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Exercise 1. Given X ∈ Sp+, prove there exists Y ∈ Sp+ such that Y 2 = X.

Comments and Hints: Y is called the square root of X, and is usually written as X1/2. To

prove its existence, as a warm-up, first consider the case when X is diagonal. Then prove the

general case by using the spectral decomposition V DV T of X, and remember that orthogonal

means V TV = V V T = I.
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Exercise 2. Prove X,S ∈ Sp+ implies X • S ≥ 0.

Comments and Hints: This will establish that Sp+ is self-dual. To prove it, use the previous

exercise along with the identities

trace(MTN) = M •N = NT •MT = trace(NMT ),

‖M‖F =
√
M •M

to show that X • S = ‖X1/2S1/2‖2F .
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Exercise 3. For X,S ∈ Sp+, prove X • S = 0⇔ XS = 0.

Comments and Hints: Prove this using the prior exercise. Note that, when X and S are

diagonal, this result reduces to the well-known vector condition xT s = 0 ⇔ x ◦ s = 0 for

x, s ≥ 0.
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Exercise 4. What is the dimension of the feasible set of the primal problem

inf C •X
s.t. Ai •X = bi ∀ i = 1, . . . ,m

X � 0

(P )

assuming that the data matrices {A1, . . . , Am} are linearly independent in Sn and that (P )

is interior feasible? Assuming also that the dual problem

sup bTy

s.t. C −
∑m

i=1 yiAi � 0.
(D)

has an interior feasible solution, determine the dimension of the feasible set of (D). Here,

dimension refers to the number of degrees of freedom of the (relative) interior of the feasible

set.
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Exercise 5. The following primal-dual example shows that strong duality does not hold for

SDP in general:

1 = inf X33

s.t. X11 = 0

X12 +X21 + 2X33 = 2

X � 0;

0 = sup 2 y2

s.t.

−y1 −y2 0

−y2 0 0

0 0 1− 2 y2

 � 0.

Argue that 1 and 0 are in fact the respective optimal values. Also, discuss the violation(s)

of the strong-duality theorem.

Comments and Hints. One argument uses the following 2 × 2 determinant property of

X ∈ Sp+: X2
jk ≤ XjjXkk for all j, k. In particular, consider how Xjj = 0 affects the j-th row

and column of X.
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Exercise 6. For a column vector x and nonnegative scalar t, prove

‖x‖ ≤ t ⇐⇒ t2I − xxT � 0.

Comments and Hints. This is the first step in proving that any SOCP can be modeled as

an SDP; the next step (which is not part of this exercise) is to apply the Schur complement

theorem, which ensures

t2I − xxT � 0 ⇐⇒

(
t xT

x tI

)
� 0.

To prove the exercise, apply the first definition of positive semidefiniteness: X ∈ Sp if and

only if vTXv ≥ 0 for all v ∈ Rp. To make the proof a little easier, you can assume without

loss of generality that ‖v‖ = 1.
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Exercise 7. For any µ > 0, the point on the primal-dual central path corresponding to µ is

the unique solution (Xµ, yµ, Sµ) of the following system of equations (assuming X,S � 0):

Ai •X = bi ∀ i = 1, . . . ,m
m∑
i=1

yiAi + S = C

XS = µI.

Derive a simple, closed-form expression for Xµ • Sµ.
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Exercise 8. An alternate form of the ϑ-number SDP relaxation is

max eeT •X
s. t. trace(X) = 1

Xij = 0 ∀ edges (i, j)

X � 0.

The dual of this form is

min λ

s. t. λI +
∑

edges (i,j)

yijEij − eeT � 0.

Prove that strong duality holds between this primal-dual pair by exhibiting positive definite

feasible solutions in each problem.

8



Exercise 9. Given a MaxCut instance with adjacency matrix A, a compact way to write

the SDP relaxation is

max{L •X : diag(X) = e,X � 0},

where:

• L := 1
4

(Diag(Ae)− A) is the Laplacian matrix of the graph;

• the operator diag(·) extracts the diagonal of its matrix input;

• the operator Diag(·) makes a diagonal matrix out of its vector input.

A compact way to write the dual is

min{eTy : Diag(y)− L = S, S � 0}.

Using these compact forms, prove weak duality between the primal and dual.

Comments and Hints. As with LP, sometimes it’s easier to work with a specific form of your

problem rather than a standard form. This particular form for the MaxCut SDP relaxation

highlights the importance of the operators diag(·) and Diag(·), which are in fact adjoint

operators, i.e., no matter the inputs X and y, it holds that diag(X)Ty = X •Diag(y).
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Exercise 10. Referring to the previous exercise, the low-rank approach for solving the

MaxCut SDP solves instead

max{L • (RRT ) : diag(RRT ) = e},

where the number of columns p in R ∈ Rn×p is approximately
√

2n. In terms of the n rows

of R, describe the geometric interpretation of the constraint diag(RRT ) = e.
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