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Three-dimensional elasticity problems
for the prismatic bar
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A general solution is given to the three-dimensional linear elastic problem of a prismatic
bar subjected to arbitrary tractions on its lateral surfaces, subject only to the restriction
that they can be expanded as finite power series in the axial coordinate z. The solution is
obtained by repeated differentiation of the tractions with respect to z, establishing a set of
sub-problems P;. A recursive procedure is then developed for generating the solution to
Pjyy from that for P;. This procedure involves three steps: integration of the stress and
displacement fields P; with respect to z, using an appropriate Papkovich-Neuber (P-N)
representation; solution of two-dimensional in-plane and antiplane corrective problems for
the tractions in P, that are independent of z; and expression of these corrective solutions

in P-N form. The method is illustrated by an example.
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1. Introduction

One of the major achievements in the theory of linear elasticity is the
establishment of a general solution to the two-dimensional problem for the
prismatic bar within the formalism of complex variable theory (Stevenson 1943,
1945; Green & Zerna 1954; Muskhelishvili 1963). The problem naturally
decomposes into two sub-problems: the plane strain problem (Milne-Thomson
1968), in which the stress and displacement fields are independent of distance z
along the axis of the bar and the only permissible tractions and body forces lie in
the zy-plane, and the antiplane problem (Milne-Thomson 1962), in which the
ends of the bar are subjected to prescribed force and/or moment resultants, but
the lateral surfaces of the bar are traction-free. Certain stress and displacement
components in the antiplane problem have low-order polynomial dependence on z,
but the solution reduces to that of a two-dimensional boundary-value problem on
the bar cross-section.

Methods for the problem of the prismatic bar with more general loading are
less well developed. Michell (1901) gave a solution for the case where tractions
are applied that are independent of z and this case is also discussed by Love
(1927) and Sokolnikoff (1956). Some problems with higher-order polynomial
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1878 J. R. Barber

loading were considered by Almansi (1901a,b). However, no systematic
procedure is available for solving problems of this class. In the present paper,
we shall develop such a general procedure. The problem is reduced to the
solution of a succession of purely two-dimensional problems (plane strain and
antiplane), interspersed with partial integrations with respect to z, which are
performed within the formalism of an appropriate form of the Papkovich—Neuber
(P-N) solution. Closed-form solutions can be obtained to any problem in which
the loading is expressible in terms of polynomials in z and for which the
corresponding plane and antiplane two-dimensional problems can be solved.

The method provides an exact solution for a wide range of beam problems and
has the advantage of generality in comparison with numerical methods. It can
also be used to investigate the effect of three-dimensional loading on stress-
concentrating features, such as holes and cracks.

2. General considerations

Consider the problem of a long bar of uniform cross-section under arbitrary
loading, the only restriction being that the boundary conditions on the ends of
the bar are satisfied only in the weak, force-resultant sense. We shall assume
that the bar is aligned with the zdirection and that its cross-section € defines
either the interior of a closed curve I' in the zy-plane, or that part of the region
interior to a closed curve I'y that is also exterior to one or more closed curves
I'y,I'5, etc. The following derivations and examples will be restricted to the
former, simply-connected case, but it will be clear from the methods used that
the additional complications associated with multiply-connected cross-sections
occur only in the classical solution of the two-dimensional problem.

The case where the lateral surfaces of the bar are traction-free and the only
loading is on the ends can be treated by classical methods. In particular, a
combination of axial loading and bending moments on the ends is solved exactly
by the elementary bending theory, whilst torsional and shear loading on the ends
can be reduced to two-dimensional potential problems in the bar cross-section.

We denote the local outward normal to I by n and the corresponding tangent
by t, where the rotation from 7n to ¢ is counterclockwise when looking in the
positive zdirection. The most general loading of these surfaces therefore
comprise the three traction components T, T}, T.,.

(a) Power series solutions
Consider the problem in which the three tractions T,,, T}, T, can be written as
power series in z, i.e.
m—1 m—1
—1 —1 —1
Tn = Zﬁ(8)27 ) Tt = Zgi(s)zl ; Tz = Z hi(8)27 ) (21)
=1 =1 i=1
where f, g, h are arbitrary functions of the curvilinear coordinate s defining
position on I'. We shall denote this system of tractions by the symbol T™. Note
that the in-plane tractions T),, T, are carried only up to the order 2™ 2, whereas
the out-of-plane traction T, includes a term proportional to 2™ *. Practical cases
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Three-dimensional elasticity problems 1879

where the highest-order term in all three tractions is the same (2" say) can of
course be treated by setting m=n+ 2 and h,,(s)=0.

Complete definition of the problem requires that we also specify the force
resultants F™ (0), M(0)™ at the plane z=0, where

F,(;m) = JJ 0, dQ; Fi(/m) :JJ 0,y dQ; Fgm) = JJ 0., dQ, (2.2)
Q ' Q °

MO = J L)%y dQ; M Z_HQ%x do; M = J Jg(mzy—y%)dg.

(2.3)

We describe this problem as P,, and the resulting stress and displacement
fields in the bar by o™, ™, respectively. Note that m=1 corresponds to the
non-trivial case, where T, is proportional to 2, i.e. out-of-plane tractions that
are uniform along the bar.

(b) Superposition by differentiation

Suppose that the solution to a given problem P,, is known, i.e. that we have
found stress and displacement components a(m), 4™ that reduce to a particular
set of polynomial tractions (2.1) on the lateral surfaces of the bar and that satisfy
the quasi-static equations of elasticity in the absence of body forces, which we
here represent in the symbolic form

L(e™ u™) =0, (2.4)
where L is a set of linear differential operators. Differentiating (2.4) with respect
to z, we have

0 ’ (m) (m)y _ aa.(m) au(m) B
Fy (', u )—E( P az>—0. (2.5)

It follows that the new set of stresses and displacements defined by differentiation
as

ao-(m) ; u<m_1) _ Zau(m) 7
0z 0z

will also satisfy the equations of elasticity and will correspond to the tractions

o™ = (2.6)

m—2 m—2 m—1
T,=1 E iﬁ+1(3)zi_l§ T, =1 E igiﬂ(s)zH; T, =1 E Zh7:+1(3)27i_1- (2.7)
i=1 =1 =1

The constant [ has dimensions of length and is introduced to ensure that ¢™ ™,

w1 have the dimensions of stress and displacement, respectively. It clearly
cancels in equations (2.5) and its magnitude can be taken as unity without loss of
generality. We therefore omit it in the subsequent derivations.

This process of generating a new particular solution by differentiation with
respect to a spatial coordinate can be seen as a form of linear superposition of the
original solution on itself after an infinitesimal displacement in the zdirection.
Since u(m)(a:, y, z) satisfies (2.4), so does u™ (2, y, 2+ a), since this represents the
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1880 J. R. Barber

same field displaced a distance a in the negative zdirection. Superposing the two
fields and multiplying by the dimensionless constant //a, we can construct the
new solution of (2.4),

(u'" (z,y, 2 + a) —u" (2,9, 2))

)

a
which reduces to (2.6)) in the limit a — 0.

The tractions (2.7) resulting from this operation are clearly of the form T
There will also generally be force and moment resultants on the end given by
dF™ _ dM™

(0): M"(0) == (0). (238)
z
Thus, the stress field aa<m>/ 0z is the solution of a problem of the class P,,_;.

Repeating this operation m times, we find that the stress and displacement
fields,

m—1) )

F"D(0) =

s = "™ 9

azm ! azm !

correspond to the physical problem Py, in which the tractions T'=0 and the
force resultants on the end are

FO0) =———(0); MY(0) =—=—(0). (2.10)

dz"
This is a Cl%ssical a(%tiplane problem and the solution o is such that

0 . 0
aﬁw) =0y =0y =0, 03,03 are independent of z and 0,(”) corresponds to a

linearly varying bending moment and takes the form
dV = (Ciz + Cyy + Cy)z + Dyz + Dyy + Dy, (2.11)

From these results, it is clear that the solution of problem P,, possesses the
following features:

(2.9)

(i) The stress and displacement components, a(m), 4™ can be expressed as
power series in z.

(ii) The highest-order terms in the stress components afg"), a;;”), ag/gl) are of the
order 2™ 2, since after m differentiations with respect to z they are zero.

(iii) The highest-order terms in the stress components ¢, 7,, are of the order
2™ since after m differentiations with respect to z they are independent
of z.
(iv) The highest-order terms in the stress component o, are of the form
Ciz + Coy + C5)2m Dz + Dyy + Dg)2™
7., = (G 2Y 3) + (Dy 2y 3) : (2.12)
(m+1)! m!
from (2.9) and (2.11). /
(v) The exact form of the highest-order term in the stress components agZL),
0y, 0z depends only on the force and moment resultants F, M
associated with the highest-order term in the loading.

Conclusions (ii) and (iii) explain why we chose to terminate the traction series
(2.1) at 2™ 2 in T,, T, and at 2™ " in T,.
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Three-dimensional elasticity problems 1881

3. Solution of P,, by successive partial integration

The process of differentiation elaborated in §2b shows that for every problem P,,,
there exists a set of lower-order problems P;, j= (0, m—1), for which
g0 T Gy _9ath g ultY
0z 0z 02
Complete definition Of the sub-problems P; also requires that we specify the force
resultants FU(0), M (0), but we shall find that it is not necessary to identify
these resultants explicitly except in the final problem P,,.

The lowest-order problem in this set, Py, can always be solved by classical
methods, so the more general problem P,, can be solved recursively if we can
devise a method to generate the solution of P, from that of P;. This process
clearly involves partial integration of ¢, ul?) with respect to z. We obtain

ot = Jaﬂ dz + f(z,v), (3.2)

where f(z,y) is an arbitrary function of z, y only. This function is required to
satisfy two conditions:

(3.1)

(i) the complete stress field eV, including f(z, y), must satisfy the equations

of elasticity in the strong sense, and
(ii) the stresses must reduce to the known tractions TU'Y on the lateral

surfaces of the bar.

Condition (ii) involves only the coefficient of 2° in TU*Y | since the coefficients of

higher-order terms will have been taken care of at an earlier stage in the recursive

process. Similarly, the conditions imposed by the equations of elasticity can only

arise in the lowest-order terms in the stress field.

Since methods for solving the two-dimensional problem P, are well
established, there are clear advantages in choosing a strategy for determining
f(z,y) that will make use of these methods. We shall achieve this purpose by
expressing the solution of each sub-problem P; in the formalism of the P-N
solution. Thus, the integration (3.2) will actually be performed on the P-N
potentials, rather than directly on the stress components, and the requirement (i)
that the solution satisfy the equations of elasticity will therefore be met by
ensuring that the integrated potentials are three-dimensional harmonic
functions. Correction of the zeroth-order term in the boundary tractions (ii)
will then correspond to the combination of a plane and antiplane problem on the
cross-section, which can be treated by classical methods. Since the P—-N solution
acts as the vehicle through which the solution is transmitted from stage jto j+ 1,
we shall also need to express the solution of these two-dimensional problems in
P—-N form. The formalism needed for these steps will be developed in §4.

4. The Papkovich—Neuber solution

A general solution of the equations of elasticity without body forces can be
written in the form

2un = —4(1 =)y + V(r-y + ¢), (4.1)
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1882 J. R. Barber

where u, v are the modulus of rigidity and Poisson’s ratio, r is the position vector
and y,¢ are three-dimensional harmonic vector and scalar potentials,
respectively (Barber 2002, §18.3). We wish to perform the integrations (3.2)
on the potentials ¥, ¢ instead of on the stress and displacement components, but
these two processes are not generally equivalent because of the dependence on z
implied by r in (4.1).

This zdependence can be avoided by eliminating the component y, of the
vector potential ¢, which is therefore restricted to the zy-plane. A ‘proof’ that
this can be done without loss of generality has been given by various authors, but
Sokolnikoff (1956, p. 331 et seq.) showed that the proof fails unless the geometry
of the body meets certain conditions. Fortunately, a sufficient condition for the
elimination of ¥, is that any straight line parallel to the zaxis cuts the boundary
of the body in no more than two points (Eubanks & Sternberg 1956; see also
Barber 2002, §18.4). This condition is clearly satisfied by the prismatic bar under
consideration.

The displacements for the P-N solution can then be expanded as

L0 oy, . oy, )
2Nux_£+$ax (3 4V)¢x+y oz’
0 oy, oy,
2uu, = —+zx +y—L—(3 —4d)y,, (4.2)

Yoy 0y 0y

0¢ oy, o,
T, TV

2uu, =

Vg

where ¥,,¥, are the remaining components of ¥ and the corresponding stress
components can then be obtained from the strain—displacement and stress—strain
relations as

O = 227‘2 + 2 a;;p; —2(1—v) aat” +y a;rzy —2u%ﬂ, (4.3)
Ouy = ai2§y e ;’;"gy —(1—2) aa‘p; by aa;‘gyy —(1—2) %‘2/ (4.4)
ayy2227(2+xa;;[/;—21/a$p;—i—ya;;éy—Q(l—V)Z—l//yy, (4.5)
0, = 227? +z 6;;//2, —2v aatx +y a;;gy — V%, (4.6)

(see Barber 2002, ch. 19).
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(a) Complex variable form

For our purposes, there is considerable advantage in restating the P-N
solution in complex variable terms, using the notation {=z+ 1y,{ =z —1y and

u=u, +w; 6O =0,+0,; ®=o0,+20,,—0 Y=g, +10

as in Green (1949). With this notation, © is invariant with respect to in-plane
coordinate transformation and @, ¥ transform according to the rules

P, =P, W, =W, (4.9)

where @,, W, are defined in a coordinate system rotated anticlockwise through
an angle « with respect to z, ¥.

In the resulting expressions, ¢ will be left as a scalar potential, but ¥, ¥, will
be combined as

Y=y, + 1, (4.10)
After routine manipulations, we obtain
2,uu=22—(§—(3 4y)¢+c—‘§+g—‘é (4.11)
Qpu, = 2‘? <:—¢ +¢ ¢> (4.12)
oo PO L)
_42%"’ 4(1—2 )2—‘;+2c C¢+2ca?§, (4.14)
azz=227(f—2 < ‘é+ ‘g) +%<‘227f+ 227‘5), (4.15)
Y =2 a%2§z—(1 2v ) a‘// a:g + :aa;gz, (4.16)

where ¢(¢,¢, 2) is a real three-dimensional harmonic function and ¥(¢,¢, 2) is a
complex three-dimensional harmonic function. In other words,

02 02 0° 02
—‘f+4 o _. —f+4 i
9z 0z 07 3z 0z 07

= 0. (4.17)

(b) Development of harmonic potentials by integration

The complex variable form is particularly useful in the integration process
(3.2). For example, if we have a function y; satisfying (4.17), we first integrate
with respect to z, obtaining

¢j+1 = Wfﬂ +f(:u E)u (4-18)
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1884 J. R. Barber

where

is any partial integral (not necessarily harmonic) and fis an arbitrary function of
¢,¢. Substitution into (4.17) then yields
0°F __ 09l
g o¢ 0z o¢ 022
The right-hand side of this equation is necessarily independent of z, since the

zderivative of Y2, is y; from (4.19) and this satisfies (4.17) ex hyp. A suitable
function fcan therefore always be obtained by integration with respect to  and ¢.

(4.20)

(¢) Relation to spherical harmonics

A special category of harmonic function which will feature extensively in the
subsequent solution process is that in which the lowest-order (two-dimensional)
potential corresponds to a power of {. If we define the function

X088 2) =", (4.21)

and apply the integration (4.18)—(4.20) procedure several times, we shall
generate the sequence of functions,

X1'(6, ¢, 2) = 2", (4.22)
ZQCm N Cm+lg

" B B zSCm Zcm+lg
4em 2¢m+1e m+252
X882 =2 - G Sl (4.25)

41 (=) (m+1)2)  (—4)?*(m+1)(m+2)(2)’

which are three-dimensionally harmonic and which satisfy the recurrence
relations

Xn1 (8, € 2) = Jx?’(i, ¢z xn TG G 2) = (m+ 1) JXZL(Z, g, 2)dg. (4.26)

These functions can be expressed in terms of spherical harmonics in the form

Z —2)" !Rm+n ::LZ n R Z\ M,
xn (§,¢, 2) ) m(n+2m)!+ (z/ )(CC) 2, (4.27)

R=V2+{L =/ + @+ 2, (4.28)

is the distance from the origin and P;'(¢) is the Legendre function (see Barber
2002, §22.4). A few low-order potentials that we shall need later are

2 & 3 &
5 % %; _&L (4.29)

where

0 0
xo=1L x1=2z X
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1 1
=8 =L =5 BT g (4.30)
242 #37 352 37
2 _ 42, 2 42, 2_2:_CC_ Q_ZC_ZCC
xo =85 x1 =20 X2 = 5" T g X38T T T g (4.31)

5. The two-dimensional problem

To start the recursive process, we need to obtain the general solution to the
problem Py, in which the lateral tractions are zero, for the specific cross-section
Q. Physically, this corresponds to the problem in which the bar is loaded only by
general (and as yet unspecified) force and moment resultants F(0), M (0) at the
end z=0. This is of course a classical two-dimensional elasticity problem, but we
need here to cast the solution in a form consistent with the P—IN solution of §4 in
order to facilitate the three-dimensional solution procedure.

(a) Pure bending and azial force

Of the six force and moment resultants, three (F,, M,, M,) correspond to the
problems of axial loading and pure bending and have the exact elementary
solution,

= Al + Aog + By, (5.1)

where 4 is a complex constant related to M, + 1M, and B, is a real constant
related to F,. All the remaining stress components are zero (O=Q=Y=0). It
follows that no tractions are implied on the surface I' for any cross-section Q, and
hence that this solution is independent of Q. It is readily verified by substitution
n (4.11)—(4.16) that this elementary stress field is generated by the choice of
potentials

(1—2v) ByXs
¢ = ﬁ(!‘lo)@*‘flo %)+ 1+ (52)
g Ao 0-WAxd  Bo | (5.3)

(1—2?%) 8(1—1?) 41 +v)

(b) Shear, torsion and push

The remaining three resultants (F,, F,, M,) correspond to the transmission of
a torque and a shear force along the bar and involve non-zero values of ¥. They
therefore require the solution of an antiplane problem in order to render the
lateral surfaces traction-free and the solution depends on the cross-section Q.
Various methods exist for the solution of this problem, the most popular
involving the use of the Prandtl stress function (Barber 2002, ch. 16 and 17).
For our purposes, the most convenient method is first to generate a particular
solution that is independent of Q and then superpose a corrective potential to
render the surface I' free of tractions. For the shear problem (F,, F,), the bending

moment must increase linearly with z and an appropriate particular solution is
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easily obtained by using the recurrence relation (4.26):) to generate harmonic
partial integrals of (5.2) and (5.3) as

0
(s) — (1_2V) A 1 A -1 BOX3 5.4
1p(s) _ ong _ (1 _2’/)140)(% . BOX% (5.5)

(1—»*)  8(1—»?) 4(1+v»)’
The corresponding non-zero stress components are
0, = Ayl + Ay2{ + Byz, (5.6)

A+ AL B
4(1 +v) 21 +v) 27

from (5.4), (5.5) and (4.11)—(4.16). This solution is actually rather more general
than is required for the shear problem, since the real constant B, corresponds to
an axial force F, that varies linearly with z and these terms are necessarily
cancelled by the corrective solution when the surface I is traction-free. However,
there is some advantage in retaining them here, since we shall be concerned with
more general loading of I'. In fact, the terms involving By in (5.5) correspond to
what Milne-Thomson (1962) calls the ‘push’ problem.

The torsion problem also involves zindependent non-zero values of the stress
component ¥, but in this case d,, = 0. The appropriate particular solution is

lp:

(5.7)

LCo)d

M =0 ) =—
B0 =0 Y ==

(5.8)

and the only non-zero stress component is
¥ =G, (5.9)

where Cj is a real constant.

(¢) The corrective antiplane solution

Equations (5.7) and (5.9) define non-zero values of ¥, and hence imply non-
zero tractions T, on I', which, however, are independent of z. In the three-
dimensional problem, we may indeed have non-zero tractions T, but these will
not generally correspond to those of the particular solution, and it is therefore
necessary to superpose a corrective solution in which the tractions are changed
without affecting the force resultants implied by the constants A, By, Cy. Thus,
the corrective solution satisfies the conditions

o

0z

and it is an antiplane solution in the sense of Barber (2002, ch. 15).
A convenient representation in P—N form is obtained by writing

O=0=0g, =0; 0, (5.10)

¢=z(h+h)—z(i}(l1if)h)s ¢:2(1zh_y), (5.11)
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in (4.11)—(4.16), where A(Z) is a function only of the complex variable , h=h(%)
and h' = 0h/07. We then obtain
u=0, @=d=g,_ =0, (5.12)
Quu, =h+h;, W= (5.13)
It follows that
O = On, _ _Ohy (5.14)

- ay ’ azy ax )

where h, =1Im(h), and hence h, is equivalent to the real Prandtl stress function.
In particular, the traction

oh,
ot
where t is a coordinate locally tangential to the boundary I' (see Barber 2002,
§16.1). Since these tractions are known everywhere except for the as yet
unknown function h,, we can integrate around I' to determine h,, at all points on
the boundary. It is then a standard boundary-value problem to determine the
real harmonic function h, in Q, and hence the analytic function of which is the
imaginary part. It is important that the integration of (5.15) should yield a
single-valued function of t. This is equivalent to the requirement that the
tractions in the pure antiplane problem should sum to a zero axial force F,. If the
applied tractions do not meet this condition, F, will be a linear function of z, and
hence B; will be non-zero. Thus, the single-valued condition on h, serves to
determine the constant B,.

T,=0, = (5.15)

(d) The in-plane solution

In higher-order problems, we shall also need to make corrections for zeroth-
order in-plane tractions T, T}, using an appropriate form of the two-dimensional
plane strain equations. If we use the complex form of the P-N solution (4.11)—
(4.16) and define plane harmonic functions through

¢ =fQ)+f©; v=g(0), (5.16)
where f, g are functions of the complex variable {, we obtain
Quu =—(3—4)g+¢7 +2f; 2uu, =0. (5.17)

This is identical to the classwal form of the plane strain complex variable
solution, except for the term 2f', which can be replaced if desired by a new
functlon of {. The corresponding stress components are given by

0 ==2(4+7), (5.18)

=2(¢5" +2f"), (5.19)

7., =—2(d +7), (5.20)
W =0. (5.21)
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In some cases, the plane strain problem is easier to solve in the context of the
real Airy stress function ¢, which satisfies the biharmonic equation

Vip =0. (5.22)

If this is done, a complex variable form of ¢(z, y) can be obtained by substituting
z=({+7)/2, y=—({—¥)/2, and separating terms to express the real function
@ in the form

(L, f) = £(©) +f1(g) + ffz(:) + Cf2(g), (5-23)

which must be possible in view of (4.17) and (5.22). If this separation is not
obvious, we can construct the function

¢ = J o7 dg, (5.24)

where the integration is performed treating { as a constant, so that at most an
arbitrary constant of integration is introduced. With this construction, ¢; will
contain only those terms in ¢ that depend on ¢, and we conclude that

h(E) =9—01. (5.25)
Once f; (and hence f;) is determined, it is straightforward to find f, from (5.23).
Comparison of the well-known expressions for the stress components,

0% 0% 0%
Opy = a—y27 Uzy = _6:1: ay ; ny = W? (526)
with (5.18) and (5.19) then shows that f=—f,, g=—2f,, and hence
¢ =—A()—LQ); ¥ =-25(), (5.27)

from (5.16).

6. Solution procedure

We are now in a position to summarize the solution procedure for the three-
dimensional problem P,,. We first differentiate the tractions T m times with
respect to z in order to define the sub-problems P;, j= (1, m). We shall be
partlcularly interested in the zeroth-order tractions in each sub problem, i.e. the
terms in TV that are independent of z, since these are the only terms that are
active in the incremental solution.

Suppose the potentials ¢;,y; corresponding to problem P; are known. In other
words, if we substitute these potentials into equations (4.11)—(4.16), the resulting
stresses satisfy the boundary conditions on the tractions TV) on the lateral
surfaces in problem P;. This solution will also contain two undetermined
constants A, ;, C;, representing force and moment resultants on the end z=0.

To move up to the solution of problem P, we proceed as follows:

(i) We define new potentials by adding in the zeroth-order solution (5.2) and
(5.3) with new constants A;, B}, i.e

(1—2)
2(1—2%)

¢ =¢j+ (4; X2+AJX2)
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Axs  (1—=2)Ax5  Bixo
(1—»?)  8(1—»*)  4(1+v»)’

(ii) We next integrate ¢,y with respect to z as in §4b and add in the torsion
solution (5.8), again with a new constant C;. Note that any terms in these
potentials of the form x]' integrate simply to x|, in view of (4.26).

(iii) At this stage, @, @ will generally contain terms up to order j—1 in z and
Y will contain terms up to order 5. However, all except the zeroth-order
terms will satisfy the boundary conditions on the lateral surfaces, since
both the tractions and the stresses were obtained by one integration with
respect to z from the given solutlon P;. To satisfy the boundary conditions
on the zeroth-order terms in T+ T i+ , we add in the in-plane solution
from §5d and solve an in-plane boundary—value problem exactly as in the
two-dimensional case. Solvability of this in-plane problem requires that
the corrective tractions be self-equilibrated in the plane and this provides
a condition for determining the constants A, , Cj.

(iv) To satisfy the conditions on the zeroth—order term in the out-of-plane
tractions TV, we add in the antiplane corrective solution from (5.11)
and determine the function h({), using the procedure outlined in §5¢. This
solution is only possible if the tractions associated with h alone are self-
equilibrating, and hence the solution at this stage will also determine the
constant B;. This completes the solution of problem P, except for the
constants A, C;.

This recursive procedure can be started at j=0 by assuming ¢y=y,=0 in
equations (6.1) and (6.2). After repeating the procedure m times, a solution will
be obtained that satisfies the traction conditions T completely and which
contains two free constants A,,, C,,. To complete the solution, we once again add
in the zeroth-order solution, as in equations (6.1) and (6.2), using constants
A,i1, Bpy- Finally, we determine the constants A,,, C,,, A1, By from the
end conditions (2.2) and (2.3). More specifically, the conditions on F,(0), M(0)
determine B, 4, C,,, respectively, the conditions on F,(0), F,(0) determine A,,
(which is a complex constant, and hence has two degrees of freedom) and the
conditions on M,(0), M,(0) determine A,,;;.

y=y;+ (6.2)

7. Body forces

The method is readily extended to problems involving body forces p that exhibit
polynomial dependence on z and arbitrary dependence on z, y. The simplest way
to do this is first to seek a particular solution of the body force problem, i.e. a
solution that satisfies the governing equations without regard to the boundary
conditions. The stress components will also have polynomial dependence on z and
the boundary conditions can therefore be corrected by superposing the solution
of an appropriate problem of form P,, without body forces. Note that in this case,
the corrective problem involves no body forces, and hence no modification is
required in the above solution procedure. Since body forces most often arise from
gravitational or inertia loading, the particular solution will generally exhibit low-
order polynomial behaviour in all three coordinates.

Proc. R. Soc. A (2006)



1890 J. R. Barber

Alternatively, if the body-force field is conservative, we can express it in the
form

p=-VV, (7.1)
where Vis a scalar potential. We can then use the P-N representation (4.1) with
1-2

(1=v)
(Barber 2002, §18.5.1). The expressions for the stresses are then modified by the

addition of the term »V /(1 —v) into the normal stress components 7,,,0,,,0,,

only. In particular, @, ¥ are unchanged from (4.14) and (4.16), while 0,0,
become
_ WV ¥ oy 1[0 &Y
@—@ﬁ>ar2Q{“ﬁ 56—‘<&Q’ 73
T2 = 1=y T892 ¥ : o 02 "0 '

With these modifications, the procedure of §6 can be applied directly to
conservative body-force problems.

8. Example: the cylinder loaded by a linearly increasing
concentrated tangential force

To illustrate the procedure, we consider the example of a solid cylinder of unit
radius, loaded by a concentrated tangential force that is a linear function of z, as
shown in figure 1. The end z=0 is unloaded, so the six force resultants of
equations (2.2) and (2.3) are all zero. The tractions for this problem are

T, =0, T,=Fyz(0); T,=0, (8.1)

where the components are now conveniently defined in cylindrical polar
coordinates (7,0, z). Comparison with (2.1) shows that this is a problem of
class P3. The sub-problem P, corresponds to the tractions

T, =0, T,=Fy(0); T,=0, (8.2)

and the tractions in P; are zero.
We start at step (i) with ¢y= 1y, =0, and after integration and adding the
torsion solution the potentials are

—9y )0
S (Ao + Aot + 1 (53)

¢= )

Y= ong _(1_2V)A0X%_ BOX% B LCo)d (8.4)
(1—2%) 8(1—1?) 414+v) 2(1—v»)’ )
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AN

Figure 1. Cylinder with a linearly varying concentrated tangential force.

from equations (5.5) and (5.8). The only non-zero stresses at this stage are o,
and

_ A+ A Boc
= 41+v) 2(1+v) TGk, (8:5)

from (4.11)—(4.16) or (5.7) and (5.9). On the boundary r=1, we have

Ao(l + QV)QUQ _ AO e_La BO
4(1 +v) 20 +v) 2

0, +1o,y = W1, 0) =— + 10y, (8.6)

and hence the antiplane traction is

(3 +2v)(Re{Ag}cos  —Im{A}sin ) B,  0h,
Zﬂ+ﬂ : ;+5? (8.7)

Tz = er(l,ﬁ) =

where we have added in the antiplane corrective term from (5.15). This traction
is zero in P; and the resulting expression leads to an integrable expression for A,
if and only if By= 0. Elementary calculations then show that the traction- free
boundary condition can be satisfied by writing

3+ 2)AL
h_fﬁiﬁL’ (8.8)
and hence
e
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Yy = ong _(1_2V)A0X% _ 1Coxi 3 +2V)A0X(1]
P =) 8(1—)  2(1—v) 8(1—22)
defines the complete solution to P; in P-N form. This of course represents the
well-known solution for the cylinder loaded at the end by a shear force and a
torque, but we include it here to illustrate the recursive procedure and
particularly the way in which the antiplane solution is incorporated into the
P-N formalism.

The next stage is once more to add in the zeroth-order solution (5.3) with new
constants Ay, By, perform a further integration with respect to z, use equations
(4.18)—(4.20) and (4.26) to determine the function f(Z, ) required for each of the
potentials ¢,y to be three-dimensionally harmonic and add in the torsion
solution (5.8) with a new constant C;. We obtain

(8.10)

1—2y . 3—4v)(3 + 2v)(Aoxa + AoX3
b= ( 2) (on}l +14on11) +( )( )( §X2 0X2)
2(1—r7) 16(1—»%) (8.11)
(1—2») 1, 7 <1 Bng .
- (A, vy A, v:
+2(1—V2)( 1X5+ 1Xd) +(1+V)7
Y= /_107(91 _ (1 _2V)A0X% _ 1Coxs (3+ QV)AOX(Q) A1X§
(1—2v?) 8(1—1?) 2(1—v) 8(1—1?) (1—2%)
_ (1 _QV)AU(% _ Bixi _ LCixq (8.12)

8(1—r?) 4(1+v) 2(1—»)’

Substituting this partial solution into equations (4.13) and (4.14), we obtain the
non-zero (but zindependent) in-plane stress components

o — [2(1 —v)CC — (3 + 2v) (3 —4v)](AL + AyQ) 7 (8.13)
16(1—v?)

(1+40)A 3 [2(1—v)CC— (3 + 2v)] AL _ LCy¢2

= 8.14
24(1 +») 16(1 —v?) 2 (8.14)
and the corresponding tractions on the surface r=1 are
(0 + @20 (19—18v—16v%) Ay ¥ Ay 1,
T 4T, = =— — o 8.15
Pt 2 96(1—1?) 1 7 819
using (4.9).

In order to satisfy the traction conditions (8.2) ), we need to superpose the
solution of an in-plane problem corresponding to the loading of a circular disc by
a concentrated tangential force F, per unit length, equilibrated by tractions of
the form (8.15). The Airy stress function,

_ Fyr6 cos 0 _ LW (C+ ) (In(Z) —In(%))
T 4

¢ , (8.16)
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represents a force Fj in the y-direction at the origin, so the concentrated force at
the point (1,0, z) in problem P, can be described by the function

_ R+ -0 -ln(1-7)

P (8.17)
Comparing this with (5.23), we see that
__lFo(c_Q)ln(l_C)_ __LFO In(1—-¢)
A0 = DR po =l )
In view of equations (5.27), we therefore add the corrective terms,
Fy[(€=2)In(1—¢) = ({—=2)In(1—¢
5. — BlE=2I0 -0 ~ €2 -7 .19
4w
FyIn(1—
Ve = w + lDoX(Q)a (820)

to the stress functions of equations (8.11) and (8.12), where D, is an arbitrary
constant and the additional term 1Dyx3 corresponds to the Airy function
Dyr3 sin 6, which is the only non-trivial degree of freedom in the Michell solution
with the appropriate Fourier dependence. We then repeat the procedure of
equations (8.13)—(8.15) using the modified stress function and enforce the
traction-free condition for § # 0 by setting the coefficients of each power of exp
(1) in the numerator of T, + Ty to zero, with the result
2F, _ 2F, _ Fy(19—18v—16v7)

The constants A, C, relate to the moment resultants transmitted through the
cross-section, and hence could have been determined without the solution of the
in-plane boundary-value problem. However, in the present procedure, it is not
necessary to use equilibrium arguments. Constants related to transmitted force
resultants are determined as conditions of solvability at a higher stage in the
recursive procedure.

Using (4.16), (8.11), (8.12), (8.19)—(8.21), the antiplane stress components are
given by

CWR[(1 4 20)8 +4(1 + )0 200 + (3 + 20))
27w(1 +v)
A+ AL B
4(1 +v) 20 +v) 2
The first (»varying) term necessarily corresponds to zero tractions on the surface
r=1, since it was obtained by integrating stresses which satisfy this condition
using equations (8.7) and (8.8). The remaining (zindependent) terms in (8.22)
are identical in form to those in (8.5), and the traction-free condition can

therefore be satisfied by setting B; = 0 and adding the function zh'/2(1 —v) into
Y, where

Y =

(8.22)

+ LCI:‘

(3 + 2V)A1C

LT

(8.23)
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Thus, the solution to problem P, is defined by the potentials

Fy(1 =)0 = 1) | tFo3=0)(3 +2) (3 1)

¢=

(1 —v?) 8m(1—r?)
L R =2)in(1 —i)w—(c —2)m(1—-9] 2((11_—2:2)) (Apd + A,%0), (8.24)
v = WFE%) [—8x1 — (1 —2v)x3 + 4(1 + v)xd — (3 + 2v)x3)]

+ Wy In(1-8)  Fp(19—18v— 16v%)x2 A (1 —2) Ay X3
27 96m(1 —v?) (1—27) 8(1—v?)

lClX% (3+ 2”)141)((1)
— . 2
21—v) T 81— (8:25)

The final stage of the solution starts with the superposition of the zeroth-order
potentials (5.3) with new constants Ay, By, a further integration with respect to z,
using equations (4.18)-(4.20) and (4.26) to determine the function f(Z,)
required for each of the potentials ¢,y to be three-dimensionally harmonic and
the addition of the torsion solution (5.8) with a new constant C,. Substitution
into (4.11)—(4.16) and computation of the in-plane tractions, as in the analysis
leading to equation (8.15), yield

(19—18r—16v%)A,; e A, e ¢
T, 4+ 1T, = 1Fyz6(0) — — - 2
r+|’ 4 Lz ( ) 96(1_1/2) 4 4’ (8 6)

which satisfies the boundary conditions (8.1);;) with the trivial choice
A, = C;=0. We could, of course, have inferred this from the fact that the in-
plane tractions in P; have no zindependent terms, and hence the moment
resultants cannot contain quadratic terms in z.

Using this result, the out-of-plane tractions are then found to be

_ Fy(1—=v)In(2(1 —cos(f))sin § | Fy(25 + 38v + 16v%)sin 6

T =
? 27 48m(1 +v)

Fov(mr—6@)cos @ (3 +2v)(Re{As}cos 0 —Im{A,}sin ) B,
+ — ——. (8.27)
27 4(1 +v) 2

Integrating with respect to 6 to determine the boundary values of the corrective
potential h, shows that a single-valued function is obtained if and only if By =0,
and with this choice the required traction-free condition can be restored using the
function

D3 hl(]_ _C)

h=DIn(1—%) + Dy In(1—=2) + + Dy, (8.28)
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where
bt p B9, =)
o " o (8.29)
D — LFy(49 4+ 62v + 16v7) (3 + 2v) A, :
! 487 (1 +v) A1 + )
The appropriate additional terms in ¢, ¥ are obtained by substituting (8.28) into
(5.11).

It remains to satisfy the weak traction-free conditions on the end z=0. The six
force and moment resultants are obtained from (2.2) and (2.3) as

Uy (15 +220) + 1274y

F,(0) 4+ 1F,(0) = pre) . F0)=0,  (8.30)
M,(0) + M, (0) = 0;  M,(0) = FO(Z; o) 4 ”202 , (8.31)

and hence the weak conditions can be satisfied by the choice

LFo(15 + 22v) Fy(7—6v)

— e G =———
12w 6m

Note that if the resultants F,, M,, M, had not been found to be zero, it would
have been necessary to add in the zeroth-order potentials (5.2) and (5.3) with
new multipliers As, By. The final solution of the example problem is defined by
the potentials

Ay = . (8.32)

_ B—4)  (1—v») (1—2p)(5—4w)
¢_LF0Z<C_87T(1—V)+ e TS )111(1_:)
+ lFO

96m(1 —v?)

+ (153 + 61y —2260° —1200% )y —12(1 —2v)(1 + »)x)),

(96(1 —2v)x: + 8(21 —34w)(1 + »)x} (8.33)

Wz _ In(1-¢) (1-2»)n(1-{) (1-2»)
Y= (1“(1 VT T a1-n? 2(1—v>z)

lFO

+————— (—96x) — 12(1 —2v)x3 + 48(1 + v)x3 — 16(6 + Tv)x}
487 (1 —v?)

—(17=300)(1 4+ v)x3 + 4(7—6v)(1 + v)x} — (35 + 67v + 300°)x)), (8.34)
and the stress and displacement components can be recovered by substitution
into equations (4.11)—(4.16).

9. Discussion and conclusions
We have deliberately chosen a fairly straightforward example to illustrate the
method, because, as the reader can see, the algebraic expressions involved

rapidly become rather lengthy. However, it should be emphasized that the

Proc. R. Soc. A (2006)



1896 J. R. Barber

operations involved are all essentially routine and present no serious challenge to
symbolic processors, such as MATHEMATICA or MAPLE, in cases where closed-form
solutions can be obtained.

The solution procedure intersperses solutions of classical two-dimensional
(plane strain and antiplane) boundary-value problems, with integrations
performed in the P-N formalism. These integrations are all of an extremely
simple nature, and hence solutions can be obtained for any bar for which a
general solution exists to the two-dimensional plane strain and antiplane
problems. In particular, this category includes all bar cross-sections that can be
conformally mapped to the unit circle. The two-dimensional solutions can also be
solved using real stress functions if desired, since these are easily converted to
complex form to permit the necessary P—N integrations. Thus, the proposed
procedure provides a quite general solution to the problem of the prismatic bar
loaded by tractions that permit a polynomial expansion in the axial coordinate z.

The method can easily be extended to include body forces, provided these can
be described by a body-force potential.
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