compact way to write the dual is

$$
\min \left\{e^{T} y: \operatorname{Diag}(y)-L=S, S \succeq 0\right\}
$$

Using these compact forms, prove weak duality between the primal and dual.

Comments and Hints. As with LP, sometimes it's easier to work with a specific form of your problem rather than a standard form. This particular form for the MaxCut SDP relaxation highlights the importance of the operators $\operatorname{diag}(\cdot)$ and $\operatorname{Diag}(\cdot)$, which are in fact adjoint operators, i.e., no matter the inputs X and y, it holds that $\operatorname{diag}(X)^{T} y=X \bullet \operatorname{Diag}(y)$.

Exercise 10. Referring to the previous exercise, the low-rank approach for solving the MaxCut SDP solves instead

$$
\max \left\{L \bullet\left(R R^{T}\right): \operatorname{diag}\left(R R^{T}\right)=e\right\}
$$

where the number of columns p in $R \in \mathbb{R}^{n \times p}$ is approximately $\sqrt{2 n}$. In terms of the n rows of R, describe the geometric interpretation of the constraint $\operatorname{diag}\left(R R^{T}\right)=e$.

[^0]: *Department of Business Analytics, University of Iowa, Iowa City, IA, 52242-1994, USA. Email: samuel-burer@uiowa.edu.

